首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The normal complement of neurotransmitters in noradrenergic neurons was altered by expressing the structural gene for the enzyme phenylethanolamine-N-methyltransferase (PNMT) under the control of the dopamine-beta-hydroxylase gene promoter in transgenic mice. This resulted in accumulation of large amounts of epinephrine in neurons of the sympathetic nervous system (SNS) and central nervous system (CNS) but did not reduce norepinephrine levels. Adrenalectomy reduced PNMT levels in the SNS and CNS, suggesting that the transgene is positively regulated by adrenal steroids. Epinephrine levels were unaffected by this treatment in the CNS, suggesting that PNMT is not rate limiting for epinephrine synthesis. However, catecholamines were elevated in a sympathetic ganglion and a target tissue of the SNS, perhaps due to up-regulation of tyrosine hydroxylase in response to adrenalectomy. These transgenic mice also reveal a marked difference in the ability of chromaffin cells and neurons to synthesize epinephrine.  相似文献   

2.
Abstract: As adrenal medullary chromaffin cells express imidazoline binding sites in the absence of α2-adrenergic receptors, these cells provide an ideal system in which to determine whether imidazolines can influence catecholamine gene expression through nonadrenergic receptors. This study evaluates the ability of clonidine and related drugs to regulate expression of the gene for the epinephrine-synthesizing enzyme phenylethanolamine N -methyltransferase (PNMT) in the rat adrenal gland and in bovine adrenal chromaffin cell cultures. In vivo, PNMT and tyrosine hydroxylase (TH) mRNA levels increase in rat adrenal medulla after a single injection of clonidine. Clonidine also dose-dependently stimulates PNMT mRNA expression in vitro in primary cultures of bovine chromaffin cells, with a threshold dose of 0.1 μ M . Other putative imidazoline receptor agonists, including cimetidine, rilmenidine, and imidazole-4-acetic acid, likewise enhance PNMT mRNA production showing relative potencies that correlate with their binding affinities at chromaffin cell I1-imidazoline binding sites. The effects of clonidine on PNMT mRNA appear to be distinct from and additive with those exerted by nicotine. Moreover, neither nicotinic antagonists nor calcium channel blockers, which attenuate nicotine's influence on PNMT mRNA production, diminish clonidine's effects on PNMT mRNA. Although 100 μ M clonidine diminishes nicotine-stimulated release of epinephrine and norepinephrine in chromaffin cells, this effect appears unrelated to stimulation of imidazoline receptor subtypes. This is the first report to link imidazoline receptors to neurotransmitter gene expression.  相似文献   

3.
In the adrenergic system, release of the neurotransmitter norepinephrine from sympathetic nerves is regulated by presynaptic inhibitory alpha2-adrenoceptors, but it is unknown whether release of epinephrine from the adrenal gland is controlled by a similar short feedback loop. Using gene-targeted mice we demonstrate that two distinct subtypes of alpha2-adrenoceptors control release of catecholamines from sympathetic nerves (alpha 2A) and from the adrenal medulla (alpha 2C). In isolated mouse chromaffin cells, alpha2-receptor activation inhibited the electrically stimulated increase in cell capacitance (a correlate of exocytosis), voltage-activated Ca2+ current, as well as secretion of epinephrine and norepinephrine. The inhibitory effects of alpha2-agonists on cell capacitance, voltage-activated Ca2+ currents, and on catecholamine secretion were completely abolished in chromaffin cells isolated from alpha 2C-receptor-deficient mice. In vivo, deletion of sympathetic or adrenal feedback control led to increased plasma and urine norepinephrine (alpha 2A-knockout) and epinephrine levels (alpha 2C-knockout), respectively. Loss of feedback inhibition was compensated by increased tyrosine hydroxylase activity, as detected by elevated tissue dihydroxyphenylalanine levels. Thus, receptor subtype diversity in the adrenergic system has emerged to selectively control sympathetic and adrenal catecholamine secretion via distinct alpha2-adrenoceptor subtypes. Short-loop feedback inhibition of epinephrine release from the adrenal gland may represent a novel therapeutic target for diseases that arise from enhanced adrenergic stimulation.  相似文献   

4.
PNMT (phenylethanolamine-N-methyl-transferase) is the enzyme that catalyzes the formation of epinephrine from norepinephrine. In transgenic mice over-expressing PNMT, observations revealed a very high level of aggression compared to their background strain, C57BL/6J. To evaluate the influence of PNMT on aggression and emotionality in this transgenic line, single-sex male and female groups were independently established that consisted of either four wild-type mice or four transgenic mice overexpressing PNMT. The members of each group were littermates. Mixed single-sex groups consisting of two transgenic mice and two wild-type mice were also established. Almost no fights were observed within the female groups. In males, the transgenic line showed a significantly higher level of fighting than controls (p=0.007) and mixed male groups (p=0.02). Housing mice from the transgenic line in mixed groups with wild-type mice seems to decrease the level of aggression in the transgenic line. In conclusion, this is the first study to demonstrate a clear, significant increase in aggression arising from PNMT overexpression. This suggests an important role for central epinephrine levels in aggressive behavior.  相似文献   

5.
Epinephrine: A Potential Neurotransmitter in Retina   总被引:17,自引:13,他引:4  
Abstract: Dopamine (DA), norepinephrine (NE), and epinephrine (EPI) are present in rat retina. DA is the major catecholamine, whereas NE and EPI represent ∼5% of the DA content. DA is contained in a subpopulation of amacrine cells and has been the subject of numerous studies. We investigated the origin and properties of NE and EPI in retina. Following superior cervical ganglionectomy, there was a decrease in NE content, but no decrease in EPI or phenylethanolamine- N -methyltransferase (PNMT) activity. PNMT in retina has many of the substrate-specificity and inhibitor-sensitivity characteristics of other tissues. Enzyme activity is enhanced in newborn rats by treatment with dexamethasone. Exposure to a lighted environment increases retinal EPI in normal and superior cervical ganglionectomized rats. EPI content increased for more than 2 h in a lighted environment. We conclude that most of the NE is contained within the sympathetic neurons that innervate the eye from the superior cervical ganglion, whereas EPI is contained in retinal elements that are responsive to photic stimulation.  相似文献   

6.
Abstract— Injections of dexamethasone (0.1 mg/kg/day, s.c.) on the first 2–3 days of life increased the phenylethanolamine- N -methyltransferase (PNMT) activity and epinephrine content of the superior cervical ganglion (SCG) and stellate ganglion of neonatal rats; the dopamine content was unaltered while norepinephrine was slightly reduced in these ganglia. Dexamethasone did not alter the PNMT activity or epinephrine content of the salivary glands or heart. The PNMT activity and epinephrine content of the SCG remained elevated for 10–14 days. Pretreatment with 6-hydroxydopamine did not alter the dexamethasone effects.
Injections of adrenocorticotrophic hormone (ACTH) (25 munits/rat twice a day) or exposure to a cold stress (4°C, 3 times a day) on the first 2–3 days of life, elevated the plasma concentration of corticosterone, and also increased the PNMT activity and epinephrine content in SCG of neonatal rats. Injecting pregnant rats with dexamethasone or ACTH, or exposing them to cold or restraint stress on the last 3 days of gestation increased the PNMT activity and epinephrine content in the SCG of their pups. These results indicate that the actions of dexamethasone on neonatal sympathetic ganglia may be mimicked by increasing the plasma concentration of endogenous adrenocortical steroids.  相似文献   

7.
Dopamine beta-hydroxylase (DBH) catalyzes the final step in the biosynthesis of norepinephrine, the principal classic neurotransmitter of peripheral sympathetic neurons. We have shown that 5.8 kb of 5' upstream region from a cloned human DBH gene promoter is sufficient to direct expression of the E. coli lacZ gene in transgenic mice to neurons of the locus ceruleus and other classic noradrenergic brain stem nuclei, sympathetic ganglion neurons, and adrenal chromaffin cells. lacZ expression was also observed in neurons of the enteric system, the retina, some sensory and all cranial parasympathetic ganglia, and some diencephalic and telencephalic brain nuclei. The expression pattern of the transgene in DBH-immunonegative sites overlapped with many sites where expression of tyrosine hydroxylase or phenylethanolamine N-methyltransferase, two other catecholamine biosynthetic enzymes, has been reported.  相似文献   

8.
9.
Abstract: Mice with a targeted disruption of the dopamine β-hydroxylase (DBH) gene are unable to synthesize norepinephrine (NE) and epinephrine. These mice have elevated levels of dopamine in most tissues, although the levels are only a fraction of those normally found for NE. It is noteworthy that NE can be restored to normal levels in many tissues after a single injection of the synthetic amino acid precursor of NE, l -threo-3,4-dihydroxyphenylserine (DOPS). In other tissues, NE can be restored to normal levels after multiple injections of DOPS, whereas in the midbrain and cerebellum, restoration of NE is limited to 25–30% of normal. NE levels typically peak ∼5 h after DOPS administration and are undetectable by 48 h. Epinephrine levels are more difficult to restore. The elevated levels of dopamine fall modestly after injection of DOPS. S (−)-Carbidopa, which does not cross the blood-brain barrier, inhibits aromatic l -amino acid decarboxylase and effectively prevents restoration of NE by DOPS in the periphery, while allowing restoration in the CNS. Ptosis and reductions in male fertility, hind-limb extension, postdecapitation convulsions, and uncoupling protein expression in dopamine β-hydroxylase-deficient mice are all reversed by DOPS injection.  相似文献   

10.
The control of fat cell lipolysis by the catecholamines involves at least four different adrenoceptor subtypes; three β (β1-, β2-, and β3-ARs) and one α2-adrenoceptor(α2-AR). The physiological importance of the β- and α2A-ARs varies according to the species, the sex, the age, the anatomical location of fat deposits and the degree of obesity in humans and animals. The physiological amines operate through differential recruitment of these sites on the basis of their relative affinities. This point has been assessed by in vitro studies and has partly been confirmed in in vivo experiments using selected a/β-AR antagonists and in situ microdialysis. The affinity of the β3-AR for catecholamines is less than that of the classical β1- and β2-ARs in the various species investigated. Conversely, it is the α2-AR which exhibit the highest affinity for the physiological amines in all fat cells. The relative order of affinity of the various fat cell ARs for the physiological amines defined in binding studies and in vitro ass ays is α2 > β1 > β2 > β3 for norepinephrine and α2 >β2 > β1> β3 for epinephrine. When considering differential β-AR recruitment by catecholamines, it is the β1-AR which is always activated at the lowest norepinephrine levels, whatever the species, while the activation of the β3-AR requires higher norepinephrine levels. In addition to the differential recruitment, differential regulation by hormones could also occur for each fat cell AR subtype. The α2-and β3-ARs are less prone to desensitization and down-regulation by comparison with the β1- and β2-AR.  相似文献   

11.
We cloned and sequenced the mouse phenylethanolamineN-methyltransferase (PNMT) gene which encodes the enzyme that catalyses the conversion of norepinephrine to epinephrine. The ability of various length sequences flanking the mouse or human PNMT genes to direct expression of reporter genes in transgenic mice was examined. We show that 9 kb of 5 flanking sequences from the cloned mouse PNMT gene can direct expression of theEscherichia coli -galactosidase (lacZ) gene to predicted regions of the adrenal, eye can direct in the adult transgenic mouse. The transgene was also expressed during development, in the myelencephalon, adrenal medulla and dorsal root ganglia. PNMT-producing cells were ablated by expression of the diphtheria toxin (DT-A) gene driven by the human PNMT promoter, resulting in abnormalities in the adrenal medulla, eye and testis. The hPNMT8 kb-DT-A line presents a model with which to examine the developmental ramifications of deletion of PNMT-producing cell populations from the adrenal medulla and retina.  相似文献   

12.
The α(1)-adrenergic receptor (AR) subtypes (α(1a), α(1b), and α(1d)) mediate several physiological effects of epinephrine and norepinephrine. Despite several studies in recombinant systems and insight from genetically modified mice, our understanding of the physiological relevance and specificity of the α(1)-AR subtypes is still limited. Constitutive activity and receptor oligomerization have emerged as potential features regulating receptor function. Another recent paradigm is that β arrestins and G protein-coupled receptors themselves can act as scaffolds binding a variety of proteins and this can result in growing complexity of the receptor-mediated cellular effects. The aim of this review is to summarize our current knowledge on some recently identified functional paradigms and signaling networks that might help to elucidate the functional diversity of the α(1)-AR subtypes in various organs.  相似文献   

13.
The present study investigates the effect of cannulation and chronic'black-box' confinement, as well as epinephrine administration (4–0 μg kg−1), on the degree and time-course of alterations in trout ( Oncorhynchus mykiss ) catecholamine and cortisol concentrations. Plasma cortisol concentrations in seawater trout acclimated to 3–6° C reached 104 ng ml−1 1 day after cannulation/confinement and remained elevated above resting levels (8 ng ml−1) until 6 days post-confinement. Although plasma epinephrine and norepinephrine generally declined over the period of confinement (day 1 approx. 12 nM; day 7 approx. 6 nM), norepinephrine titres were usually higher and more variable. Epinephrine injection caused elevations in plasma epinephrine levels but not in norepinephrine levels; epinephrine titres reaching 107 ± 26 nM (range 65–238 nM) at 2 min post-injection and returning to pre-injection levels by 30 min post-injection. Plasma cortisol increased by 20 ng ml−1 following epinephrine administration. Based on the time-course for post-confinement alterations in plasma cortisol, it appears that up to a week may be required before cannulated fish are completely acclimated to 'black-box' confinement. The findings suggest that meaningful results from experiments utilizing epinephrine injection and 'black-box confinement are contingent upon: (1) knowledge of circulating epinephrine levels shortly after injection (i.e. within 2 min post-injection); and (2) an experimental design that takes into account the elevated cortisol titres that are inherent with cannulation/confinement and epinephrine injection.  相似文献   

14.
High-affinity, β2-subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) are essential for nicotine reinforcement; however, these nAChRs are found on both gamma-aminobutyric acid (GABA) and dopaminergic (DA) neurons in the ventral tegmental area (VTA) and also on terminals of glutamatergic and cholinergic neurons projecting from the pedunculopontine tegmental area and the laterodorsal tegmental nucleus. Thus, systemic nicotine administration stimulates many different neuronal subtypes in various brain nuclei. To identify neurons in which nAChRs must be expressed to mediate effects of systemic nicotine, we investigated responses in mice with low-level, localized expression of β2* nAChRs in the midbrain/VTA. Nicotine-induced GABA and DA release were partially rescued in striatal synaptosomes from transgenic mice compared with tissue from β2 knockout mice. Nicotine-induced locomotor activation, but not place preference, was rescued in mice with low-level VTA expression, suggesting that low-level expression of β2* nAChRs in DA neurons is not sufficient to support nicotine reward. In contrast to control mice, transgenic mice with low-level β2* nAChR expression in the VTA showed no increase in overall levels of cyclic AMP response element-binding protein (CREB) but did show an increase in CREB phosphorylation in response to exposure to a nicotine-paired chamber. Thus, CREB activation in the absence of regulation of total CREB levels during place preference testing was not sufficient to support nicotine place preference in β2 trangenic mice. This suggests that partial activation of high-affinity nAChRs in VTA might block the rewarding effects of nicotine, providing a potential mechanism for the ability of nicotinic partial agonists to aid in smoking cessation.  相似文献   

15.
The α1-adrenergic receptor (AR) subtypes (α1a, α1b, and α1d) mediate several physiological effects of epinephrine and norepinephrine. Despite several studies in recombinant systems and insight from genetically modified mice, our understanding of the physiological relevance and specificity of the α1-AR subtypes is still limited. Constitutive activity and receptor oligomerization have emerged as potential features regulating receptor function. Another recent paradigm is that βarrestins and G protein-coupled receptors themselves can act as scaffolds binding a variety of proteins and this can result in growing complexity of the receptor-mediated cellular effects. The aim of this review is to summarize our current knowledge on some recently identified functional paradigms and signaling networks that might help to elucidate the functional diversity of the α1-AR subtypes in various organs.  相似文献   

16.
Cells of the PC12 rat pheochromocytoma cell line acquire characteristics of sympathetic neurons under appropriate treatment. Stably transfected PC12 cells expressing individual alpha2-adrenergic receptor (alpha2-AR) subtypes were used to assess the role of alpha2-ARs in neuronal differentiation and to characterise the signalling pathways activated by the alpha2-AR agonist epinephrine in these cells. The effects of alpha2-AR activation were compared with the differentiating action and the signalling mechanisms of nerve growth factor (NGF). Epinephrine induced neuronal differentiation of PC12alpha2 cells through alpha2-AR activation in a subtype-dependent manner, internalization of all human alpha2-AR subtypes, and activation of mitogen-activated protein kinase (MAPK) and the serine-threonine protein kinase Akt. Epinephrine and NGF showed synergism in their differentiating effects. The MAPK kinase (MEK-1) inhibitor PD 98059 abolished the differentiating effect of epinephrine indicating that the differentiation is dependent on MAPK activation. Activating protein-1 (AP-1) DNA-binding activity was increased after epinephrine treatment in all three PC12alpha2 subtype clones. Evaluation of the potential physiological consequences of these findings requires further studies on endogenously expressed alpha2-ARs in neuronal cells.  相似文献   

17.
Abstract: The catecholamines dopamine (DA), epinephrine (EP), and norepinephrine (NE) play important roles in learning and memory, emotional states, and control of voluntary movement, as well as cardiovascular and kidney function. They activate distinct but overlapping neuronal pathways through five distinct DA receptors (D1R–D5R) and at least 10 different adrenergic receptors (α1a/b/c, α2a/b/c-1/c-2, and β1/β2/β3). The D4R, which is localized to mesolimbic areas of the brain implicated in affective and emotional behavior, has a deduced amino acid sequence with homology to both adrenergic and dopaminergic receptor subtypes. We report here that DA, EP, and NE all show binding in the nanomolar range to three isoforms of the recombinant human D4R (hD4R): D4.2, D4.4, and D4.7. Submicromolar concentrations of DA, EP, and NE were sufficient to activate hD4R isoforms in two different functional assays: agonist-induced guanosine 5'- O -(3-[35S]thiotriphosphate) binding and modulation of adenylyl cyclase activity. DA was approximately fivefold more potent than EP and NE at the D4R, whereas activation of the human D2R required at least 100-fold higher catecholamine concentrations. Functional activation of the D4R by multiple neurotransmitters may provide a novel mechanism for integration of catecholamine signaling in the brain and periphery.  相似文献   

18.
alpha(1)-Adrenergic receptors (alpha(1A), alpha(1B), and alpha(1D)) are regulators of systemic arterial blood pressure and blood flow. Whereas vasoconstrictory action of the alpha(1A) and alpha(1D) subtypes is thought to be mainly responsible for this activity, the role of the alpha(1B)-adrenergic receptor (alpha(1B)AR) in this process is controversial. We have generated transgenic mice that overexpress either wild type or constitutively active alpha(1B)ARs. Transgenic expression was under the control of the isogenic promoter, thus assuring appropriate developmental and tissue-specific expression. Cardiovascular phenotypes displayed by transgenic mice included myocardial hypertrophy and hypotension. Indicative of cardiac hypertrophy, transgenic mice displayed an increased heart to body weight ratio, which was confirmed by the echocardiographic finding of an increased thickness of the interventricular septum and posterior wall. Functional deficits included an increased isovolumetric relaxation time, a decreased heart rate, and cardiac output. Transgenic mice were hypotensive and exhibited a decreased pressor response. Vasoconstrictory regulation by alpha(1B)AR was absent as shown by the lack of phenylephrine-induced contractile differences between ex vivo mesenteric artery preparations. Plasma epinephrine, norepinephrine, and cortisol levels were also reduced in transgenic mice, suggesting a loss of sympathetic nerve activity. Reduced catecholamine levels together with basal hypotension, bradycardia, reproductive problems, and weight loss suggest autonomic failure, a phenotype that is consistent with the multiple system atrophy-like neurodegeneration that has been reported previously in these mice. These results also suggest that this receptor subtype is not involved in the classic vasoconstrictory action of alpha(1)ARs that is important in systemic regulation of blood pressure.  相似文献   

19.
The effects of phenylethanolamine N-methyltransferase (PNMT) and dopamine-β-hydroxylase (DβH) inhibition on the epinephrine content in specific regions of the brain were studied. SKF 64139, a potent PNMT inhibitor, is effective in lowering brain epinephrine levels. The time course of PNMT inhibition by SKF 64139 parallels the lowering of epinephrine levels in the brain. Diethyldithiocarbamate (DDC), a potent inhibitor of DβH, is effective in lowering norepinephrine and epinephrine levels and in elevating dopamine levels in the analyzed regions of the brain. The epinephrine levels in the brain appear to be under similar biosynthetic control as in the adrenal glands.  相似文献   

20.
Targeted disruption of the beta2 adrenergic receptor gene.   总被引:5,自引:0,他引:5  
beta-Adrenergic receptors (beta-ARs) are members of the superfamily of G-protein-coupled receptors that mediate the effects of catecholamines in the sympathetic nervous system. Three distinct beta-AR subtypes have been identified (beta1-AR, beta2-AR, and beta3-AR). In order to define further the role of the different beta-AR subtypes, we have used gene targeting to inactivate selectively the beta2-AR gene in mice. Based on intercrosses of heterozygous knockout (beta2-AR +/-) mice, there is no prenatal lethality associated with this mutation. Adult knockout mice (beta2-AR -/-) appear grossly normal and are fertile. Their resting heart rate and blood pressure are normal, and they have a normal chronotropic response to the beta-AR agonist isoproterenol. The hypotensive response to isoproterenol, however, is significantly blunted compared with wild type mice. Despite this defect in vasodilation, beta2-AR -/- mice can still exercise normally and actually have a greater total exercise capacity than wild type mice. At comparable workloads, beta2-AR -/- mice had a lower respiratory exchange ratio than wild type mice suggesting a difference in energy metabolism. beta2-AR -/- mice become hypertensive during exercise and exhibit a greater hypertensive response to epinephrine compared with wild type mice. In summary, the primary physiologic consequences of the beta2-AR gene disruption are observed only during the stress of exercise and are the result of alterations in both vascular tone and energy metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号