首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unlike matrix-targeted or inner membrane proteins, those that are targeted to the mitochondrial intermembrane space (IMS) do not require ATP or the inner membrane electrochemical potential. Their import is mediated primarily by the essential IMS protein Mia40/Tim40. Here, we show that the mitochondrial flavin adenine dinucleotide (FAD)-linked sulfhydryl oxidase Erv1 (essential for respiration and vegetative growth 1) plays a central role in the biogenesis of small, cysteine proteins of the IMS that are import substrates for Mia40. In a temperature-sensitive strain of Erv1, steady-state levels of small translocases of the inner membrane (Tims) are specifically affected when cells are grown at the non-permissive temperature. Furthermore, mitochondria isolated from the erv1-ts show a specific import and assembly defect for the small Tims but not in any other protein import pathway. Erv1 does not directly oxidise the small Tims, as thiol trapping assays show that the small Tims can still be oxidised in erv1-ts cells grown at the non-permissive temperature and in isolated mitochondria from this strain. Moreover, addition of pure Erv1 into erv1-ts mitochondria lacking the endogenous protein restores import and assembly of the small Tims only to an extent, arguing for a cascade of interactions with Erv1 rather than for a direct interaction of Erv1 with the small Tims. Cytochrome c (cyt c) is the in vivo oxidase for Erv1, as yeast cells mutated in cyt c cannot grow under anaerobic conditions. Therefore, Erv1 functionally links the Mia40-dependent import pathway to the Mia40-independent cyt c import pathway transferring electrons from the incoming precursors to cyt c as an acceptor. In this context, the protein import process is linked to the respiratory chain via the communication of Erv1 with cyt c.  相似文献   

2.
In recent years, protein methylation has been established as a major intracellular PTM. It has also been proposed to modulate protein‐protein interactions (PPIs) in the interactome. To investigate the effect of PTMs on PPIs, we recently developed the conditional two‐hybrid (C2H) system. With this, we demonstrated that arginine methylation can modulate PPIs in the yeast interactome. Here, we used the C2H system to investigate the effect of lysine methylation. Specifically, we asked whether Ctm1p‐mediated trimethylation of yeast cytochrome c Cyc1p, on lysine 78, modulates its interactions with Erv1p, Ccp1p, Cyc2p and Cyc3p. We show that the interactions between Cyc1p and Erv1p, and between Cyc1p and Cyc3p, are significantly increased upon trimethylation of lysine 78. This increase of interaction helps explain the reported facilitation of Cyc1p import into the mitochondrial intermembrane space upon methylation. This first application of the C2H system to the study of methyllysine‐modulated interactions further confirms its robustness and flexibility.  相似文献   

3.
The proteins of the mitochondrial intermembrane space (IMS) are encoded by nuclear genes and synthesized on cytosolic ribosomes. While some IMS proteins are imported by the classical presequence pathway that involves the membrane potential deltapsi across the inner mitochondrial membrane and proteolytic processing to release the mature protein to the IMS, the import of numerous small IMS proteins is independent of a deltapsi and does not include proteolytic processing. The biogenesis of small IMS proteins requires an essential mitochondrial IMS import and assembly protein, termed Mia40. Here, we show that Erv1, a further essential IMS protein that has been reported to function as a sulfhydryl oxidase and participate in biogenesis of Fe/S proteins, is also required for the biogenesis of small IMS proteins. We generated a temperature-sensitive yeast mutant of Erv1 and observed a strong reduction of the levels of small IMS proteins upon shift of the cells to non-permissive temperature. Isolated erv1-2 mitochondria were selectively impaired in import of small IMS proteins while protein import pathways to other mitochondrial subcompartments were not affected. Small IMS precursor proteins remained associated with Mia40 in erv1-2 mitochondria and were not assembled into mature oligomeric complexes. Moreover, Erv1 associated with Mia40 in a reductant-sensitive manner. We conclude that two essential proteins, Mia40 and Erv1, cooperate in the assembly pathway of small proteins of the mitochondrial IMS.  相似文献   

4.
Cytochrome c6 is a soluble metalloprotein located in the periplasmic space and the thylakoid lumen of many cyanobacteria and is known to carry electrons from cytochrome b6f to photosystem I. The CuA domain of cytochrome c oxidase, the terminal enzyme which catalyzes the four-electron reduction of molecular oxygen in the respiratory chains of mitochondria and many bacteria, also has a periplasmic location. In order to test whether cytochrome c6 could also function as a donor for cytochrome c oxidase, we investigated the kinetics of the electron transfer between recombinant cytochrome c6 (produced in high yield in Escherichia coli by coexpressing the maturation proteins encoded by the ccmA-H gene cluster) and the recombinant soluble CuA domain (i.e., the donor binding and electron entry site) of subunit II of cytochrome c oxidase from Synechocystis PCC 6803. The forward and the reverse electron transfer reactions were studied by the stopped-flow technique and yielded apparent bimolecular rate constants of (3.3 +/- 0.3) x 10(5) M(-1) s(-1) and (3.9 +/- 0.1) x 10(6) M(-1) s(-1), respectively, in 5 mM potassium phosphate buffer, pH 7, containing 20 mM potassium chloride and 25 degrees C. This corresponds to an equilibrium constant Keq of 0.085 in the physiological direction (DeltarG'0 = 6.1 kJ/mol). The reduction of the CuA fragment by cytochrome c6 is almost independent on ionic strength, which is in contrast to the reaction of the CuA domain with horse heart cytochrome c, which decreases with increasing ionic strength. The findings are discussed with respect to the potential role of cytochrome c6 as mobile electron carrier in both cyanobacterial electron transport pathways.  相似文献   

5.
Cytochrome c oxidase forms tight binding complexes with the cytochrome c analog, porphyrin cytochrome c. The behaviour of the reduced and pulsed forms of the oxidase with porphyrin cytochrome c have been followed as functions of ionic strength; this behaviour has been compared with that of the resting oxidase [Kornblatt, Hui Bon Hoa and English (1984) Biochemistry 23, 5906-5911]. All forms of the cytochrome oxidase studied bind one porphyrin cytochrome c per 'functional' cytochrome oxidase (two heme a); it appears as though porphyrin cytochrome c and cytochrome c compete for the same site on the oxidase. The resting enzyme binds cytochrome c 8 times more strongly than porphyrin cytochrome c; the reduced enzyme, in contrast, binds the two with almost equal affinity. In all three cases, resting, pulsed and reduced, the heme-to-porphyrin distance is estimated to be about 3 nm. The tight-binding complexes formed between cytochrome oxidase and porphyrin cytochrome c can be dissociated by salt. Debye-Hückel analysis of salt titrations indicate that the resting enzyme and the reduced enzyme are similar in that the product of the interaction charges on the two proteins is about -14. The product of the charges for the pulsed enzyme is -25, indicating that on average another positive and negative charge take part in the interaction of the two proteins. While there is one tight binding site for cytochrome c per two heme a, cytochrome c is able to 'communicate' with four heme a. In the absence of cytochrome c, electron transfer from tetramethylphenylenediamine to the oxidase to oxygen results in the conversion of the resting form to the 'oxygenated'; in the presence of cytochrome c, the same electron transfer results in the appearance of the 'pulsed' form. Cytochrome c titrations of the enzyme show that a ratio of only one cytochrome c to four heme a is sufficient to convert all the oxidase to the 'pulsed' form. Porphyrin cytochrome c, like cytochrome c, catalyzes the same conversion with the same stoichiometry. The binding data and salt effects indicate that major structural alterations occur in the oxidase as it is converted from the resting to the partially reduced and subsequently to the pulsed form.  相似文献   

6.
Intramolecular electron transfer in the electrostatic cytochrome c oxidase/cytochrome c complex was investigated using a novel photoactivatable dye. Laser photolysis of thiouredopyrenetrisulfonate (TUPS), covalently linked to cysteine 102 on yeast iso-1-cytochrome c, generates a triplet state of the dye, which donates an electron to cytochrome c, followed by electron transfer to cytochrome c oxidase. Time-resolved optical absorption difference spectra were collected at delay times from 100 ns to 200 ms between 325 and 650 nm. On the basis of singular value decomposition (SVD) and multiexponential fitting, three apparent lifetimes were resolved. A sequential kinetic mechanism is proposed from which the microscopic rate constants and spectra of the intermediates were determined. The triplet state of TUPS donates an electron to cytochrome c with a forward rate constant of approximately 2.0 x 10(4) s(-1). A significant fraction of the triplet returns back to the ground state on a similar time scale. The reduction of cytochrome c is followed by faster electron transfer from cytochrome c to Cu(A), with the equilibrium favoring the reduced cytochrome c. Subsequently, Cu(A) equilibrates with heme a with an apparent rate constant of approximately 1 x 10(4) s(-1). On a millisecond time scale, the oxidized TUPS returns to the ground state and heme a becomes reoxidized. The extracted intermediate spectra are in excellent agreement with model spectra of the postulated intermediates, supporting the proposed mechanism.  相似文献   

7.
Acidithiobacillus ferrooxidans AP19-3, ATCC 23270, and MON-1 are mercury-sensitive, moderately mercury-resistant, and highly mercury-resistant strains respectively. It is known that 2,3,5,6-tetramethyl-p-phenylendiamine (TMPD) and reduced cytochrome c are used as electron donors specific for cytochrome c oxidase. Resting cells of strain MON-1 had TMPD oxidase activity and volatilized metal mercury with TMPD as an electron donor. Cytochrome c oxidase purified from strain MON-1 reduced mercuric ions to metalic mercury with reduced mammalian cytochrome c as well as TMPD. These mercury volatilization activities with reduced cytochrome c and TMPD were completely inhibited by 1 mM NaCN. These results indicate that cytochrome c oxidase is involved in mercury reduction in A. ferrooxidans cells. The cytochrome c oxidase activities of strains AP19-3 and ATCC 23270 were completely inhibited by 1 muM and 5 muM of mercuric chloride respectively. In contrast, the activity of strain MON-1 was inhibited 33% by 5 muM, and 70% by 10 muM of mercuric chloride, suggesting that the levels of mercury resistance in A. ferrooxidans strains correspond well with the levels of mercury resistance of cytochrome c oxidase.  相似文献   

8.
The compartment between the outer and the inner membranes of mitochondria, the intermembrane space (IMS), harbours a variety of proteins that contain disulfide bonds. Many of these proteins possess a conserved twin Cx(3)C motif or twin Cx(9)C motif. Recently, a disulfide relay system in the IMS has been identified which consists of two essential components, the sulfhydryl oxidase Erv1 and the redox-regulated import receptor Mia40/Tim40. The disulfide relay system drives the import of these cysteine-rich proteins into the IMS of mitochondria by an oxidative folding mechanism. In order to enable Mia40 to perform the oxidation of substrate proteins, the sulfhydryl oxidase Erv1 mediates the oxidation of Mia40 in a disulfide transfer reaction. To recycle Erv1 into its oxidized form, electrons are transferred to cytochrome c connecting the disulfide relay system to the electron transport chain of mitochondria. Despite the lack of homology of the components, the disulfide relay system in the IMS resembles the oxidation system in the periplasm of bacteria presumably reflecting the evolutionary origin of the IMS from the bacterial periplasm.  相似文献   

9.
The reagent 1-ethyl-3-(3-[14C]trimethylaminopropyl)carbodiimide (ETC) was used to identify specific carboxyl groups on the cytochrome bc1 complex (ubiquinol-cytochrome c reductase, EC 1.10.2.2) involved in binding cytochrome c. Treatment of the cytochrome bc1 complex with 2 mM ETC led to inhibition of the electron transfer activity with cytochrome c. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that both the cytochrome c1 heme peptide and the Mr = 9175 "hinge" peptide were radiolabeled by ETC. In addition, a new band appeared at a position consistent with a 1:1 cross-linked cytochrome c1-hinge peptide species. Treatment of a 1:1 cytochrome bc1-cytochrome c complex with ETC led to the same inhibition of electron transfer activity observed with the uncomplexed cytochrome bc1, but to decreased radiolabeling of the cytochrome c1 heme peptide. Two new cross-linked species corresponding to cytochrome c-hinge peptide and cytochrome c-cytochrome c1 were formed in place of the cytochrome c1-hinge peptide species. In order to identify the specific carboxyl groups labeled by ETC, a purified cytochrome c1 preparation containing both the heme peptide and the hinge peptide was dimethylated at all the lysines to prevent internal cross-linking. The methylated cytochrome c1 preparation was treated with ETC and digested with trypsin and chymotrypsin, and the resulting peptides were separated by high pressure liquid chromatography. ETC was found to label the cytochrome c1 peptides 63-81, 121-128, and 153-179 and the hinge peptides 1-17 and 48-65. All of these peptides are highly acidic and contain one or more regions of adjacent carboxyl groups. The only peptide consistently protected from labeling by cytochrome c binding was 63-81, demonstrating that the carboxyl groups at residues 66, 67, 76, and 77 are involved in binding cytochrome c. These residues are relatively close to the heme-binding cysteine residues 37 and 40 and indicate a possible site for electron transfer from cytochrome c1 to cytochrome c.  相似文献   

10.
A new ruthenium-cytochrome c derivative was designed to study electron transfer from cytochrome bc1 to cytochrome c (Cc). The single sulfhydryl on yeast H39C;C102T iso-1-Cc was labeled with Ru(2,2'-bipyrazine)2(4-bromomethyl-4'-methyl-2,2'-bipyridine) to form Ru(z)-39-Cc. The Ru(z)-39-Cc derivative has the same steady-state activity with yeast cytochrome bc1 as wild-type yeast iso-1-Cc, indicating that the ruthenium complex does not interfere in the binding interaction. Laser excitation of reduced Ru(z)-39-Cc results in electron transfer from heme c to the excited state of ruthenium with a rate constant of 1.5 x 10(6) x s(-1). The resulting Ru(I) is rapidly oxidized by atmospheric oxygen in the buffer. The yield of photooxidized heme c is 20% in a single flash. Flash photolysis of a 1:1 complex between reduced yeast cytochrome bc1 and Ru(z)-39-Cc at low ionic strength leads to rapid photooxidation of heme c, followed by intracomplex electron transfer from cytochrome c1 to heme c with a rate constant of 1.4 x 10(4) x s(-1). As the ionic strength is raised above 100 mM, the intracomplex phase disappears, and a new phase appears due to the bimolecular reaction between solution Ru-39-Cc and cytochrome bc1. The interaction of yeast Ru-39-Cc with yeast cytochrome bc1 is stronger than that of horse Ru-39-Cc with bovine cytochrome bc1, suggesting that nonpolar interactions are stronger in the yeast system.  相似文献   

11.
12.
Rhomboids, evolutionarily conserved integral membrane proteases, participate in crucial signaling pathways. Presenilin-associated rhomboid-like (PARL) is an inner mitochondrial membrane rhomboid of unknown function, whose yeast ortholog is involved in mitochondrial fusion. Parl-/- mice display normal intrauterine development but from the fourth postnatal week undergo progressive multisystemic atrophy leading to cachectic death. Atrophy is sustained by increased apoptosis, both in and ex vivo. Parl-/- cells display normal mitochondrial morphology and function but are no longer protected against intrinsic apoptotic death stimuli by the dynamin-related mitochondrial protein OPA1. Parl-/- mitochondria display reduced levels of a soluble, intermembrane space (IMS) form of OPA1, and OPA1 specifically targeted to IMS complements Parl-/- cells, substantiating the importance of PARL in OPA1 processing. Parl-/- mitochondria undergo faster apoptotic cristae remodeling and cytochrome c release. These findings implicate regulated intramembrane proteolysis in controlling apoptosis.  相似文献   

13.
Nitric oxide acts as a widespread signal molecule and represents the endogenous activator of soluble guanylyl cyclase. In endothelial cells and brain tissue, NO is enzymatically formed from L-arginine by Ca2+/calmodulin-regulated NO synthases which require NADPH, tetrahydrobiopterin, and molecular oxygen as cofactors. Here we show that purified brain NO synthase binds to cytochrome c-agarose and exhibits superoxide dismutase-insensitive cytochrome c reductase activity with a Vmax of 10.2 mumol x mg-1 x min-1 and a Km of 34.1 microM. Cytochrome c reduction was largely dependent on Ca2+/calmodulin and cochromatographed with L-citrulline formation during gel filtration. When reconstituted with cytochrome P450, NO synthase induced a moderate Ca(2+)-independent hydroxylation of N-ethylmorphine. NO synthase also reduced the artificial electron acceptors nitro blue tetrazolium and 2,6-dichlorophenolindophenol. Cytochrome c, 2,6-dichlorophenolindophenol, and nitro blue tetrazolium inhibited NO synthase activity determined as formation of L-citrulline from 0.1 mM L-arginine in a concentration-dependent manner with half-maximal effects at 166, 41, and 7.3 microM, respectively. These results suggest that NO synthase may participate in cellular electron transfer processes and that a variety of electron-acceptors may interfere with NO formation due to the broad substrate specificity of the reductase domain of NO synthase.  相似文献   

14.
The binding of cytochrome c to the cytochrome bc1 complex of bovine heart mitochondria was studied. Cytochrome c derivatives, arylazido-labeled at lysine 13 or lysine 22, were prepared and their properties as electron acceptors from the bc1 complex were measured. Mixtures of bc1 complex with cytochrome c derivatives were illuminated with ultraviolet light and afterwards subjected to polyacrylamide gel electrophoresis. The gels were analysed using dual-wavelength scanning at 280 minus 300 and 400 minus 430 nm. It was found that illumination with ultraviolet light in the presence of the lysine 12 derivative produced a diminution of the polypeptide of the bc1 coplex having molecular weight 30 000 (band IV) and formation of a new polypeptide composed of band IV and cytochrome c. Band IV was identified as cytochrome c1, and it was concluded that this hemoprotein interacts with cytochrome c and contains its binding site in complex III of the mitochondrial respiratory chain. Illumination of the bc1 complex in presence of the lysine 22 derivative did not produce changes of the polypeptide pattern.  相似文献   

15.
The interactions of cytochrome c1 and cytochrome c from bovine cardiac mitochondria were investigated. Cytochrome c1 and cytochrome c formed a 1:1 molecular complex in aqueous solutions of low ionic strength. The complex was stable to Sephadex G-75 chromatography. The formation and stability of the complex were independent of the oxidation state of the cytochrome components as far as those reactions studied were concerned. The complex was dissociated in solutions of ionic strength higher than 0.07 or pH exceeding 10 and only partially dissociated in 8 M urea. No complexation occurred when cytochrome c was acetylated on 64% of its lysine residues or photooxidized on its 2 methionine residues. Complexes with molecular ratios of less than 1:1 (i.e. more cytochrome c) were obtained when polymerized cytochrome c, or cytochrome c with all lysine residues guanidinated, or a "1-65 heme peptide" from cyanogen bromide cleavage of cytochrome c was used. These results were interpreted to imply that the complex was predominantly maintained by ionic interactions probably involving some of the lysine residues of cytochrome c but with major stabilization dependent on the native conformations of both cytochromes. The reduced complex was autooxidizable with biphasic kinetics with first order rate constants of 6 X 10(-5) and 5 X U0(-5) s-1 but did not react with carbon monoxide. The complex reacted with cyanide and was reduced by ascorbate at about 32% and 40% respectively, of the rates of reaction with cytochrome c alone. The complex was less photoreducible than cytochrome c1 alone. The complex exhibited remarkably different circular dichroic behavior from that of the summation of cytochrome c1 plus cytochrome c. We concluded that when cytochromes c1 and c interacted they underwent dramatic conformational changes resulting in weakening of their heme crevices. All results available would indicate that in the complex cytochrome c1 was bound at the entrance to the heme crevice of cytochrome c on the methionine-80 side of the heme crevice.  相似文献   

16.
The reaction of H2O2 with mixed-valence and fully reduced cytochrome c oxidase was investigated by photolysis of fully reduced and mixed-valence carboxy-cytochrome c oxidase in the presence of H2O2 under anaerobic conditions. The results showed that H2O2 reacted rapidly (k = (2.5-3.1) X 10(4) M-1 X s-1) with both enzyme species. With the mixed-valence enzyme, the fully oxidised enzyme was reformed. On the time-scale of our experiments, no spectroscopically detectable intermediate was observed. This demonstrates that mixed-valence cytochrome c oxidase is able to use H2O2 as a two-electron acceptor, suggesting that cytochrome c oxidase may under suitable conditions act as a peroxidase. Upon reaction of H2O2 with the fully reduced enzyme, cytochrome a was oxidised before cytochrome a3. From this observation it was possible to estimate that the rate of electron transfer from cytochrome a to a3 is about 0.5-5 s-1.  相似文献   

17.
Kinetic parameters and the role of cytochrome c(3) in sulfate, Fe(III), and U(VI) reduction were investigated in Desulfovibrio vulgaris Hildenborough. While sulfate reduction followed Michaelis-Menten kinetics (K(m) = 220 micro M), loss of Fe(III) and U(VI) was first-order at all concentrations tested. Initial reduction rates of all electron acceptors were similar for cells grown with H(2) and sulfate, while cultures grown using lactate and sulfate had similar rates of metal loss but lower sulfate reduction activities. The similarities in metal, but not sulfate, reduction with H(2) and lactate suggest divergent pathways. Respiration assays and reduced minus oxidized spectra were carried out to determine c-type cytochrome involvement in electron acceptor reduction. c-type cytochrome oxidation was immediate with Fe(III) and U(VI) in the presence of H(2), lactate, or pyruvate. Sulfidogenesis occurred with all three electron donors and effectively oxidized the c-type cytochrome in lactate- or pyruvate-reduced, but not H(2)-reduced cells. Correspondingly, electron acceptor competition assays with lactate or pyruvate as electron donors showed that Fe(III) inhibited U(VI) reduction, and U(VI) inhibited sulfate loss. However, sulfate reduction was slowed but not halted when H(2) was the electron donor in the presence of Fe(III) or U(VI). U(VI) loss was still impeded by Fe(III) when H(2) was used. Hence, we propose a modified pathway for the reduction of sulfate, Fe(III), and U(VI) which helps explain why these bacteria cannot grow using these metals. We further propose that cytochrome c(3) is an electron carrier involved in lactate and pyruvate oxidation and is the reductase for alternate electron acceptors with higher redox potentials than sulfate.  相似文献   

18.
When cytochrome c oxidase is isolated from mitochondria, the purified enzyme requires both cytochrome c and O2 to achieve its maximum rate of internal electron transfer from cytochrome a to cytochrome a3. When reductants other than cytochrome c are used, the rate of internal electron transfer is very slow. In this paper we offer an explanation for the slow reduction of cytochrome a3 when reductants other than cytochrome c are used and for the apparent allosteric effects of cytochrome c and O2. Our model is based on the conventional understanding of cytochrome oxidase mechanism (i.e. electron transfer from cytochrome a/CuA to cytochrome a3/CuB), but assumes a relatively rapid two-electron transfer between cytochrome a/CuA and cytochrome a3/CuB and a thermodynamic equilibrium in the "resting" enzyme (the enzyme as isolated) which favors reduced cytochrome a and oxidized cytochrome a3. Using the kinetic constants that are known for this reaction, we find that the activating effects of O2 and cytochrome c on the rate of electron transfer from cytochrome a to cytochrome a3 conform to the predictions of the model and so provide no evidence of any allosteric effects or control of cytochrome c oxidase by O2 or cytochrome c.  相似文献   

19.
1. Ferricytochrome c1 solution was reduced completely between pH 7 and 10 by illumination under anaerobic conditions. Photoreduction was not affected by the ionic strength of the medium. However, it did not take place at pH lower than 6 or higher than 10, or in the presence of p-hydroxymercuric benzoate. The ferricyanide-reoxidized photoreduced c1 was not further reduced upon illumination. The reductant was most probably a specific sulfhydryl group in the subunit containing the heme of the cytochrome since this subunit contained one less p-HMB-titratable group in the photoreduced sample than in the untreated preparation. 2. The photoreduced cytochrome c1 showed the same spectra as the native cytochrome, and was not reactive with carbon monoxide. The equilibrium constant of the reaction c12+ + c3+ equilibrium c13+ + c2+ for the photoreduced c1 was found to be slightly lower (Keq = 2.6) than that for the native c1 (Keq = 3.5). The antimycin A-sensitive electron acceptor activity of ferricyanide-reoxidized photoreduced c13+ catalyzed by succinate-cytochrome c reductase was about 80% of that of the native c1. 3. A somewhat simplified method for isolation of cytochrome c1 was developed. Anaerobic ammonium sulfate fractionation and calcium phosphate gel chromatography were still used in order to achieve the purity level of about 25 nmol of heme/mg of protein. The cytochrome c1 prepared by this procedure showed the same properties tested as that by the beta-mercaptoethanol method (Yu, C.A., Yu, L., and King, T.E. (1972) J. Biol. Chem. 247, 1012-1019).  相似文献   

20.
A novel method for initiating intramolecular electron transfer in cytochrome c oxidase is reported. The method is based upon photoreduction of cytochrome c labeled with thiouredopyrene-3,6, 8-trisulfonate in complex with cytochrome oxidase. The thiouredopyrene-3,6,8-trisulfonate-labeled cytochrome c was prepared by incubating the thiol reactive form of the dye with yeast iso-1-cytochrome c, containing a single cysteine residue. Laser pulse excitation of a stoichiometrical complex between thiouredopyrene-3,6,8-trisulfonate-cytochrome c and bovine heart cytochrome oxidase at low ionic strength resulted in the reduction of cytochrome c by the excited form of thiouredopyrene-3,6, 8-trisulfonate and subsequent intramolecular electron transfer from the reduced cytochrome c to cytochrome oxidase. The maximum efficiency by a single laser pulse resulted in the reduction of approximately 17% of cytochrome a, and was achieved only at a 1 : 1 ratio of cytochrome c to cytochrome oxidase. At higher cytochrome c to cytochrome oxidase ratios the heme a reduction was strongly suppressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号