首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hematopoietic cells maintained for long periods on primary cultures of bone marrow stromal cells formed cobblestone colonies (Dexter's long-term bone marrow culture, LTBC). These stably maintained hematopoietic cells (for 4 months) were transferred to a coculture on an established spleen stromal cell line (MSS62), and maintained under stromal cell layer, where they retained their invasive ability in the restricted space between the stromal cell layer and culture substratum (DFC culture). DFC contained lineage-negative (Lin-), c-Kit+, Sca-1- cells and spontaneously produced Mac-1+, Gr-1+ cells. DFC could not grow in the absence of MSS62 stromal cells, although, GM-CSF, IL-3, or IL-7 stimulated its growth. Production of granulocyte and monocytic cells was maintained by GM-CSF or IL-3 while it was decreased by IL-7. RT-PCR analysis showed that the IL-7 responsive cell population expressed early lymphoid markers (Ikaros, Pax-5, Oct-2, Rag-1, TdT, IL-7R and Imu), while lacking expression of receptors for G-CSF (G-CSFR) and for M-CSF (M-CSFR), or myeloperoxidase (MPO). These results suggested that DFC simultaneously contained lymphoid-committed progenitors and myeloid-committed progenitors, and that cytokines may expand their responding progenitor cells under the influence of signals provided by the stromal cells. Such a stromal cell-dependent culture system may be useful to analyze the switching mechanism from constitutive to inducible hematopoiesis in vitro.  相似文献   

3.
Synthetic polypeptide D-(iEW) (Thymodepressin) was shown to reduce the bone marrow CFU-S in the S-phase of cell cycle. Apparently, due to this property the agent being administered 2 days before the irradiation with 4 Gy causes a prominent restoration of the CFU-S population afterwards. The 3-5 times higher value of this parameter as compared to the control (irradiation only) is likely to be connected to the increased "survival" of the Thymodepressin-protected CFU-S after the treatment with ionizing irradiation.  相似文献   

4.
We have previously shown that L-phenylalanine methyl ester (PME) is capable of removing monocytes and enhancing the growth of hematopoietic colonies from human peripheral blood (PB) mononuclear cells (MNC). In the present study, we further compared the effect of PME on the colony formation of bone marrow (BM) and PB. Low density (less than or equal to 1.077 g/ml) MNC were obtained by Ficoll-diatrizoate density gradient centrifugation. Granulocyte/macrophage colony-forming units (CFU-gm) and erythroid burst-forming units (BFU-e) were cultured in agarose with conditioned media (CM) and/or interleukin 3 (IL-3), granulocyte colony-stimulating factor (G-CSF) and granulocyte/macrophage-CSF (GM-CSF). Treatment of BM MNC with 5 mM PME for 15 min at room temperature yielded a nucleated cell recovery of 44.8 +/- 5.0% (mean +/- SE; N = 8). CFU-gm were enriched 2.7-fold (range 2.0 to 4.8). Using CM or CM supplemented with G-CSF or GM-CSF has minimal effect on the enrichment. Leukocyte differentials revealed that 94.3 +/- 3.05% of the monocytes, as well as 91.2 +/- 1.60% of the cells in the neutrophilic maturation series were removed by PME. Incubation for 40 min in PME abolished CFU-gm formation. BFU-e were not enriched by the PME treatment. In contrast, 40 min incubation of PB MNC produced higher enrichment of CFU-gm than that obtained from 15 min of treatment, although lower cell recovery was obtained with the longer treatment time. In conclusion, we have demonstrated that phagocytic cells can be removed from BM or PB MNC by PME treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
Cell populations of dog bone marrow enriched by erythroid cells were obtained by fractionation in a sucrose density gradient. Functional properties of the haemoglobin isolated from nucleate erythrocyte precursors were studied during the radiation injury development. The haemoglobin of later nucleate forms of the erythroid series of irradiated dog bone marrow exhibited an increase in its affinity to oxygen.  相似文献   

7.
The target cell specificity of the B19 parvovirus infection was examined by isolating highly enriched hematopoietic progenitor and stem cells from normal human bone marrow. The efficiency of the B19 parvovirus replication in enriched erythroid progenitor cells was approximately 100-fold greater than that in unseparated bone marrow cells. The more-primitive progenitor cells identical to or closely related to the human pluripotent hematopoietic stem cells, on the other hand, did not support viral replication. The B19 progeny virus produced by the enriched erythroid progenitor cells was infectious and strongly suppressed erythropoiesis in vitro. The susceptibility of both the more-primitive erythroid progenitors (burst-forming units-erythroid) and the more-mature erythroid progenitors (CFU-erythroid) to the cytolytic response of the virus and the lack of effect on the myeloid progenitors (CFU-granulocyte-macrophage) further give evidence to the remarkable tropism of the B19 parvovirus for human hematopoietic cells of erythroid lineage.  相似文献   

8.
Recombinant DNA technology has permitted tremendous progression in delivering genes into cells; however, further advances in gene replacement techniques are needed prior to application to hematological diseases. One of the greatest obstacles to gene therapy in human hematopoietic stem cells is the lack of a defined protocol in humans and low transduction efficiency. Currently, murine leukemia virus (MuLV) is the most popular choice as a gene transfer vehicle but it cannot infect non-dividing cells. In our study, vesicular stomatitis G protein pseudotyped MuLV and HIV-1 were produced by a split gene transfection method. Mononuclear cells were separated from healthy human bone marrow and pre-stimulated with cytokines to form myeloid cell lineages. The cells were infected at different MOls with highly concentrated virus and infection rates were analyzed by flow cytometry and progenitor cell assays. eGFP expression was much higher when using HIV-1 system than when using MuLV. Progenitor cell assays agreed with the results obtained by FACS, but the difference was less great. We conclude that the lentiviral system is more suitable for gene transfer to hematopoietic progenitor cells probably because it stably infects both dividing and non-dividing cells. In addition, fibronectin was shown to improve the rate of infection with HIV-1.  相似文献   

9.
The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM) as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM) cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L.) amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells.  相似文献   

10.
In vivo imaging of transplanted hematopoietic stem and progenitor cells (HSPCs) was developed to investigate the relationship between HSPCs and components of their microenvironment in the bone marrow. In particular, it allows a direct observation of the behavior of hematopoietic cells during the first few days after transplantation, when the critical events in homing and early engraftment are occurring. By directly imaging these events in living animals, this method permits a detailed assessment of functions previously evaluated by crude assessments of cell counts (homing) or after prolonged periods (engraftment). This protocol offers a new means of investigating the role of cell-intrinsic and cell-extrinsic molecular regulators of hematopoiesis during the early stages of transplantation, and it is the first to allow the study of cell-cell interactions within the bone marrow in three dimensions and in real time. In this paper, we describe how to isolate, label and inject HSPCs, as well as how to perform calvarium intravital microscopy and analyze the resulting images. A typical experiment can be performed and analyzed in ~1 week.  相似文献   

11.
The capillary clonogenic cell assay was developed and adapted to culture myeloid and erythroid colonies from human bone marrow cells. The plating efficiencies for femoral bone marrow granulocyte-macrophage progenitors (CFU-gm), erythroid colony-forming units (CFU-e) and erythroid burst-forming units (BFU-e) were 0.143%, 0.229% and 0.141%, respectively. Standard bone marrow progenitor Petri dish assays require a total culture volume of 1 ml per dish, and as such are not suitable for the small numbers of cells often obtained from human bone marrow samples. The microcapillary assay as developed and standardized in our laboratory has the unique advantage of being able to utilize small numbers of cells. This technique is suitable for evaluating the myelotoxicity of investigational new anti-cancer and anti-HIV agents and for further investigation of the mechanisms underlying chemotherapy-induced bone marrow toxicity.  相似文献   

12.
Liu G  Shu C  Cui L  Liu W  Cao Y 《Cryobiology》2008,56(3):209-215
Bone marrow mesenchymal stem cells (MSCs) have become the main cell source for bone tissue engineering. It has been reported that cryopreserved human MSCs can maintain their potential for proliferation and osteogenic differentiation in vitro. There are, however, no reports on osteogenesis with cryopreserved human MSCs in vivo. The aim of this study was to determine whether cryopreservation had an effect on the proliferation capability and osteogenic differentiation of human MSCs on scaffolds in vitro and in vivo. MSCs were isolated from human bone marrow, cultured in vitro until passage 2, and then frozen and stored at −196 °C in liquid nitrogen with 10% Me2SO as cryoprotectant for 24 h. The cryopreserved MSCs were then thawed rapidly, seeded onto partially demineralized bone matrix (pDBM) scaffolds and cultured in osteogenic media containing 10 mM sodium β-glycerophosphate, 50 μM l-ascorbic acid, and 10 nM dexamethasone. Non-cryopreserved MSCs seeded onto the pDBM scaffolds were used as control groups. Scanning electronic microscopy (SEM) observation, DNA content assays, and measurements of alkaline phosphatase (ALP) activity and osteocalcin (OCN) content were applied, and the results showed that the proliferation potential and osteogenic differentiation of MSCs on pDBM in vitro were not affected by cryopreservation. After 2 weeks of subculture, the MSCs/pDBM composites were subcutaneously implanted into the athymic mice. The constructs were harvested at 4 and 8 weeks postimplantation, and histological examination showed tissue-engineered bone formation in the pDBM pores in both groups. Based on these results, it can be concluded that cryopreservation allows human MSCs to be available for potential therapeutic use to tissue-engineer bone.  相似文献   

13.
Mononuclear cells, harvested from fresh human bone marrow specimens by density gradient separation, were suspended in phosphate buffered saline and analyzed by flow cytometry in terms of the forward and right angle scattering of the incident light. The rectilinear distribution, obtained by plotting the intensity of light scattered in the forward and right angle directions, contained three regions of interest in which the percentage of cells (Mean ± standard deviation) with respect to the total was as follows: Region 1: 17.6±9.9; region 2: 5.3±1.4; region 3: 71.7±9.4. Cells from each region were sorted by flow cytometry and plated in semi-solid agar containing cell conditioned medium supportive of myeloid colony formation. Cells from region 2 contained the majority of progenitor cells that gave rise to such colonies at a plating efficiency that rose in proportion to the extent by which the region 2 cells in samples was increased through sorting. This increase in plating efficiency was 6 to 43 fold. Thus, region 2 of the cytometric distribution of cells from normal, unstained human bone marrows was a good source of myeloid progenitor cells.  相似文献   

14.
The pathogenic mechanisms underlying the depressed hematopoietic functions seen in human immunodeficiency virus-infected individuals were explored in rhesus monkeys infected with the simian immunodeficiency virus of macaques (SIVmac). Bone marrow hematopoietic progenitor cell colony formation, both granulocyte/macrophage (CFU-GM) and erythrocyte (BFU-E), was shown to be decreased in number in SIVmac-infected rhesus monkeys. SIVmac was readily isolated from bone marrow cells of infected monkeys and was shown to be harbored in macrophages rather than T lymphocytes. The in vitro infection of normal bone marrow cells by SIVmac inhibited colony formation. A striking in vivo correlation between increased SIVmac load in bone marrow cells and decreased hematopoietic progenitor cell colony growth was also shown. Finally, inhibition of SIVmac replication in bone marrow macrophages resulted in increased progenitor cell colony growth from bone marrow cells. These results suggest that the infection of bone marrow macrophages by the acquired immunodeficiency syndrome (AIDS) virus may contribute to depressed bone marrow hematopoietic progenitor cell growth. Moreover, inhibition of AIDS virus replication in these macrophages might induce significant improvement in hematopoietic function.  相似文献   

15.
人CD34+造血细胞是具有高度自我更新,多向分化及重建长期造血与免疫学功能的独特体细胞。为系统探索CD34+造血细胞的形态,细胞化学及超微结构特征,新近我们设计组合并建立了CIMS-100FACS440无菌二次分选术,可使所获CD34+5造血的纯度达100%。  相似文献   

16.
This study reports the culture and purification of murine bone marrow endothelial progenitor cells (EPCs) using endothelial cell-conditioned medium (EC-CM). Endothelial-like cells appeared at day 5 in culture of bone marrow mononuclear cells in the presence of EC-CM in the culture system, and these cells incorporated acetylated low-density lipoproteins (Ac-LDL) and reacted with endothelial-specific Ulex Europaeus Lectin. Continued incubation of these cells at low density with EC-CM for longer than 10 days resulted in the formation of endothelial cell colonies which gave rise to colonies of endothelial progeny and can be passed for many generations in the EC-CM culture system. Cells derived from these colonies expressed endothelial cell markers such as vWF and CD31, incorporated Dil-Ac-LDL, stained positive for Ulex Europaeus Lectin, formed capillary-like structures on Matrigel, and demonstrated a high proliferative capacity in culture. These bone marrow-derived adherent cells were identified as EPCs. The purification and the formation of EPC colonies by using EC-CM were associated with the cytokines secreted in the EC-CM. VEGF, bFGF, and GM-CSF in the EC-CM stimulated the proliferation and growth of EPCs, whereas AcSDKP (tetrapeptide NAc-Ser-Asp-Lys-Pro) in EC-CM suppressed the growth of mesenchymal stem cells (MSC) and fibroblasts. This approach is efficient for isolation/purification and outgrowth of bone marrow EPCs in vitro, a very important cell source in angiogenic therapies and regenerative medicine.  相似文献   

17.
18.
19.
20.
Currently the most successful methods for culturing human hematopoietic cells employ some form of perfused bioreactor system. However, these systems do not permit the clonal outgrowth of single progenitor cells. Therefore, we have investigated the use of alginate-poly-L-lysine microencapsulation of human bone marrow, combined with rapid medium exchange, as a system that may overcome this limitation for the purpose of studying the kinetics of progenitor cell growth. We report that a 12 to 24-fold multilineage expansion of adult human bone marow cells was achieved in about 16 to 19 days with this system and that visually identifiable colonies within the capsules were responsible for the increase in cell number. The colonies that represented the majority of cell growth originated from cells that appeared to be present in a frequency of about 1 in 4000 in the encapsulated cell population. These colonies were predominantly granulocytic and contained greater than 40,000 cells each. Large erythroid colonies were also present in the capsules, and they often contained over 10,000 cells each. Time profiles of the erythroid progenitor cell density over time were obtained. Burst-forming units erythroid (BFU-E) peaked around day 5, and the number of morphologically identifiable erythroid cells (erythroblasts through reticulocytes) peaked on day 12. We also report the existence of a critical inoculum density and how growth was improved with the use of conditioned medium derived from a microcapsule culture initiated above the critical inoculum density. Taken together, these results suggest that microencapsulation of human hematopoietic cells allows for outgrowth of progenitor, and possible preprogenitor, cells and could serve as a novel culture system for monitoring the growth and differentiation kinetics of these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号