首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
3.
The Bacillus subtilis purine repressor, PurR, regulates many genes involved in purine metabolism. These genes contain a conserved 14-nucleotide inverted repeat (PurBox). Both pur operon and purA, which are regulated by PurR, have this inverted repeat with a 16- or 17-nucleotide spacer, respectively. Mutational studies have earlier shown that PurR binding is dependent on the PurBox of pur operon. In contrast, these studies failed to establish the importance of purA PurBox to PurR binding. To examine this inconsistency, we studied the effects of PurBox mutations both in vivo and in vitro. The data presented here indicate that purA PurBox has a similar role as pur operon PurBox in PurR binding. In addition, our data suggest that the previously proposed classification of the two halves of the Purbox into weak and strong may need to be revised.  相似文献   

4.
The Bacillus subtilis pur operon repressor (PurR) has a PRPP (5-phosphoribosyl 1-pyrophosphate) binding motif at residues 199–211. Two PurR PRPP binding region mutations (D203A and D204A) were constructed, and the effects on binding of repressor to the pur operon control site in vitro and on regulation of pur operon expression in vivo were investigated. PRPP significantly inhibited the binding of wild-type but not mutant PurR to pur operon control site DNA. In strains with the D203A and D204A mutations, pur operon expression in vivo was super-repressed by addition of adenine to the growth medium. These results support the role of PRPP in modulating the regulatory function of PurR in vivo. YabJ, the product of the distal gene in the bicistronic purR operon, is also required for PurR function in vivo. Received: 5 January 2000 / Accepted: 9 February 2000  相似文献   

5.
The promoter region of the pur operon, which contains 12 genes for inosine monophosphate biosynthesis from phosphoribosylpyrophosphate, and the purA gene, encoding the adenylosuccinate synthetase, were compared among wild-type and three purine-producing Bacillus subtilis strains. A single nucleotide deletion at position 55 (relative to translation start site) in purA gene was found in a high inosine-producing strain and in a high guanosine-producing strain, which correlates with the absence of adenylosuccinate synthetase activity in these strains. Within the pur operon promoter of high guanosine-producing strain, in addition to a single nucleotide deletion in PurBox1 and a single nucleotide substitution in PurBox2, there were 4 substitutions in the flanking region of the PurBoxes and 32 nucleotide mutations in the 5′ untranslated region. These mutations may explain the purine accumulation in purine-producing strains and be helpful to the rational design of high-yield recombinant strains.  相似文献   

6.
Site-directed mutagenesis was used to change the PurR binding site in the control region of a glyA-lac gene fusion. Mutations that changed the PurR binding sequence away from the consensus sequence reduced PurR binding, which correlated with reduced purine-mediated repression. Mutations that changed the binding sequence toward the consensus sequence had no significant effect on either PurR binding or purine-mediated repression. Hypoxanthine and guanine, co-repressors for PurR-mediated regulation of the pur regulon, increased binding of PurR to glyA operator DNA.  相似文献   

7.
8.
9.
The purine regulon repressor, PurR, was identified as a component of the Escherichia coli regulatory system for pyrC, the gene that encodes dihydroorotase, an enzyme in de novo pyrimidine nucleotide synthesis. PurR binds to a pyrC control site that resembles a pur regulon operator and represses expression by twofold. Mutations that increase binding of PurR to the control site in vitro concomitantly increase in vivo regulation. There are completely independent mechanisms for regulation of pyrC by purine and pyrimidine nucleotides. Cross pathway regulation of pyrC by PurR may provide one mechanism to coordinate synthesis of purine and pyrimidine nucleotides.  相似文献   

10.
11.
Addition of purine compounds to the growth medium of Escherichia coli and Salmonella typhimurium causes repressed synthesis of the purine biosynthetic enzymes. The repression is mediated through a regulatory protein, PurR. To identify the co-repressor(s) of PurR, two approaches were used: (i) mutations were introduced into purine salvage genes and the effects of different purines on pur gene expression were determined; (ii) purine compounds which dictate the binding of the PurR protein to its operator DNA were resolved by gel retardation. Both the in vivo and the in vitro data indicated that guanine and hypoxanthine are co-repressors. The toxic purine analogues 6-mercaptopurine and 6-thioguanine also activated the binding of PurR to its operator DNA.  相似文献   

12.
13.
14.
15.
16.
17.
Regulation of the Escherichia coli glyA gene by the purR gene product.   总被引:13,自引:11,他引:2       下载免费PDF全文
The purine regulon repressor protein, PurR, was shown to be a purine component involved in glyA regulation in Escherichia coli. Expression of glyA, encoding serine hydroxymethyltransferase activity, was elevated in a purR mutant compared with a wild-type strain. When the purR mutant was transformed with a plasmid carrying the purR gene, the serine hydroxymethyltransferase levels returned to the wild-type level. The PurR protein bound specifically to a DNA fragment carrying the glyA control region, as determined by gel retardation. In a DNase I protection assay, a 24-base-pair region was protected from DNase I digestion by PurR. The glyA operator sequence for PurR binding is similar to that reported for several pur regulon genes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号