首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of bilateral alternating out-of-phase vibrations were studied in 10 normal healthy subjects and five asthmatic patients. The second or third intercostal spaces were vibrated during expiration, and the seventh to ninth intercostal spaces were vibrated during inspiration. Most subjects sensed breathlessness during such vibrations, and 100 Hz was most effective. The degree of breathlessness correlated positively with increased respiratory rate. Respiratory rate increased from 14.1 +/- 3.78 (mean +/- SD) to 22.3 +/- 7.14 breaths/min (P less than 0.05) during relatively severe breathlessness and to 20.39 +/- 5.66 breaths/min (P less than 0.05) during less uncomfortable sensation. Slight or negligible breathlessness induced no significant increase in rate (15.33 +/- 4.19 breaths/min). All asthma patients described the sensations during vibration as similar to those during asthma attacks, and their respiratory rates increased 20.7 +/- 11.03% during 100 Hz vibration (P less than 0.01). It is suggested that the uncomfortable sensation of breathlessness may be induced by muscle spindles in the intercostal muscles being activated out of phase with the respiratory cycle. The central mechanism that receives the intercostal afferents may have a certain gate that operates in relation to the sensation of breathlessness.  相似文献   

2.
Effect of chest wall vibration on breathlessness in normal subjects   总被引:2,自引:0,他引:2  
This study evaluated the effect of chest wall vibration (115 Hz) on breathlessness. Breathlessness was induced in normal subjects by a combination of hypercapnia and an inspiratory resistive load; both minute ventilation and end-tidal CO2 were kept constant. Cross-modality matching was used to rate breathlessness. Ratings during intercostal vibration were expressed as a percentage of ratings during the control condition (either deltoid vibration or no vibration). To evaluate their potential contribution to any changes in breathlessness, we assessed several aspects of ventilation, including chest wall configuration, functional residual capacity (FRC), and the ventilatory response to steady-state hypercapnia. Intercostal vibration reduced breathlessness ratings by 6.5 +/- 5.7% compared with deltoid vibration (P less than 0.05) and by 7.0 +/- 8.3% compared with no vibration (P less than 0.05). The reduction in breathlessness was accompanied by either no change or negligible change in minute ventilation, tidal volume, frequency, duty cycle, compartmental ventilation, FRC, and the steady-state hypercapnic response. We conclude that chest wall vibration reduces breathlessness and speculate that it may do so through stimulation of receptors in the chest wall.  相似文献   

3.
Vibratory stimulation applied to the chest wallduring inspiration reduces the intensity of breathlessness, whereas thesame stimulation during expiration has no effect or may increasebreathlessness. The purpose of the present study was to determinewhether vibration reduced the intensity of breathlessness duringprogressive hypercapnia with and without the addition of an externalresistive load. A second objective was to see whether the mouthocclusion pressure at 0.2 s(P0.2) was reduced by thevibratory stimulation. Hypercapnic ventilatory response was conductedin 10 healthy male volunteers with simultaneous measurement of visualanalog scale, P0.2, and minuteventilation. Hypercapnic ventilatory response was performed andrandomly combined with or without vibratory stimulation (100 Hz) aswell as with or without inspiratory load. With inspiratory load,in-phase vibration did not cause any significant changes in the slopesof P0.2 and minute ventilation toCO2, whereas the slope of visualanalog scale to CO2 significantlydecreased from 0.47 ± 0.15 to 0.34 ± 0.11 (SE) cm/Torr(P < 0.05). We conclude thatin-phase vibration could decrease the slope of breathlessness elicitedby inspiratory load combined with hypercapnia without changing motoroutput.

  相似文献   

4.
Pulmonary and chest wall mechanics in anesthetized paralyzed humans   总被引:3,自引:0,他引:3  
Pulmonary and chest wall mechanics were studied in 18 anesthetized paralyzed supine humans by use of the technique of rapid airway occlusion during constant-flow inflation. Analysis of the changes in transpulmonary pressure after flow interruption allowed partitioning of the overall resistance of the lung (RL) into two compartments, one (Rint,L) reflecting airway resistance and the other (delta RL) representing the viscoelastic properties of the pulmonary tissues. Similar analysis of the changes in esophageal pressure indicates that chest wall resistance (RW) was due entirely to the viscoelastic properties of the chest wall tissues (delta RW = RW). In line with previous measurements of airway resistance, Rint,L increased with increasing flow and decreased with increasing volume. The opposite was true for both delta RL and delta RW. This behavior was interpreted in terms of a viscoelastic model that allowed computation of the viscoelastic constants of the lung and chest wall. This model also accounts for frequency, volume, and flow dependence of elastance of the lung and chest wall. Static and dynamic elastances, as well as delta R, were higher for the lung than for the chest wall.  相似文献   

5.
6.
7.
Effects of paralysis with pancuronium on chest wall statics in awake humans   总被引:2,自引:0,他引:2  
The influence of tonic inspiratory muscle activity on the relaxation characteristics of the chest wall, rib cage (RC), and abdominal wall (ABW) has been investigated in four highly trained subjects. Chest wall shape and volume were estimated with magnetometers. Pleural pressure (Pes) and abdominal pressure were measured with esophageal and gastric balloons, respectively. Subjects were seated reclining 30 degrees from upright, and respiratory muscle weakness was produced by pancuronium bromide until RC inspiratory capacity was decreased to 60% of control. Only minor changes were observed for Konno-Mead relaxation characteristics (RC vs. ABW) between control and paralysis. Similarly, although RC relaxation curves (RC vs. Pes) during paralysis were significantly different from control (P less than 0.05), the changes were small and not consistent. The differences between paralysis-induced changes in resting end-expiratory position of the chest wall and helium-dilution functional residual capacity (FRC) suggested changes in volume of blood within the chest wall. We conclude that 1) although tonic inspiratory activity of chest wall muscles exists, it does not significantly affect the chest wall relaxation characteristics in trained subjects; 2) submaximal paralysis produced by pancuronium bromide is likely to modify either spinal attitude or the distribution of blood between extremities and the thorax; these effects may account for the changes in FRC in other studies.  相似文献   

8.
We examined the effects of chest wall strapping (CWS) on the response to inhaled methacholine (MCh) and the effects of deep inspiration (DI). Eight subjects were studied on 1 day with MCh inhaled without CWS (CTRL), 1 day with MCh inhaled during CWS (CWSon/on), and 1 day with MCh inhaled during temporary removal of CWS (CWSoff/on). On the CWSon/on day, MCh caused greater increases in pulmonary resistance, upstream resistance, dynamic elastance, residual volume, and greater decreases in maximal expiratory flow than on the CTRL day. On the CWSoff/on day, the changes in these parameters with MCh were not different from the CTRL day. Six of the subjects were again studied using the same protocol on CTRL and CWSon/on days, except that, on a third day, MCh was given after applying the CWS, but the measurements before and after the inhalation were made without CWS (CWSon/off). The latter sequence was associated with more severe airflow obstruction than during CTRL, but less than with CWSon/on. The bronchodilator effects of a DI were blunted when CWS was applied during measurements (CWSon/on and CWSoff/on) but not after it was removed (CWSon/off). We conclude that CWS is capable of increasing airway responsiveness only when it is applied during the inhalation of the constrictor agent. We speculate that breathing at low lung volumes induced by CWS enhances airway narrowing because the airway smooth muscle is adapted at a length at which the contractile apparatus is able to generate a force greater than normal.  相似文献   

9.
10.
The effects of selective restriction of rib cage (Res,rc) and abdominal wall (Res,ab) movements on endurance of short-term constant-load heavy exercise and on diaphragmatic function during such exercise were examined in five normal young men. An inelastic surgical corset was used to achieve Res,rc and Res,ab. Subjects exercised on a cycle ergometer at 80% of their maximum power output to exhaustion on three occasions: with Res,rc, with Res,ab, and without restriction of chest wall movements (control). Transdiaphragmatic (Pdi), esophageal, and gastric pressures were measured. Electromyogram of the diaphragm was recorded by an esophageal electrode, and the ratio of the power content of a high-frequency to low-frequency band (H/L ratio) was measured. In addition, maximum Pdi (Pdimax) pre- and immediately postexercise was recorded. Res,rc was associated with a shorter endurance time, a progressive decline of the H/L ratio, and a significant reduction of Pdimax postexercise, whereas no such changes were found with Res,ab. We conclude that diaphragmatic function was well defended with abdominal wall loading, whereas limitation of rib cage expansion reduced diaphragmatic endurance during exercise. The diaphragmatic tension-time index (TTdi) in exercise was always less than the critical value of 0.15 found by Bellemare and Grassino (J. Appl. Physiol. 53: 1190-1195, 1982) when subjects inspired against large resistive loads at normal minute ventilations. We suggest that the higher inspiratory flow rate (P less than 0.05) and breathing frequency (P less than 0.05) account for the occurrence of diaphragmatic fatigue in exercise with Res,rc when the TTdi was 0.06 +/- 0.02.  相似文献   

11.
Using a respiratory inductive plethysmograph (Respitrace) we studied thoracoabdominal movements in eight normal subjects during inspiratory resistive (Res) and elastic (El) loading. The magnitude of loads was chosen so as to produce a fall in inspiratory mouth pressure of 20 cmH2O. The contribution of rib cage (RC) to tidal volume (VT) increased significantly from 68% during quiet breathing (QB) to 74% during El and 78% during Res. VT and breathing frequency did not change significantly. During loading a phase lag was present on inspiration so that the abdomen led the rib cage. However, outward movement of the abdomen ceased in the latter part of inspiration, and the RC became the sole contributor to VT. These observations suggest greater recruitment of the inspiratory musculature of the RC than the diaphragm during loading, although changes in the mechanical properties of the chest wall may also have contributed. Indeed, an increase in abdominal end-expiratory and end-inspiratory pressures was observed in five out of six subjects, indicating abdominal muscle recruitment which may account for part of the reduction in abdominal excursion. Both Res and El increased the rate of emptying of the respiratory system during the ensuing unloaded expiration as a result of a reduction in rib cage expiratory-braking mechanisms. The time course of abdominal displacements during expiration was unaffected by loading.  相似文献   

12.
The effect of local anesthetic aerosol inhalation on the ventilatory response and the sensation of breathlessness to CO2 rebreathing was studied in seven healthy male subjects with permanent tracheal stomas after laryngectomy for carcinoma. Inhalation of bupivacaine aerosol sufficient to abolish the cough reflex to mechanical probing below the carina increased the ventilatory response to CO2 in six of seven subjects compared with saline control. This was achieved by an increase in both respiratory frequency (f) and tidal volume (VT) in four subjects, f in one subject, and VT in one subject. All subjects reported that they were more breathless on rebreathing after bupivacaine aerosol. The six subjects who recorded breathlessness with a visual analog scale (VAS) indicated its onset at a lower minute ventilation (VE) and gave higher VAS scores for equivalent levels of VE after threshold. We conclude that the enhanced CO2 sensitivity and breathlessness on rebreathing after airway anesthesia results from altered lower airway receptor discharge.  相似文献   

13.
Prion diseases include kuru, Creutzfeldt-Jakob disease, Gerstmann-Sträussler-Scheinker disease, and fatal familial insomnia of humans as well as scrapie and bovine spongiform encephalopathy of animals. For many years, the prion diseases were thought to be caused by viruses despite evidence to the contrary. The unique characteristic common to all of these disorders, whether sporadic, dominantly inherited, or acquired by infection, is that they involve aberrant metabolism of the prion protein. In many cases, the cellular prion protein is converted into the scrapie variant by a process after translation that involves a conformational change. Often the human prion diseases are transmissible experimentally to animals, and all of the inherited prion diseases segregate with prion protein gene mutations.  相似文献   

14.
Beaumont, Maurice, Damien Lejeune, Henri Marotte, AlainHarf, and Frédéric Lofaso. Effects of chest wallcounterpressures on lung mechanics under high levels of CPAP in humans.J. Appl. Physiol. 83(2): 591-598, 1997.We assessed the respective effects of thoracic (TCP) andabdominal/lower limb (ACP) counterpressures on end-expiratory volume(EEV) and respiratory muscle activity in humans breathing at 40 cmH2O of continuous positiveairway pressure (CPAP). Expiratory activity was evaluated on the basis of the inspiratory drop in gastric pressure (Pga) from its maximal end-expiratory level, whereas inspiratory activity was evaluated on thebasis of the transdiaphragmatic pressure-time product (PTPdi). CPAPinduced hyperventilation (+320%) and only a 28% increase in EEVbecause of a high level of expiratory activity (Pga = 24 ± 5 cmH2O), contrasting with areduction in PTPdi from 17 ± 2 to 9 ± 7 cmH2O · s1 · cycle1during 0 and 40 cmH2O of CPAP,respectively. When ACP, TCP, or both were added, hyperventilationdecreased and PTPdi increased (19 ± 5, 21 ± 5, and 35 ± 7 cmH2O · s1 · cycle1,respectively), whereas Pga decreased (19 ± 6, 9 ± 4, and 2 ± 2 cmH2O, respectively). Weconcluded that during high-level CPAP, TCP and ACP limit lunghyperinflation and expiratory muscle activity and restore diaphragmaticactivity.

  相似文献   

15.
16.
17.
Transposons and transposon-like repetitive elements collectively occupy 44% of the human genome sequence. In an effort to measure the levels of genetic variation that are caused by human transposons, we have developed a new method to broadly detect transposon insertion polymorphisms of all kinds in humans. We began by identifying 606,093 insertion and deletion (indel) polymorphisms in the genomes of diverse humans. We then screened these polymorphisms to detect indels that were caused by de novo transposon insertions. Our method was highly efficient and led to the identification of 605 nonredundant transposon insertion polymorphisms in 36 diverse humans. We estimate that this represents 25-35% of approximately 2075 common transposon polymorphisms in human populations. Because we identified all transposon insertion polymorphisms with a single method, we could evaluate the relative levels of variation that were caused by each transposon class. The average human in our study was estimated to harbor 1283 Alu insertion polymorphisms, 180 L1 polymorphisms, 56 SVA polymorphisms, and 17 polymorphisms related to other forms of mobilized DNA. Overall, our study provides significant steps toward (i) measuring the genetic variation that is caused by transposon insertions in humans and (ii) identifying the transposon copies that produce this variation.  相似文献   

18.
19.
In six of 91 cases of Hodgkin's disease observed over a three-year period, a tumor mass filling the infraclavicular hollow was noted. It was on the left side in all instances. Although in four cases it was the only superficial manifestation of Hodgkin's disease for a long period, in all cases there were ultimately other areas of involvement. The lesion did not occur in any of 81 cases of lymphosarcoma observed concurrently.  相似文献   

20.
The chest wall of the preterm infant has visible paradoxical movement during breathing, because of its greater flexibility than those of older children and adults. We studied the dynamics of the chest wall in 10 preterm infants to describe the interaction of the chest wall volume, as partitioned by the inductance plethysmograph, and the transthoracic and abdominal pressures. There was considerable hysteresis between the chest wall volume and the transthoracic pressure, and it had linear pressure-volume behavior during airway occlusion, late inspiration, and early expiration. The slope of this pressure-volume relationship, or the instantaneous chest wall compliance, averaged 0.89 +/- 0.16 and 0.94 +/- 0.18 ml/cmH2O for the respiratory effort during airway occlusion and early expiration, respectively. The dynamic compliance was considerably greater, averaging 7.8 +/- 2.3 ml/cmH2O. This resistive pressure-volume behavior was not related to the absolute value of or the rate of development of the esophageal or abdominal pressures. This additional degree of freedom of motion of the chest wall suggests that its linkage to the diaphragm is flexible, which provides a braking force for expiration and allows free movement of the diaphragm for breathing movements before birth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号