首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite decades of study, the mechanisms by which synapses express the increase in strength during long-term potentiation (LTP) remain an area of intense interest. Here, we have studied how AMPA receptor subunit composition changes during the early phases of hippocampal LTP in CA1 pyramidal neurons. We studied LTP at silent synapses that initially lack AMPA receptors, but contain NMDA receptors. We show that strongly inwardly rectifying AMPA receptors are initially incorporated at silent synapses during LTP and are then subsequently replaced by non-rectifying AMPA receptors. These findings suggest that silent synapses initially incorporate GluA2-lacking, calcium-permeable AMPA receptors during LTP that are then replaced by GluA2-containing calcium-impermeable receptors. We also show that LTP consolidation at CA1 synapses requires a rise in intracellular calcium concentration during the early phase of expression, indicating that calcium influx through the GluA2-lacking AMPA receptors drives their replacement by GluA2-containing receptors during LTP consolidation. Taken together with previous studies in hippocampus and in other brain regions, these findings suggest that a common mechanism for the expression of activity-dependent glutamatergic synaptic plasticity involves the regulation of GluA2-subunit composition and highlights a critical role for silent synapses in this process.  相似文献   

2.
The hormone leptin crosses the blood brain barrier and regulates numerous neuronal functions, including hippocampal synaptic plasticity. Here we show that application of leptin resulted in the reversal of long-term potentiation (LTP) at hippocampal CA1 synapses. The ability of leptin to depotentiate CA1 synapses was concentration-dependent and it displayed a distinct temporal profile. Leptin-induced depotentiation was not associated with any change in the paired pulse facilitation ratio or the coefficient of variance, indicating a post-synaptic locus of expression. Moreover, the synaptic activation of NMDA receptors was required for leptin-induced depotentiation as the effects of leptin were blocked by the competitive NMDA receptor antagonist, D-aminophosphovaleric acid (D-AP5). The signaling mechanisms underlying leptin-induced depotentiation involved activation of the calcium/calmodulin-dependent protein phosphatase, calcineurin, but were independent of c- jun NH2 terminal kinase. Furthermore, leptin-induced depotentiation was accompanied by a reduction in α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor rectification indicating that loss of glutamate receptor 2 (GluR2)-lacking AMPA receptors underlies this process. These data indicate that leptin reverses hippocampal LTP via a process involving calcineurin-dependent internalization of GluR2-lacking AMPA receptors which further highlights the key role for this hormone in regulating hippocampal synaptic plasticity and neuronal development.  相似文献   

3.
Central to organization of signaling pathways are scaffolding, anchoring and adaptor proteins that mediate localized assembly of multi-protein complexes containing receptors, second messenger-generating enzymes, kinases, phosphatases, and substrates. At the postsynaptic density (PSD) of excitatory synapses, AMPA (AMPAR) and NMDA (NMDAR) glutamate receptors are linked to signaling proteins, the actin cytoskeleton, and synaptic adhesion molecules on dendritic spines through a network of scaffolding proteins that may play important roles regulating synaptic structure and receptor functions in synaptic plasticity underlying learning and memory. AMPARs are rapidly recruited to dendritic spines through NMDAR activation during induction of long-term potentiation (LTP) through pathways that also increase the size and F-actin content of spines. Phosphorylation of AMPAR-GluR1 subunits by the cAMP-dependent protein kinase (PKA) helps stabilize AMPARs recruited during LTP. In contrast, induction of long-term depression (LTD) leads to rapid calcineurin-protein phosphatase 2B (CaN) mediated dephosphorylation of PKA-phosphorylated GluR1 receptors, endocytic removal of AMPAR from synapses, and a reduction in spine size. However, mechanisms for coordinately regulating AMPAR localization, phosphorylation, and synaptic structure by PKA and CaN are not well understood. A kinase-anchoring protein (AKAP) 79/150 is a PKA- and CaN-anchoring protein that is linked to NMDARs and AMPARs through PSD-95 and SAP97 membrane-associated guanylate kinase (MAGUK) scaffolds. Importantly, disruption of PKA-anchoring in neurons and functional analysis of GluR1-MAGUK-AKAP79 complexes in heterologous cells suggests that AKAP79/150-anchored PKA and CaN may regulate AMPARs in LTD. In the work presented at the "First International Meeting on Anchored cAMP Signaling Pathways" (Berlin-Buch, Germany, October 15-16, 2005), we demonstrate that AKAP79/150 is targeted to dendritic spines by an N-terminal basic region that binds phosphatidylinositol-4,5-bisphosphate (PIP(2)), F-actin, and actin-linked cadherin adhesion molecules. Thus, anchoring of PKA and CaN as well as physical linkage of the AKAP to both cadherin-cytoskeletal and MAGUK-receptor complexes could play roles in coordinating changes in synaptic structure and receptor signaling functions underlying plasticity. Importantly, we provide evidence showing that NMDAR-CaN signaling pathways implicated in AMPAR regulation during LTD lead to a disruption of AKAP79/150 interactions with actin, MAGUKs, and cadherins and lead to a loss of the AKAP and anchored PKA from postsynapses. Our studies thus far indicate that this AKAP79/150 translocation depends on activation of CaN, F-actin reorganization, and possibly Ca(2+)-CaM binding to the N-terminal basic regions. Importantly, this tranlocation of the AKAP79/150-PKA complex from spines may shift the balance of PKA kinase and CaN/PP1 phosphatase activity at the postsynapse in favor of the phosphatases. This loss of PKA could then promote actions of CaN and PP1 during induction of LTD including maintaining AMPAR dephosphorylation, promoting AMPAR endocytosis, and preventing AMPAR recycling. Overall, these findings challenge the accepted notion that AKAPs are static anchors that position signaling proteins near fixed target substrates and instead suggest that AKAPs can function in more dynamic manners to regulate local signaling events.  相似文献   

4.
Considerable evidence indicates that neuroadaptations leading to addiction involve the same cellular processes that enable learning and memory, such as long-term potentiation (LTP), and that psychostimulants influence LTP through dopamine (DA)-dependent mechanisms. In hippocampal CA1 pyramidal neurons, LTP involves insertion of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors into excitatory synapses. We used dissociated cultures to test the hypothesis that D1 family DA receptors influence synaptic plasticity in hippocampal neurons by modulating AMPA receptor trafficking. Brief exposure (5 min) to a D1 agonist increased surface expression of glutamate receptor (GluR)1-containing AMPA receptors by increasing their rate of externalization at extrasynaptic sites. This required the secretory pathway but not protein synthesis, and was mediated mainly by protein kinase A (PKA) with a smaller contribution from Ca2+-calmodulin-dependent protein kinase II (CaMKII). Prior D1 receptor stimulation facilitated synaptic insertion of GluR1 in response to subsequent stimulation of synaptic NMDA receptors with glycine. Our results support a model for synaptic GluR1 incorporation in which PKA is required for initial insertion into the extrasynaptic membrane whereas CaMKII mediates translocation into the synapse. By increasing the size of the extrasynaptic GluR1 pool, D1 receptors may promote LTP. Psychostimulants may usurp this mechanism, leading to inappropriate plasticity that contributes to addiction-related behaviors.  相似文献   

5.
Lee SH  Simonetta A  Sheng M 《Neuron》2004,43(2):221-236
Removal of synaptic AMPA receptors is important for synaptic depression. Here, we characterize the roles of individual subunits in the inducible redistribution of AMPA receptors from the cell surface to intracellular compartments in cultured hippocampal neurons. The intracellular accumulation of GluR2 and GluR3 but not GluR1 is enhanced by AMPA, NMDA, or synaptic activity. After AMPA-induced internalization, homomeric GluR2 enters the recycling pathway, but following NMDA, GluR2 is diverted to late endosomes/lysosomes. In contrast, GluR1 remains in the recycling pathway, and GluR3 is targeted to lysosomes regardless of NMDA receptor activation. Interaction with NSF plays a role in regulated lysosomal targeting of GluR2. GluR1/GluR2 heteromeric receptors behave like GluR2 homomers, and endogenous AMPA receptors show differential activity-dependent sorting similar to homomeric GluR2. Thus, GluR2 is a key subunit that controls recycling and degradation of AMPA receptors after internalization.  相似文献   

6.
Expression of N-methyl d-aspartate (NMDA) receptor-dependent homosynaptic long term depression at synapses in the hippocampus and neocortex requires the persistent dephosphorylation of postsynaptic protein kinase A substrates. An attractive mechanism for expression of long term depression is the loss of surface AMPA (alpha-amino-3-hydroxy-5-methylisoxazale-4-propionate) receptors at synapses. Here we show that a threshold level of NMDA receptor activation must be exceeded to trigger a stable loss of AMPA receptors from the surface of cultured hippocampal neurons. NMDA also causes displacement of protein kinase A from the synapse, and inhibiting protein kinase A (PKA) activity mimics the NMDA-induced loss of surface AMPA receptors. PKA is targeted to the synapse by an interaction with the A kinase-anchoring protein, AKAP79/150. Disruption of the PKA-AKAP interaction is sufficient to cause a long-lasting reduction in synaptic AMPA receptors in cultured neurons. In addition, we demonstrate in hippocampal slices that displacement of PKA from AKADs occludes synaptically induced long term depression. These data indicate that synaptic anchoring of PKA through association with AKAPs plays an important role in the regulation of AMPA receptor surface expression and synaptic plasticity.  相似文献   

7.
PICK1 is a calcium-sensing, PDZ domain-containing protein that interacts with GluR2 and GluR3 AMPA receptor (AMPAR) subunits and regulates their trafficking. Although PICK1 has been principally implicated in long-term depression (LTD), PICK1 overexpression in CA1 pyramidal neurons causes a CaMK- and PKC-dependent potentiation of AMPAR-mediated transmission and an increase in synaptic GluR2-lacking AMPARs, mechanisms associated with NMDA receptor (NMDAR)-dependent long-term potentiation (LTP). Here, we directly tested whether PICK1 participates in both hippocampal NMDAR-dependent LTP and LTD. We show that the PICK1 potentiation of AMPAR-mediated transmission is NMDAR dependent and fully occludes LTP. Conversely, blockade of PICK1 PDZ interactions or lack of PICK1 prevents LTP. These observations demonstrate an important role for PICK1 in LTP. In addition, deletion of PICK1 or blockade of PICK1 PDZ binding prevented NMDAR-dependent LTD. Thus, PICK1 plays a critical role in bidirectional NMDAR-dependent long-term synaptic plasticity in the hippocampus.  相似文献   

8.
Lu W  Man H  Ju W  Trimble WS  MacDonald JF  Wang YT 《Neuron》2001,29(1):243-254
Long-term potentiation (LTP) of excitatory transmission in the hippocampus likely contributes to learning and memory. The mechanisms underlying LTP at these synapses are not well understood, although phosphorylation and redistribution of AMPA receptors may be responsible for this form of synaptic plasticity. We show here that miniature excitatory postsynaptic currents (mEPSCs) in cultured hippocampal neurons reliably demonstrate LTP when postsynaptic NMDA receptors are briefly stimulated with glycine. LTP of these synapses is accompanied by a rapid insertion of native AMPA receptors and by increased clustering of AMPA receptors at the surface of dendritic membranes. Both LTP and glycine-facilitated AMPA receptor insertion are blocked by intracellular tetanus toxin (TeTx), providing evidence that AMPA receptors are inserted into excitatory synapses via a SNARE-dependent exocytosis during LTP.  相似文献   

9.
Ca2+ influx via GluR2-lacking Ca2+-permeable AMPA glutamate receptors (CP-AMPARs) can trigger changes in synaptic efficacy in both interneurons and principle neurons, but the underlying mechanisms remain unknown. We took advantage of genetically altered mice with no or reduced GluR2, thus allowing the expression of synaptic CP-AMPARs, to investigate the molecular signaling process during CP-AMPAR-induced synaptic plasticity at CA1 synapses in the hippocampus. Utilizing electrophysiological techniques, we demonstrated that these receptors were capable of inducing numerous forms of long-term potentiation (referred to as CP-AMPAR dependent LTP) through a number of different induction protocols, including high-frequency stimulation (HFS) and theta-burst stimulation (TBS). This included a previously undemonstrated form of protein-synthesis dependent late-LTP (L-LTP) at CA1 synapses that is NMDA-receptor independent. This form of plasticity was completely blocked by the selective CP-AMPAR inhibitor IEM-1460, and found to be dependent on postsynaptic Ca2+ ions through calcium chelator (BAPTA) studies. Surprisingly, Ca/CaM-dependent kinase II (CaMKII), the key protein kinase that is indispensable for NMDA-receptor dependent LTP at CA1 synapses appeared to be not required for the induction of CP-AMPAR dependent LTP due to the lack of effect of two separate pharmacological inhibitors (KN-62 and staurosporine) on this form of potentiation. Both KN-62 and staurosporine strongly inhibited NMDA-receptor dependent LTP in control studies. In contrast, inhibitors for PI3-kinase (LY294002 and wortmannin) or the MAPK cascade (PD98059 and U0126) significantly attenuated this CP-AMPAR-dependent LTP. Similarly, postsynaptic infusion of tetanus toxin (TeTx) light chain, an inhibitor of exocytosis, also had a significant inhibitory effect on this form of LTP. These results suggest that distinct synaptic signaling underlies GluR2-lacking CP-AMPAR-dependent LTP, and reinforces the recent notions that CP-AMPARs are important facilitators of synaptic plasticity in the brain.  相似文献   

10.
Changes in the synaptic content of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-type glutamate receptors lead to synaptic efficacy modifications, involved in synaptic plasticity mechanisms believed to underlie learning and memory formation. Early in development, GluR4 is highly expressed in the hippocampus, and GluR4-containing AMPA receptors are inserted into synapses. During synapse maturation, the number of AMPA receptors at the synapse is dynamically regulated, and both addition and removal of receptors from postsynaptic sites occur through regulated mechanisms. GluR4 delivery to synapses in rat hippocampal slices was shown to require protein kinase A (PKA)-mediated phosphorylation of GluR4 at serine 842 (Ser842). Protein kinase C (PKC) can also phosphorylate Ser842, and we have shown that PKCgamma can associate with GluR4. Here we show that activation of PKC in retina neurons, or in human embryonic kidney 293 cells cotransfected with GluR4 and PKCgamma, increases GluR4 surface expression and Ser842 phosphorylation. Moreover, mutation of amino acids R821A, K825A and R826A at the GluR4 C-terminal, within the interacting region of GluR4 with PKCgamma, abolishes the interaction between PKCgamma and GluR4 and prevents the stimulatory effect of PKCgamma on GluR4 Ser842 phosphorylation and surface expression. These data argue for a role of anchored PKCgamma in Ser842 phosphorylation and targeting to the plasma membrane. The triple GluR4 mutant is, however, phosphorylated by PKA, and it is targeted to the synapse in CA1 hippocampal neurons in organotypic rat hippocampal slices. The present findings show that the interaction between PKCgamma and GluR4 is specifically required to assure PKC-driven phosphorylation and surface membrane expression of GluR4.  相似文献   

11.
12.
Fast excitatory synaptic responses in basolateral amygdala (BLA) neurons are mainly mediated by ionotropic glutamate receptors of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) subtype. AMPA receptors containing an edited GluR2 subunit are calcium impermeable, whereas those that lack this subunit are calcium permeable and also inwardly rectifying. Here, we sought to determine the extent to which synapses in the rat BLA have AMPA receptors with GluR2 subunits. We assessed GluR2 protein expression in the BLA by immunocytochemistry with a GluR2 subunit-specific antiserum at the light and electron microscopic level; for comparison, a parallel examination was carried out in the hippocampus. We also recorded from amygdala brain slices to examine the voltage-dependent properties of AMPA receptor- mediated evoked synaptic currents in BLA principal neurons. At the light microscopic level, GluR2 immunoreactivity was localized to the perikarya and proximal dendrites of BLA neurons; dense labeling was also present over the pyramidal cell layer of hippocampal subfields CA1 and CA3. In electron micrographs from the BLA, most of the synapses were asymmetrical with pronounced postsynaptic densities (PSD). They contained clear, spherical vesicles apposed to the PSD and were predominantly onto spines (86%), indicating that they are mainly with BLA principal neurons. Only 11% of morphological synapses in the BLA were onto postsynaptic elements that showed GluR2 immunoreactivity, in contrast to hippocampal subfields CA1 and CA3 in which 76% and 71% of postsynaptic elements were labeled (p < 0.001). Synaptic staining in the BLA and hippocampus, when it occurred, was exclusively postsynaptic, and particularly heavy over the PSD. In whole-cell voltage clamp recordings, 72% of BLA principal neurons exhibited AMPA receptor-mediated synaptic currents evoked by external capsule stimulation that were inwardly rectifying. Although BLA principal neurons express perikaryal and proximal dendritic GluR2 immunoreactivity, few synapses onto these neurons express GluR2, and a preponderance of principal neurons have inwardly rectifying AMPA-mediated synaptic currents, suggesting that targeting of GluR2 to synapses is restricted. Many BLA synaptic AMPA receptors are likely to be calcium permeable and could play roles in synaptic plasticity, epileptogenesis and excitoxicity.  相似文献   

13.
Targeting of PKA to glutamate receptors through a MAGUK-AKAP complex   总被引:10,自引:0,他引:10  
Compartmentalization of glutamate receptors with the signaling enzymes that regulate their activity supports synaptic transmission. Two classes of binding proteins organize these complexes: the MAGUK proteins that cluster glutamate receptors and AKAPs that anchor kinases and phosphatases. In this report, we demonstrate that glutamate receptors and PKA are recruited into a macromolecular signaling complex through direct interaction between the MAGUK proteins, PSD-95 and SAP97, and AKAP79/150. The SH3 and GK regions of the MAGUKs mediate binding to the AKAP. Cell-based studies indicate that phosphorylation of AMPA receptors is enhanced by a SAP97-AKAP79 complex that directs PKA to GluR1 via a PDZ domain interaction. As AMPA receptor phosphorylation is implicated in regulating synaptic plasticity, these data suggest that a MAGUK-AKAP complex may be centrally involved.  相似文献   

14.
Gardner SM  Takamiya K  Xia J  Suh JG  Johnson R  Yu S  Huganir RL 《Neuron》2005,45(6):903-915
A recently described form of synaptic plasticity results in dynamic changes in the calcium permeability of synaptic AMPA receptors. Since the AMPA receptor GluR2 subunit confers calcium permeability, this plasticity is thought to occur through the dynamic exchange of synaptic GluR2-lacking and GluR2-containing receptors. To investigate the molecular mechanisms underlying this calcium-permeable AMPA receptor plasticity (CARP), we examined whether AMPA receptor exchange was mediated by subunit-specific protein-protein interactions. We found that two GluR2-interacting proteins, the PDZ domain-containing Protein interacting with C kinase (PICK1) and N-ethylmaleimide sensitive fusion protein (NSF), are specifically required for CARP. Furthermore, PICK1, but not NSF, regulates the formation of extrasynaptic plasma membrane pools of GluR2-containing receptors that may be laterally mobilized into synapses during CARP. These results demonstrate that PICK1 and NSF dynamically regulate the synaptic delivery of GluR2-containing receptors during CARP and thus regulate the calcium permeability of AMPA receptors at excitatory synapses.  相似文献   

15.
AKAP5 (also referred to as AKAP150 in rodents and AKAP79 in humans) is a scaffolding protein that is highly expressed in neurons and targets a variety of signaling molecules to dendritic membranes. AKAP5 interacts with PKA holoenzymes containing RIIα or RIIβ as well as calcineurin (PP2B), PKC, calmodulin, adenylyl cyclase type V/VI, L-type calcium channels, and β-adrenergic receptors. AKAP5 has also been shown to interact with members of the MAGUK family of PSD-scaffolding proteins including PSD95 and SAP97 and target signaling molecules to receptors and ion channels in the postsynaptic density (PSD). We created two lines of AKAP5 mutant mice: a knockout of AKAP5 (KO) and a mutant that lacks the PKA binding domain of AKAP5 (D36). We find that PKA is delocalized in both the hippocampus and striatum of KO and D36 mice indicating that other neural AKAPs cannot compensate for the loss of PKA binding to AKAP5. In AKAP5 mutant mice, a significant fraction of PKA becomes localized to dendritic shafts and this correlates with increased binding to microtubule associated protein-2 (MAP2). Electrophysiological and behavioral analysis demonstrated more severe deficits in both synaptic plasticity and operant learning in the D36 mice compared with the complete KO animals. Our results indicate that the targeting of calcineurin or other binding partners of AKAP5 in the absence of the balancing kinase, PKA, leads to a disruption of synaptic plasticity and results in learning and memory defects.  相似文献   

16.
Meng Y  Zhang Y  Jia Z 《Neuron》2003,39(1):163-176
The AMPA glutamate receptor (AMPAR) subunits GluR2 and GluR3 are thought to be important for synaptic targeting/stabilization of AMPARs and the expression of hippocampal long-term depression (LTD). In order to address this hypothesis genetically, we generated and analyzed knockout mice deficient in the expression of both GluR2 and GluR3. We show here that the double knockout mice are severely impaired in basal synaptic transmission, demonstrating that GluR2/3 are essential to maintain adequate synaptic transmission in vivo. However, these mutant mice are competent in establishing several forms of long-lasting synaptic changes in the CA1 region of the hippocampus, including LTD, long-term potentiation (LTP), depotentiation, and dedepression, indicating the presence of GluR2/3-independent mechanisms of LTD expression and suggesting that AMPA receptor GluR1 alone is capable of various forms of synaptic plasticity.  相似文献   

17.
Zhong W  Dong Z  Tian M  Cao J  Xu T  Xu L  Luo J 《Life sciences》2006,79(9):861-869
Adaptive changes in brain areas following drug withdrawal are believed to contribute to drug seeking and relapse. Cocaine withdrawal alters the expression of GluR1 and GluR2/3 subunits of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors in nucleus accumbens or amygdala, but the influence of drug withdrawal on hippocampus is little known. Here, we have examined the expression of GluR1 and GluR2/3 in hippocampal membrane and synaptic fractions following repeated morphine exposure and subsequent withdrawal. Repeated morphine exposure for 12 d increased GluR1 and GluR2/3 in synaptosome but not in membrane fraction. Interestingly, CaMKIIalpha, known to be able to regulate the function of AMPA receptors, was decreased in synaptosome but not in membrane fraction; pCaMKIIalpha, the phosphorylated form of CaMKIIalpha, was increased in both fractions. However, during opiate withdrawal, GluR1 was generally reduced while GluR2/3 was prominently increased in both fractions; pCaMKIIalpha was strongly decreased immediately after withdrawal, but detectably increased in late phase of morphine withdrawal in both fractions. Importantly, the opiate withdrawal-induced increase in GluR2/3 was dependent on the activation of glucocorticoid receptors and NMDA receptors, as it was prevented by the glucocorticoid receptor antagonist RU38486, or intrahippocampal injection of the NMDA receptor antagonist AP-5 or the antagonist to NR2B-containing NMDA receptors, Ro25-6981. These findings indicate that opiate withdrawal induces dynamic expression of GluR1 and GluR2/3 subunits of AMPA receptors in hippocampal synapses, possibly revealing an adaptive process of the hippocampal functions following opiate withdrawal.  相似文献   

18.
The A kinase anchor protein AKAP150 recruits the cAMP-dependent protein kinase (PKA) to dendritic spines. Here we show that in AKAP150 (AKAP5) knock-out (KO) mice frequency of miniature excitatory post-synaptic currents (mEPSC) and inhibitory post-synaptic currents (mIPSC) are elevated at 2 weeks and, more modestly, 4 weeks of age in the hippocampal CA1 area versus litter mate WT mice. Linear spine density and ratio of AMPAR to NMDAR EPSC amplitudes were also increased. Amplitude and decay time of mEPSCs, decay time of mIPSCs, and spine size were unaltered. Mice in which the PKA anchoring C-terminal 36 residues of AKAP150 are deleted (D36) showed similar changes. Furthermore, whereas acute stimulation of PKA (2-4 h) increases spine density, prolonged PKA stimulation (48 h) reduces spine density in apical dendrites of CA1 pyramidal neurons in organotypic slice cultures. The data from the AKAP150 mutant mice show that AKAP150-anchored PKA chronically limits the number of spines with functional AMPARs at 2-4 weeks of age. However, synaptic transmission and spine density was normal at 8 weeks in KO and D36 mice. Thus AKAP150-independent mechanisms correct the aberrantly high number of active spines in juvenile AKAP150 KO and D36 mice during development.  相似文献   

19.
Wu LJ  Ren M  Wang H  Kim SS  Cao X  Zhuo M 《PloS one》2008,3(1):e1407
Neurabin is a scaffolding protein that interacts with actin and protein phosphatase-1. Highly enriched in the dendritic spine, neurabin is important for spine morphogenesis and synaptic formation. However, less is known about the role of neurabin in hippocampal plasticity and its possible effect on behavioral functions. Using neurabin knockout (KO) mice, here we studied the function of neurabin in hippocampal synaptic transmission, plasticity and behavioral memory. We demonstrated that neurabin KO mice showed a deficit in contextual fear memory but not auditory fear memory. Whole-cell patch clamp recordings in the hippocampal CA1 neurons showed that long-term potentiation (LTP) was significantly reduced, whereas long-term depression (LTD) was unaltered in neurabin KO mice. Moreover, increased AMPA receptor but not NMDA receptor-mediated synaptic transmission was found in neurabin KO mice, and is accompanied by decreased phosphorylation of GluR1 at the PKA site (Ser845) but no change at the CaMKII/PKC site (Ser831). Pre-conditioning with LTD induction rescued the following LTP in neurabin KO mice, suggesting the loss of LTP may be due to the saturated synaptic transmission. Our results indicate that neurabin regulates contextual fear memory and LTP in hippocampal CA1 pyramidal neurons.  相似文献   

20.
A central concept in the field of learning and memory is that NMDARs are essential for synaptic plasticity and memory formation. Surprisingly then, multiple studies have found that behavioral experience can reduce or eliminate the contribution of these receptors to learning. The cellular mechanisms that mediate learning in the absence of NMDAR activation are currently unknown. To address this issue, we examined the contribution of Ca2+-permeable AMPARs to learning and plasticity in the hippocampus. Mutant mice were engineered with a conditional genetic deletion of GluR2 in the CA1 region of the hippocampus (GluR2-cKO mice). Electrophysiology experiments in these animals revealed a novel form of long-term potentiation (LTP) that was independent of NMDARs and mediated by GluR2-lacking Ca2+-permeable AMPARs. Behavioral analyses found that GluR2-cKO mice were impaired on multiple hippocampus-dependent learning tasks that required NMDAR activation. This suggests that AMPAR-mediated LTP interferes with NMDAR-dependent plasticity. In contrast, NMDAR-independent learning was normal in knockout mice and required the activation of Ca2+-permeable AMPARs. These results suggest that GluR2-lacking AMPARs play a functional and previously unidentified role in learning; they appear to mediate changes in synaptic strength that occur after plasticity has been established by NMDARs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号