首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Freshwater lakes are biologically sensitive to changes in the surrounding environment and the impacts that such changes have on their water quality are of considerable ecological, recreational and economic importance. In this study the phytoplankton community model, PROTECH, was used to experiment with the effects of elevated temperatures and increased nutrient load on phytoplankton succession and productivity. The response of a phytoplankton community to combined incremental changes in these drivers was analysed, in order to elucidate the resulting ecological changes. Annual mean phytoplankton biomass increased with increases in temperature and nutrient loading, although the latter had the larger effect. The phenology of the dominant phytoplankton taxa changed with increasing water temperature; the three spring blooming species all peaked earlier in the year. The simulated summer bloom of Anabaena became earlier in the year and the Chlorella bloom later. The increased phytoplankton biomass was largely dominated by the cyanobacterium Anabaena, which was especially prevalent during the summer bloom. This resulted in a progressive loss of phytoplankton biodiversity with increasing water temperature and nutrient supply. Model experimentation showed that whilst both factors greatly affected the community, the changes to nutrient loading generally had the greater effect and that at low nutrient levels the effect of water temperature change was reduced considerably. Finally, the model predicted that cyanobacteria have the potential to dominate the phytoplankton community, with clear consequences for water quality, and that this dominance was at its greatest when high water temperatures were combined with high nutrient loads.  相似文献   

2.
1. The phytoplankton community model, PROTECH, was used to model the algal response to changing annual mean retention time in a small lake. 2. Simulations of short retention time with a fixed nutrient load resulted in a reduced chlorophyll concentration. A similar relationship was observed when the simulations were repeated but with inflowing nutrients increased in proportion to river discharge. 3. Longer retention time caused the spring bloom to start earlier and the autumn bloom to persist longer. 4. Changes in discharge of the inflowing river also caused a change in the thermal structure of the lake. This change in thermal structure, in turn, influenced the magnitude and composition of the phytoplankton population, particularly those in the CS‐functional group, such as Aphanizomenon.  相似文献   

3.
The decoupling of trophic interactions is potentially one of the most severe consequences of climate warming. In lakes and oceans the timing of phytoplankton blooms affects competition within the plankton community as well as food–web interactions with zooplankton and fish. Using Upper Lake Constance as an example, we present a model‐based analysis that predicts that in a future warmer climate, the onset of the spring phytoplankton bloom will occur earlier in the year than it does at present. This is a result of the earlier occurrence of the transition from strong to weak vertical mixing in spring, and of the associated earlier onset of stratification. According to our simulations a shift in the timing of phytoplankton growth resulting from a consistently warmer climate will exceed that resulting from a single unusually warm year. The numerical simulations are complemented by a statistical analysis of long‐term data from Upper Lake Constance which demonstrates that oligotrophication has a negligible effect on the timing of phytoplankton growth in spring and that an early onset of the spring phytoplankton bloom is associated with high air temperatures and low wind speeds.  相似文献   

4.
Lough Neagh is the largest lake in the UK and has been extensively monitored since 1974. It has suffered from considerable eutrophication and toxic algal blooms. The lake continues to endure many of the symptoms of nutrient enrichment despite improvements in nutrient management throughout the catchment, in particular a permanently dominant crop of the cyanobacterium Planktothrix agardhii. This study examines the historical changes in the Lough, and uses the PROTECH lake model to predict how the phytoplankton community may adapt in response to potential future changes in air temperature and nutrient load. PROTECH was calibrated against 2008 observations, with a restriction on the maximum simulated mixed depth to reflect the shallow nature of the lake and the addition of sediment released phosphorus throughout the mixed water column between 1 May and 1 October (with an equivalent in-lake concentration of 2.0 mg m−3). The historical analysis showed that phytoplankton biomass (total chlorophyll a) experienced a steady decline since the mid-1990s. During the same period the key nutrients for phytoplankton growth in the lake have shown contrasting trends, with increases in phosphorus concentrations and declines in nitrate concentrations. The modelled future scenarios which simulated a temperature increase of up to 3 °C showed a continuation of those trends, i.e. total chlorophyll a and nitrate concentrations declined in the surface water, while phosphorus concentrations increased and P. agardhii dominated. However, scenarios which simulated a 4 °C increase in air temperature showed a switch in dominance to the cyanobacteria, Dolichospermum spp. (formerly Anabaena spp.). This change was caused by a temperature related increase in growth driving nutrient consumption to a point where nitrate was limiting, allowing the nitrogen-fixing Dolichospermum spp. to gain sufficient advantage. These results suggest that in the long term, one nuisance cyanobacteria bloom may only be replaced by another unless the in-lake phosphorus concentration can be greatly reduced.  相似文献   

5.
1. The long‐term suitability of Bassenthwaite Lake as a habitat for vendace (Coregonus albula) was assessed using two models. The first was the phytoplankton model (PROTECH) that provided temperature and phytoplankton biomass outputs that were used to drive a second model of lake oxygen (LOX). 2. Both temperature and oxygen concentrations were used to define the available habitat for the adult vendace, using 18 °C as an upper and 2 mg L?1 as a lower threshold, respectively. The outputs of both models were compared with 4 years of observed data for the purposes of validation and produced good simulations of water temperature, total chlorophyll a and oxygen concentrations in the epilimnion, hypolimnion and at the lake bottom. 3. Using the outputs of a regional climate model (RCM) simulating 20 years of both present and future climate conditions for this part of the United Kingdom, both models were re‐run. These data suggest the future climate will cause a mean increase of >2 °C in water temperature, little change in overall phytoplankton biomass and a 10% decline in oxygen concentration. 4. Using the thresholds defined above, the habitat volume will decline greatly under the future climate scenarios, with all of the 20 years simulated having periods of zero habitat volume for >7 consecutive days, primarily caused by high temperature. These results suggest that the long‐term viability of the lake as a habitat for this rare fish is extremely low.  相似文献   

6.
1. A number of long-term studies have shown that spring biological events have advanced in recent decades and that this is a response to climate change. In lentic systems, changes in phytoplankton phenology have been attributed to various directly climate-related processes including changes in the onset and duration of thermal stratification, earlier ice-break up and increased water temperature. Both indirect climatic drivers and non-climate drivers such as elevated grazing pressure and nutrient enrichment can also affect phenology.
2. This study investigated whether phenological trends in phytoplankton could be detected in a relatively short time series in a shallow, ice-free, polymictic lake with a high annual discharge and whether any such trends could be causally explained.
3. It was found that the centre of gravity of the spring chlorophyll a bloom advanced significantly by 1.6 days per year over a 15-year period. This was accompanied by a significant increase in water temperature of 0.12 °C per year which is high compared to published rates of change over longer time series. No direct effects of ice cover, stratification or water discharge rates could be linked to the advancement of the spring bloom. Instead, the shift in timing was attributed to an advance in the timing of the dominant spring diatom, Aulacoseira spp., instigated by a temperature-driven increase in replication rate leading to an earlier onset of silica (SiO2) limitation.  相似文献   

7.
Ecosystem functioning is simultaneously affected by changes in community composition and environmental change such as increasing atmospheric carbon dioxide (CO2) and subsequent ocean acidification. However, it largely remains uncertain how the effects of these factors compare to each other. Addressing this question, we experimentally tested the hypothesis that initial community composition and elevated CO2 are equally important to the regulation of phytoplankton biomass. We full‐factorially exposed three compositionally different marine phytoplankton communities to two different CO2 levels and examined the effects and relative importance (ω2) of the two factors and their interaction on phytoplankton biomass at bloom peak. The results showed that initial community composition had a significantly greater impact than elevated CO2 on phytoplankton biomass, which varied largely among communities. We suggest that the different initial ratios between cyanobacteria, diatoms, and dinoflagellates might be the key for the varying competitive and thus functional outcome among communities. Furthermore, the results showed that depending on initial community composition elevated CO2 selected for larger sized diatoms, which led to increased total phytoplankton biomass. This study highlights the relevance of initial community composition, which strongly drives the functional outcome, when assessing impacts of climate change on ecosystem functioning. In particular, the increase in phytoplankton biomass driven by the gain of larger sized diatoms in response to elevated CO2 potentially has strong implications for nutrient cycling and carbon export in future oceans.  相似文献   

8.
Phytoplankton growth is controlled by multiple environmental drivers, which are all modified by climate change. While numerous experimental studies identify interactive effects between drivers, large-scale ocean biogeochemistry models mostly account for growth responses to each driver separately and leave the results of these experimental multiple-driver studies largely unused. Here, we amend phytoplankton growth functions in a biogeochemical model by dual-driver interactions (CO2 and temperature, CO2 and light), based on data of a published meta-analysis on multiple-driver laboratory experiments. The effect of this parametrization on phytoplankton biomass and community composition is tested using present-day and future high-emission (SSP5-8.5) climate forcing. While the projected decrease in future total global phytoplankton biomass in simulations with driver interactions is similar to that in control simulations without driver interactions (5%–6%), interactive driver effects are group-specific. Globally, diatom biomass decreases more with interactive effects compared with the control simulation (−8.1% with interactions vs. no change without interactions). Small-phytoplankton biomass, by contrast, decreases less with on-going climate change when the model accounts for driver interactions (−5.0% vs. −9.0%). The response of global coccolithophore biomass to future climate conditions is even reversed when interactions are considered (+33.2% instead of −10.8%). Regionally, the largest difference in the future phytoplankton community composition between the simulations with and without driver interactions is detected in the Southern Ocean, where diatom biomass decreases (−7.5%) instead of increases (+14.5%), raising the share of small phytoplankton and coccolithophores of total phytoplankton biomass. Hence, interactive effects impact the phytoplankton community structure and related biogeochemical fluxes in a future ocean. Our approach is a first step to integrate the mechanistic understanding of interacting driver effects on phytoplankton growth gained by numerous laboratory experiments into a global ocean biogeochemistry model, aiming toward more realistic future projections of phytoplankton biomass and community composition.  相似文献   

9.
The phytoplankton lake community model PROTECH (Phytoplankton RespOnses To Environmental CHange) was applied to the eutrophic lake, Esthwaite Water (United Kingdom). It was validated against monitoring data from 2003 and simulated well the seasonal pattern of total chlorophyll, diatom chlorophyll and Cyanobacteria chlorophyll with respective R2‐values calculated between observed and simulated of 0.68, 0.72 and 0.77 (all P<0.01). This simulation was then rerun through various combinations of factorized changes covering a range of half to double the flushing rate and from ?1 to +4 °C changes in water temperature. Their effect on the phytoplankton was measured as annual, spring, summer and autumn means of the total and species chlorophyll concentrations. In addition, Cyanobacteria mean percentage abundance (%Cb) and maximum percentage abundance (Max %Cb) was recorded, as were the number of days that Cyanobacteria chlorophyll concentration exceed two World Health Organization (WHO) derived risk thresholds (10 and 50 mg m?3). The phytoplankton community was dominated in the year by three of the eight phytoplankton simulated. The vernal bloom of the diatom Asterionella showed little annual or seasonal response to the changing drivers but this was not the case for the two Cyanobacteria that also dominated, Anabaena and Aphanizomenon . These Cyanobacteria showed enhanced abundance, community dominance and increased duration above the highest WHO risk threshold with increasing water temperature and decreasing flushing rate: this effect was greatest in the summer period. However, the response was ultimately controlled by the availability of nutrients, particularly phosphorus and nitrogen, with occasional declines in the latter's concentration helping the dominance of these nitrogen‐fixing phytoplankton.  相似文献   

10.
With climate warming, a widespread expectation is that events in spring, such as flowering, bird migrations, and insect bursts, will occur earlier because of increasing temperature. At high latitudes, increased ocean temperature is suggested to advance the spring phytoplankton bloom due to earlier stabilization of the water column. However, climate warming is also expected to cause browning in lakes and rivers due to increases in terrestrial greening, ultimately reducing water clarity in coastal areas where freshwater drain. In shallow areas, decreased retention of sediments on the seabed will add to this effect. Both browning and resuspension of sediments imply a reduction of the euphotic zone and Sverdrup's critical depth leading to a delay in the spring bloom, counteracting the effect of increasing temperature. Here, we provide evidence that such a transparency reduction has already taken place in both the deep and shallow areas of the North Sea during the 20th century. A sensitivity analysis using a water column model suggests that the reduced transparency might have caused up to 3 weeks delay in the spring bloom over the last century. This delay stands in contrast to the earlier bloom onset expected from global warming, thus highlighting the importance of including changing water transparency in analyses of phytoplankton phenology and primary production. This appears to be of particular relevance for coastal waters, where increased concentrations of absorbing and scattering substances (sediments, dissolved organic matter) have been suggested to lead to coastal darkening.  相似文献   

11.
Phytoplankton primary production in the Arctic Ocean has been increasing over the last two decades. In 2019, a record spring bloom occurred in Fram Strait, characterized by a peak in chlorophyll that was reached weeks earlier than in other years and was larger than any previously recorded May bloom. Here, we consider the conditions that led to this event and examine drivers of spring phytoplankton blooms in Fram Strait using in situ, remote sensing, and data assimilation methods. From samples collected during the May 2019 bloom, we observe a direct relationship between sea ice meltwater in the upper water column and chlorophyll a pigment concentrations. We place the 2019 spring dynamics in context of the past 20 years, a period marked by rapid change in climatic conditions. Our findings suggest that increased advection of sea ice into the region and warmer surface temperatures led to a rise in meltwater input and stronger near-surface stratification. Over this time period, we identify large-scale spatial correlations in Fram Strait between increased chlorophyll a concentrations and increased freshwater flux from sea ice melt.  相似文献   

12.
In this article, we show by mesocosm experiments that winter and spring warming will lead to substantial changes in the spring bloom of phytoplankton. The timing of the spring bloom shows only little response to warming as such, while light appears to play a more important role in its initiation. The daily light dose needed for the start of the phytoplankton spring bloom in our experiments agrees well with a recently published critical light intensity found in a field survey of the North Atlantic (around 1.3 mol photons m?2 day?1). Experimental temperature elevation had a strong effect on phytoplankton peak biomass (decreasing with temperature), mean cell size (decreasing with temperature) and on the share of microplankton diatoms (decreasing with temperature). All these changes will lead to poorer feeding conditions for copepod zooplankton and, thus, to a less efficient energy transfer from primary to fish production under a warmer climate.  相似文献   

13.
In a seasonal environment, the timing of reproduction is usually scheduled to maximize the survival of offspring. Within deep water bodies, the phytoplankton spring bloom provides a short time window of high food quantity and quality for herbivores. The onset of algal bloom development, however, varies strongly from year to year due to interannual variability in meteorological conditions. Furthermore, the onset is predicted to change with global warming. Here, we use a long-term dataset to study (a) how a cyclopoid copepod, Cyclops vicinus , is dealing with the large variability in phytoplankton bloom phenology, and (b) if bloom phenology has an influence on offspring numbers. C. vicinus performed a two-phase dormancy, that is, the actual diapause of fourth copepodid stages at the lake bottom is followed by a delay in maturation, that is, a quiescence, within the fifth copepodid stage until the start of the spring bloom. This strategy seems to guarantee a high temporal match of the food requirements for successful offspring development, especially through the highly vulnerable naupliar stages, with the phytoplankton spring bloom. However, despite this match with food availability in all study years, offspring numbers, that is, offspring survival rates were higher in years with an early start of the phytoplankton bloom. In addition, the phenology of copepod development suggested that also within study years, early offspring seems to have lower mortality rates than late produced offspring. We suggest that this is due to a longer predator-free time period and/or reduced time stress for development. Hence, within the present climate variability, the copepod benefited from warmer spring temperatures resulting in an earlier phytoplankton spring bloom. Time will show if the copepod's strategy is flexible enough to cope with future warming.  相似文献   

14.
The timing of the annual phytoplankton spring bloom is likely to be altered in response to climate change. Quantifying that response has, however, been limited by the typically coarse temporal resolution (monthly) of global climate models. Here, we use higher resolution model output (maximum 5 days) to investigate how phytoplankton bloom timing changes in response to projected 21st century climate change, and how the temporal resolution of data influences the detection of long‐term trends. We find that bloom timing generally shifts later at mid‐latitudes and earlier at high and low latitudes by ~5 days per decade to 2100. The spatial patterns of bloom timing are similar in both low (monthly) and high (5 day) resolution data, although initiation dates are later at low resolution. The magnitude of the trends in bloom timing from 2006 to 2100 is very similar at high and low resolution, with the result that the number of years of data needed to detect a trend in phytoplankton phenology is relatively insensitive to data temporal resolution. We also investigate the influence of spatial scales on bloom timing and find that trends are generally more rapidly detectable after spatial averaging of data. Our results suggest that, if pinpointing the start date of the spring bloom is the priority, the highest possible temporal resolution data should be used. However, if the priority is detecting long‐term trends in bloom timing, data at a temporal resolution of 20 days are likely to be sufficient. Furthermore, our results suggest that data sources which allow for spatial averaging will promote more rapid trend detection.  相似文献   

15.
1. Loch Leven is a shallow, eutrophic lake in Scotland, U.K. It has experienced much change over the 30 years that it has been studied; this has primarily been due to reduced nutrient loads to the lake through active catchment management. Its recovery has been slow and, therefore, we used a phytoplankton community model (PROTECH) to test its sensitivity to changing nutrient loads and water temperature.
2. PROTECH was initialized to simulate the observed phytoplankton community in 1995 and was then repeatedly run through a combination of step-wise changes in water temperature and nutrient load (two treatments were simulated for nutrient load: one changing both nitrate and phosphorus, and one changing just phosphorus). The effect on total chlorophyll- a concentration, cyanobacteria abundance and phytoplankton diversity was examined.
3. Whilst changes in temperature had little effect, variations in the nutrient load produced a range of responses. Increasing only the phosphorus load caused a large increase in Anabaena abundance and total chlorophyll- a concentration. However, the opposite response was recorded when nitrate load was changed as well, with Anabaena increasing its biomass under reduced nutrient load scenarios.
4. The key factor determining the type of response appeared to be nitrogen availability. Anabaena , a nitrogen fixer, could exploit the phosphorus resource of Loch Leven under limiting nitrogen conditions, allowing it to dominate under most of the scenarios tested apart from those supplying extra nitrogen to the lake. The model predictions agree with the observed data, which show that Anabaena continues to dominate the summer phytoplankton bloom in Loch Leven despite the considerable reduction in phosphorus supply from the catchment. This research provides a possible explanation for this.  相似文献   

16.
Climate change is likely to have far-reaching effects on biotic interactions in aquatic ecosystems. We investigated the effect of different spring warming scenarios on the succession of three algal groups (cyanobacteria, diatoms and green algae) in 10-l microcosms. We fitted these microcosm data to a simple mechanistic model to estimate the effect of different climate warming scenarios on the population dynamics of these algal functional groups. Experimental and model results indicate that the different algal functional groups respond differently to climate warming under phosphorus-limited conditions. Whereas the successional sequence, from diatoms to green algae to cyanobacteria, was not affected by the different climate warming scenarios, cyanobacteria showed a stronger response to the different climate warming scenarios than diatoms or green algae. Both the growth rates and peak abundances of cyanobacteria were significantly higher in the average and warm spring scenarios than in the cold spring scenario. Our findings illustrate that integration of models and microcosm experiments are a useful approach in predicting the impacts of rising temperatures on the dynamics of phytoplankton communities.  相似文献   

17.
Seasonal changes in freshwater phytoplankton communities have been extensively studied, but key drivers of phytoplankton in saline lakes are currently not well understood. Comparative lake studies of 19 prairie saline lakes in the northern Great Plains (USA) were conducted in spring and summer of 2004, with data gathered for a suite of limnological parameters. Nutrient enrichment assays for natural phytoplankton assemblages were also performed in spring and summer of 2006. Canonical correspondence analysis of 2004 data showed salinity (logCl), nitrogen, and phosphorus (N:P ratios) to be the main drivers of phytoplankton distribution in the spring, and phosphorus (C:P ratios), iron (logTFe), and nitrogen (logTN) as important factors in the summer. Despite major differences in nutrient limitation patterns (P-limitation in freshwater systems, N-limitation in saline systems), seasonal patterns of phytoplankton phyla changes in these saline lakes were similar to those of freshwater systems. Dominance shifted from diatoms in the spring to cyanobacteria in the summer. Nutrient enrichment assays (control, +Fe, +N, +P, +N+P) in 2006 indicated that nutrient limitation is generally more consistent within lakes than for individual taxa across systems, with widespread nitrogen and secondary phosphorus limitation. Understanding phytoplankton community structure provides insight into the overall ecology of saline lakes, and will assist in the future conservation and management of these valuable and climatically-sensitive systems.  相似文献   

18.
For the many lakes world‐wide with short residence times, changes to the rate of water throughput may have important effects on lake ecology. We studied relationships between current and predicted residence times and phytoplankton biomass using a eutrophic lake in the north‐west of England with an annual residence time averaging about 20 days, as a test case. Using 32 years of recent hydrological flow data for Bassenthwaite Lake, multiple sets of scaled flow for each year, and the process‐based phytoplankton response model, PROTECH, we modelled the effects of changing river flow on phytoplankton biomass in the lake. The impact on biomass was shown to depend on seasonal changes in flow rather than annual changes. Furthermore, there was a qualitative difference in impact depending on whether the nutrient loading to the lake came principally from flow‐independent sources, or from flow‐dependent ones. Predictions for changes in river flow under future climate scenarios in the north‐west of England have suggested that, despite little change in the annual flow magnitude, there will be a shift to greater flow in the winter and lesser flow in the summer. Applying these flow predictions to our modelling of Bassenthwaite Lake revealed that, with flow‐independent nutrient loading, and no overall increase in nutrient load, phytoplankton abundance in the summer could increase by up to 70%, including an increased proportion of Cyanobacteria. Conversely, were the loading completely dependent on the flow, the biomass would fall. In many parts of the world, river flow is expected to decrease in the summer even more than in England, suggesting these areas may expect substantial changes to seasonal phytoplankton biomass as a result of climate‐driven changes to seasonal river flow. Such changes would be in addition to any other changes owing to warming effects or eutrophication.  相似文献   

19.
1. In natural lakes, modifications in the species composition and abundance of phytoplankton communities may ultimately be responses to changes in nutrient availability and climatic fluctuations. Phytoplankton and associated environmental factors were collected at monthly intervals from the beginning of the 1990s to 2007 in the large subalpine Lake Garda (zmax = 350 m, V = 49 × 109 m3). In this study period, the lake showed a slight and continuous increase of total phosphorus (TP) in the water column, up to concentrations of 18–20 μg P L?1. This increase represented the last stage of a long‐term process of enrichment documented since the 1970s, when concentrations of TP were below or around 10 μg P L?1. 2. At the community level, annual phytoplankton cycles underwent a unidirectional and slow shift mainly due to changes in the species more affected by the nutrient enrichment of the lake. After a first and long period of dominance by conjugatophytes (Mougeotia) and diatoms (Fragilaria), phytoplankton biomass in recent years was sustained by cyanobacteria (Planktothrix). Other important modifications in the development of phytoplankton were superimposed on this pattern due to the effects of annual climate fluctuations principally mediated by the deep mixing events at spring overturn and, secondarily, by temperature and thermal stability of the water column during the growing season. 3. Interannual variations in the stability and temperature of the water column appeared to influence the development of a few subdominant flagellates (dinophytes and cryptophytes). Nevertheless, the major impact of climate on phytoplankton was indirect, and mediated through the effects of winter climatic conditions on deep mixing dynamics. Winter climatic fluctuations proved to be a key element in a linked chain of causal factors including cooling of hypolimnetic waters, deep vertical mixing and epilimnetic nutrient replenishment. The process of fertilisation was measurable both for TP and dissolved inorganic nitrogen, although only the first had a large effect, reinforcing the seasonal growth of a few dominant groups. The degree of nutrient replenishment further increased the spring development of large diatoms and the increase of Planktothrix in summer and autumn. 4. Currently, changes in nutrient concentrations have the greatest effect on the phytoplankton community, while direct effects due to the interannual variations in the thermal regime are of secondary importance compared with the indirect effects mediated through deep water mixing and spring fertilisation. Overall, the results demonstrate that the consequences of climatic fluctuations and climate warming on phytoplankton communities need to be studied at different levels of complexity and integration, from the direct effects of temperature and thermal regime, to the indirect effects mediated by the physiographic characteristics of water bodies.  相似文献   

20.
Tamar Zohary 《Freshwater Biology》2004,49(10):1355-1371
1. Phytoplankton abundance and species composition in Lake Kinneret, Israel, have been monitored at weekly or fortnightly intervals since 1969. This paper summarises the resulting 34‐year phytoplankton record with a focus on the last 13 years of new data, and reassesses an earlier conclusion that the lake phytoplankton shows remarkable stability despite a wide range of external pressures. 2. The Kinneret phytoplankton record can be split into two major periods. The first, from 1969 till 1993, was a period of distinct stability expressed by a typical annual pattern revolving around a spring bloom of the dinoflagellate Peridinium gatunense that repeated each year. The second period, starting around 1994 and ongoing, is characterised by the loss of the previously predictable annual pattern, with both ‘bloom years’ and ‘no‐bloom years’. 3. In the second period, deviations from the previous annual pattern include: the absence of the prevailing spring P. gatunense blooms in some years and increased variability in the magnitude of the bloom in others; intensification of winter Aulacoseira granulata blooms; higher summer phytoplankton biomass with replacement of mostly nanoplanktonic, palatable forms by less palatable forms; new appearance and establishment of toxin‐producing, nitrogen fixing cyanobacteria in summer; increase in the absolute biomass and percentage contribution of cyanobacteria to total biomass; and fungal epidemics attacking P. gatunense. 4. The 34‐year record serves to validate Schindler's (1987) assessment that phytoplankton species composition will respond to increased anthropogenic stress before bulk ecosystem parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号