首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Although it is known that hormones, growth factors and integrin promote hepatocyte proliferation in liver regeneration (LR) through ERK1/2 signalling pathway, reports about regulating processes of its intracellular paths in hepatocytes of LR are limited. This study aims at exploring which paths of ERK1/2 signalling pathway participate in the regulation of rat LR, especially in hepatocyte proliferation, and how they do so. In all, 14 paths and 165 genes are known to be involved in ERK1/2 signalling pathway. Of them, 161 genes are included in Rat Genome 230 2.0 Array. This array was used to detect expression changes of genes related to ERK1/2 signalling pathway in isolated hepatocytes of rat LR, showing that 60 genes were related to hepatocytes of LR. In addition, bioinformatics and systems biology methods were used to analyse the roles of 14 above paths in regenerating hepatocytes. We found that three paths, RTK→SHC→GRB2/SOS→RAS→RAF, IntegrinΒ→FAK→RAC→PAK→RAF and GΒγ→PI3KΒγ→RAC→PAK→RAF, promoted the G1 phase progression of hepatocytes by activating ERK1/2. A further four paths, Gq→PLCΒ→PKC→SRC/PYK2→GRB2/SOS→RAS→RAF, RTK→PLCγ→PKC→SRC/PYK2→GRB2/SOS→RAS→RAF, IntegrinΒ→FAK/SRC→GRB2/SOS→RAS→RAF and IntegrinΒ→FAK→RAC→PAK→RAF, advanced the cell progression of S phase and G(2)/M checkpoint by activating ERK1/2, and so did PP1/2→Mek1/2 by decreasing the negative influence on ERK1/2. At the late phase of LR, Gαs→AC→EPAC→Rap1→Raf blocked hepatocyte proliferation by decreasing the activity of ERK1/2 and so did PP1/2→Mek1/2. In summary, 60 genes and 8 paths of ERK1/2 signalling pathway regulated hepatocyte proliferation in rat LR.  相似文献   

3.
To explore the role of the integrin signaling pathway in hepatocytes during rat liver regeneration, the integrin signaling pathway-related gene expression profile in hepatocytes of regenerative liver was detected using Rat Genome 230 2.0 array. The chip data showed that 265 genes of the integrin signaling pathway were included by Rat Genome 230 2.0 array and 132 genes showed significant expression changes in hepatocytes of regenerative liver. The numbers of up-, down- and up/down-regulated genes were 110, 15 and 7 respectively. In addition, bioinformatics and systems biology methods were used to analyze the role of the integrin signaling pathway in hepatocytes. The analysis of gene synergy value indicated that paths 1, 8, 12, and 15 promoted hepatocyte proliferation at the priming phase of liver regeneration; paths 1, 3, 8, and 12–15 enhanced hepatocyte proliferation at the progressing phase; paths 11 and 14 promoted hepatocyte proliferation, while paths 12 and 13 reduced hepatocyte proliferation at the terminal phase. Additionally, the other 8 paths (2, 4, 5–7, 9–10, and 16) were not found to be related to liver regeneration. In conclusion, 132 genes and 8 cascades of the integrin signaling pathway participated in regulating hepatocyte proliferation during rat liver regeneration.  相似文献   

4.
5.
6.
The activity of a glycopeptide prepared from rat serum by treatment with trypsin and ultrafiltration was investigated in several in vivo proliferation systems. In baby rat hepatocytes synchronized by a subcutaneous injection of casein solution it caused a G1-S block, stopping cells at the end of the G1 phase and sending them back to the G0 phase. The glycopeptide also caused a G1-S block in young adult rats during the first semi-synchronized wave of proliferation that followed partial hepatectomy. Inhibition of hepatocyte proliferation by the glycopeptide was suppressed by blood proteins from normal rats but not from acute phase rats. Alpha 1-acid glycoprotein, an acute phase protein, increased this inhibition and reversed the antagonistic effect of normal blood proteins. In normal baby rats a G1-S block of non-synchronously proliferating hepatocytes was produced in two situations in which the antagonistic effect of normal blood proteins was eliminated: after treatment of the glycopeptide with leucine-aminopeptidase, and after mixing it with alpha 1-acid glycoprotein. The glycopeptide did not inhibit cell proliferation in kidney, submaxillary gland, or tongue epithelium. It seems to be the active component of a system that inhibits the proliferation of hepatocytes, probably by reducing their sensitivity to various mitogenic stimuli.  相似文献   

7.
生长激素(growth hormone, GH)信号通路对机体生长发育具有重要的调控作用。GH通过与特异性膜表面受体结合,启动下游一系列信号通路反应,进而调控细胞增殖、分化和迁移,防止细胞凋亡等。GH对细胞增殖的调控机制一直以来都是研究的热点,但部分肝切除(partial hepatectomy,PH)后,生长激素相关的信号通路是否会活化,调控相关基因的表达,从而促进肝实质细胞增殖,尚未见报道。本文以percoll密度梯度离心结合磁珠分离的大鼠再生肝的肝细胞为材料,采用Rat Genome 230 20芯片与生物信息学相结合的方法,研究GH信号通路对肝再生的调控作用。结果表明,大鼠再生肝的肝细胞中22种基因与GH信号通路相关,其中,Gh1、Jak3、Stat3等14种基因表达上调,Irs3、Ghr、Mras等8种基因表达下调。谱函数(Et)分析基因表达变化预示的细胞增殖活动和信号转导活性表明,GH信号通路的信号传导活性在大鼠肝再生的2~72 h强于对照,所调节的肝细胞增殖活动在6~72 h也强于对照。综上所述,GH信号通路促进大鼠再生肝的肝细胞增殖。  相似文献   

8.
9.
10.
Under normal physiological conditions, the majority of hepatocytes are in the functional state (G0 phase). After injury or liver partial hepatectomy (PH), hepatocytes are rapidly activated to divide. To understand the mechanism underlying hepatocyte G0/G1 transition during rat liver regeneration, we used the Rat Genome 230 2.0 Array to determine the expression changes of genes, then searched the GO and NCBI databases for genes associated with the G0/G1 transition, and QIAGEN and KEGG databases for the G0/G1 transition signaling pathways. We used expression profile function (E t ) to calculate the activity level of the known G0/G1 transition signal pathways, and Ingenuity Pathway Analysis 9.0 (IPA) to determine the interactions among these signaling pathways. The results of our study show that the activity of the signaling pathways of HGF, IL-10 mediated by p38MAPK, IL-6 mediated by STAT3, and JAK/STAT mediated by Ras/ERK and STAT3 are significantly increased during the priming phase (2–6 h after PH) of rat liver regeneration. This leads us to conclude that during rat liver regeneration, the HGF, IL-10, IL-6 and JAK/STAT signaling pathways play a major role in promoting hepatocyte G0/G1 transition in the regenerating liver.  相似文献   

11.
cAMP signals are received and transmitted by multiple isoforms of cAMP-dependent protein kinases (PKAs), typically determined by their specific regulatory subunits. We describe changes in the cAMP signal transduction pathway during cell cycle progression in synchronized rat thyroid cells. Both PKA type II (PKAII) localization and nuclear cAMP signaling are significantly modified during G(0) and G(1)-S transitions. G(1) is characterized by PKA activation and amplified cAMP signal transduction. This is associated with a decrease in the concentration of RI and RII regulatory subunits and enhanced anchoring of PKAII to the Golgi-centrosome region. Just prior to S, the cAMP pathway is depressed. Up-regulation of the pathway by exogenous cAMP in G(1) inhibited the subsequent decay of the Cdk inhibitor p27 and delayed the onset of S phase. Forced translocation of endogenous PKAII to the cytosol down-regulated cAMP signaling, advancing the timing of p27 decay and inducing premature exit from G(1). These data indicate that membrane-bound PKA amplifies the transduction of cAMP signals in G(1) and that the length of G(1) is influenced by cAMP-PKA.  相似文献   

12.
13.
The recovery of liver mass is mainly mediated by proliferation of hepatocytes after 2/3 partial hepatectomy (PH) in rats. Studying the gene expression profiles of hepatocytes after 2/3 PH will be helpful to investigate the molecular mechanisms of liver regeneration (LR). We report here the first application of weighted gene co-expression network analysis (WGCNA) to analyze the biological implications of gene expression changes associated with LR. WGCNA identifies 12 specific gene modules and some hub genes from hepatocytes genome-scale microarray data in rat LR. The results suggest that upregulated MCM5 may promote hepatocytes proliferation during LR; BCL3 may play an important role by activating or inhibiting NF-kB pathway; MAPK9 may play a permissible role in DNA replication by p38 MAPK inactivation in hepatocytes proliferation stage. Thus, WGCNA can provide novel insight into understanding the molecular mechanisms of LR.  相似文献   

14.
Circular RNA (circRNA) is a subclass of noncoding RNA (ncRNA) detected within mammalian tissues and cells. However, its regulatory role during the proliferation phase of rat liver regeneration (LR) remains unreported. This study was designed to explore their regulatory mechanisms in cell proliferation of LR. The circRNA expression profile was detected by high-throughput sequencing. It was indicated that 260 circRNAs were differentially expressed during the proliferation phase of rat LR. Among them, circ-14723 displayed a significantly differential expression. We further explored its regulatory mechanism in rat hepatocytes (BRL-3A cells). First, EdU, flow cytometry and western blot (WB) indicated that knocking down circ-14723 inhibited BRL-3A cells proliferation. Second, RNA-Pulldown and dual-luciferase report assay showed that circ-14723 could sponge rno-miR-16-5p. At last, WB showed that the reported target genes of rno-miR-16-5p, CCND1, and CCNE1 were downregulated after knocking down circ-14723. In conclusion, we found that circ-14723 exerted a critical role in G1/S arrest to promote cell proliferation via rno-miR-16-5p/CCND1 and CCNE1 axis in rat LR. This finding further revealed the regulatory mechanisms of circRNA on cell proliferation of LR, and might provide a potential target for clinical problems.  相似文献   

15.
Cyclin D1 promotes mitogen-independent cell cycle progression in hepatocytes.   总被引:12,自引:0,他引:12  
Cyclin D1 is widely believed to regulate progression through G1 phase of the cell cycle, and previous studies have shown that this protein is induced during hepatocyte proliferation in culture and in vivo. In this study, the role of cyclin D1 in the cell cycle of primary rat hepatocytes was further examined. Following epidermal growth factor stimulation, cyclin D1 was upregulated at time points corresponding to the mitogen restriction point, and this was associated with enhanced cyclin D1-associated kinase activity. To test whether cyclin D1 expression was sufficient to promote mitogen-independent progression through the G1-S transition, we constructed a replication-defective adenovirus that overexpressed human cyclin D1. Transfection with the cyclin D1 vector but not a control vector resulted in hepatocyte DNA synthesis in the absence of growth factor that was similar to that seen in mitogen-treated cells. Furthermore, cyclin D1 transfection led to activation of downstream biochemical events, including cyclin A and proliferating cell nuclear antigen expression and cyclin E- and cyclin A-associated kinase activation. These results suggest that cyclin D1 expression is sufficient to promote progression of hepatocytes through the G1 restriction point.  相似文献   

16.
cAMP has previously been shown to promote cell survival in a variety of cell types, but the downstream signaling pathway(s) of this antiapoptotic effect is unclear. Thus the role of cAMP signaling through PKA and cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs) in cAMP's antiapoptotic action was investigated in the present study. cAMP's protective effect against bile acid-, Fas ligand-, and TNF-alpha-induced apoptosis in rat hepatocytes was largely unaffected by the selective PKA inhibitor, Rp-8-(4-chlorophenylthio)-cAMP (Rp-cAMP). In contrast, a novel cAMP analog, 8-(4-chlorophenylthio)-2'-O-methyl (CPT-2-Me)-cAMP, which activated cAMP-GEFs in hepatocytes without activating PKA, protected hepatocytes against apoptosis induced by bile acids, Fas ligand, and TNF-alpha. The role of cAMP-GEF and PKA on activation of Akt, a kinase implicated in cAMP survival signaling, was investigated. Inhibition of PKA with RP-cAMP had no effect on cAMP-mediated Akt phosphorylation, whereas CPT-2-Me-cAMP, which did not activate PKA, induced phosphatidylinositol 3-kinase (PI3-kinase)-dependent activation of Akt. Pretreatment of hepatocytes with the PI3-kinase inhibitor, Ly-294002, prevented CPT-2-Me-cAMP's protective effect against bile acid and Fas ligand, but not TNF-alpha-mediated apoptosis. Glucagon, CPT-cAMP, and CPT-2-Me-cAMP all activated Rap 1, a downstream effector of cAMP-GEF. These results suggest that a PKA-independent cAMP/cAMP-GEF/Rap pathway exists in hepatocytes and that activation of cAMP-GEFs promotes Akt phosphorylation and hepatocyte survival. Thus a cAMP/cAMP-GEF/Rap/PI3-kinase/Akt signaling pathway may confer protection against bile acid- and Fas-induced apoptosis in hepatocytes.  相似文献   

17.
Adhesion to type 1 collagen elicits different responses dependent on whether the collagen is in fibrillar (gel) or monomeric form (film). Hepatocytes adherent to collagen film spread and proliferate, whereas those adherent to collagen gel remain rounded and growth arrested. To explore the role of potential intracellular inhibitory signals responsible for collagen gel-mediated growth arrest, cAMP-dependent protein kinase A (PKA) was examined in hepatocytes adherent to collagen film or gel. PKA activity was higher in hepatocytes on collagen gel than on film during G1 of the hepatocyte cell cycle. Inhibition of PKA using H89 increased cell spreading on collagen gel in an EGF-dependent manner, whereas activation of PKA using 8-Br-cAMP decreased cell spreading on collagen film. PKA inhibition also restored ERK activation, cyclin D1 expression and G1-S progression on collagen gel, but had no effect on cells adherent to collagen film. Analysis of EGF receptor phosphorylation revealed that adhesion to collagen gel alters tyrosine phosphorylation of the EGF receptor, leading to reduced phosphorylation of tyrosine residue 845, which was increased by inhibition of PKA. These results demonstrate that fibrillar type 1 collagen can actively disrupt cell cycle progression by inhibiting specific signals from the EGF receptor through a PKA-dependent pathway.  相似文献   

18.
Zhou J  Ju W  Wang D  Wu L  Zhu X  Guo Z  He X 《PloS one》2012,7(4):e33577

Background

Inadequate liver regeneration (LR) is still an unsolved problem in major liver resection and small-for-size syndrome post-living donor liver transplantation. A number of microRNAs have been shown to play important roles in cell proliferation. Herein, we investigated the role of miR-26a as a pivotal regulator of hepatocyte proliferation in LR.

Methodology/Principal Findings

Adult male C57BL/6J mice, undergoing 70% partial hepatectomy (PH), were treated with Ad5-anti-miR-26a-LUC or Ad5-miR-26a-LUC or Ad5-LUC vector via portal vein. The animals were subjected to in vivo bioluminescence imaging. Serum and liver samples were collected to test liver function, calculate liver-to-body weight ratio (LBWR), document hepatocyte proliferation (Ki-67 staining), and investigate potential targeted gene expression of miR-26a by quantitative real-time PCR and Western blot. The miR-26a level declined during LR after 70% PH. Down-regulation of miR-26a by anti-miR-26a expression led to enhanced proliferation of hepatocytes, and both LBWR and hepatocyte proliferation (Ki-67+ cells %) showed an increased tendency, while liver damage, indicated by aspartate aminotransferase (AST), alanine aminotransferase (ALT) and total bilirubin (T-Bil), was reduced. Furthermore, CCND2 and CCNE2, as possible targeted genes of miR-26a, were up-regulated. In addition, miR-26a over-expression showed converse results.

Conclusions/Significance

MiR-26a plays crucial role in regulating the proliferative phase of LR, probably by repressing expressions of cell cycle proteins CCND2 and CCNE2. The current study reveals a novel miRNA-mediated regulation pattern during the proliferative phase of LR.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号