首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant cell suspension cultures can be used for the production of recombinant pharmaceutical proteins, but their potential is limited by modest production levels that may be unstable over long culture periods, reflecting initial culture heterogeneity and subsequent genetic and epigenetic changes. We used flow sorting to generate highly productive monoclonal cell lines from a heterogeneous population of tobacco BY‐2 cells expressing the human antibody M12 by selecting the co‐expressed fluorescent marker protein DsRed located on the same T‐DNA. Separation yielded ~35% wells containing single protoplasts and ~15% wells with monoclonal microcolonies that formed within 2 weeks. Thus, enriching the population of fluorescent cells from initially 24% to 90–96% in the six monoclonal lines resulted in an up to 13‐fold increase in M12 production that remained stable for 10–12 months. This is the first straightforward procedure allowing the generation of monoclonal plant cell suspension cultures by flow sorting, greatly increasing the potential of plant cells as an economical platform for the manufacture of recombinant pharmaceutical proteins.  相似文献   

2.
3.
BH3 mimetics are small molecules designed or discovered to mimic the binding of BH3-only proteins to the hydrophobic groove of antiapoptotic BCL2 proteins. The selectivity of these molecules for BCL2, BCL-X(L), or MCL1 has been established in vitro; whether they inhibit these proteins in cells has not been rigorously investigated. In this study, we used a panel of leukemia cell lines to assess the ability of seven putative BH3 mimetics to inhibit antiapoptotic proteins in a cell-based system. We show that ABT-737 is the only BH3 mimetic that inhibits BCL2 as assessed by displacement of BAD and BIM from BCL2. The other six BH3 mimetics activate the endoplasmic reticulum stress response inducing ATF4, ATF3, and NOXA, which can then bind to and inhibit MCL1. In most cancer cells, inhibition of one antiapoptotic protein does not acutely induce apoptosis. However, by combining two BH3 mimetics, one that inhibits BCL2 and one that induces NOXA, apoptosis is induced within 6 h in a BAX/BAK-dependent manner. Because MCL1 is a major mechanism of resistance to ABT-737, these results suggest a novel strategy to overcome this resistance. Our findings highlight a novel signaling pathway through which many BH3 mimetics inhibit MCL1 and suggest the potential use of these agents as adjuvants in combination with various chemotherapy strategies.  相似文献   

4.
Caspase-independent cell death may have a critical role to play in the therapeutic destruction of tumours. Recently it has been suggested that one of the mechanisms by which rituximab, a therapeutic anti-CD20 antibody, kills B cells is caspase-independent. In this study we show that rituximab can induce death in a variety of Burkitt lymphoma derived cell lines. Rituximab-treated cells show leakage of adenylate kinase, surface expression of phosphatidylserine, upregulation of the cellular stress protein HSP70, phosphorylation of the survival protein Akt, and depolarisation of the mitochondrial membrane but no loss of cytochrome c or apoptosis inducing factor. Caspase inhibitors do not block these events. In support of these data there is no cleavage of caspases 3, 8 and 9, poly(ADP-ribose) polymerase, BH3 interacting domain death agonist or genomic DNA. Morphologically, cells show nuclear enlargement and cytoplasmic vacuolisation. Triggering of receptor mediated death in CD95 responsive lines results in “classical” apoptosis indicating that the internal machinery necessary for apoptosis is intact in these lines. The results suggest that rituximab can kill human B cells via a caspase-independent form of programmed cell death that shares features of apoptosis and necrosis. This pathway may be relevant to the clinical efficacy of rituximab.  相似文献   

5.
Rui R  Qiu Y  Hu Y  Fan B 《Theriogenology》2006,65(4):713-720
The purpose of this study was to isolate porcine embryonic germ (EG) cells and establish transgenic EG cell lines. Plasmid DNA was the enhanced green fluorescent protein (EGFP) vector. Porcine EG cells in rapid proliferation (4th to 9th passage) were transfected with LipofecTamine 2000 and TransFast reagents. Porcine EG cells transfected with a complex of 1 microg of DNA and 2 microL of LipofecTamine 2000 reagent yielded four EG-EGFP cell lines, which emitted bright green fluorescence. EG-EGFP cells cultured for more than 2 weeks without passage gave rise to various differentiated phenotypes. In addition, to determine the degree to which EG cells become integrated into the inner cell mass of host embryos, 135 embryos were injected with porcine EG-EGFP cells; 110 embryos survived and developed into blastocysts (81.5%). Eighty-four chimeric embryos contained fluorescent cells after culture; 49 blastocysts contained EG-EGFP cells in the inner cell mass. Our results suggested that the chimeric rate would not be improved via using different stages of embryos for injection.  相似文献   

6.
Plasma membrane and nucleus can be primary targets of tumour cell killing by activated macrophages (AM?). Necrotic-type cytotoxicity with loss of membrane integrity and cytoplasmic swelling was expressed by AM? from normal and from perforin-deficient mice, indicating that perforin was not involved. Incubation with AM? consistently triggered the release of thymidine from prelabelled targets, whereas chromatin condensation and small DNA fragments were only occasionally detected. It is shown by means of Pulsed-Field Gel Electrophoresis that DNA degradation in target cells is a slowly progressing process that may stop at any time, indicating that nuclear-type killing doesnot necessarily lead to the formation of low molecular weight fragments. Neither Fas nor the p55 tumour necrosis factor receptor appear to be involved in signalling nuclear-type killing. Accordingly, AM? do mediate membrane- and nuclear-type killing but the mechanisms differ from those identified in T cell cytotoxicity.  相似文献   

7.
Inhibition of prosurvival BCL2 family members can induce autophagy, but the mechanism is controversial. We have provided genetic evidence that BCL2 family members block autophagy by inhibiting BAX and BAK1, but others have proposed they instead inhibit BECN1. Here we confirm that small molecule BH3 mimetics can induce BAX- and BAK1-independent MAP1LC3B/LC3B lipidation, but this only occurred at concentrations far greater than required to induce apoptosis and dissociate canonical BH3 domain-containing proteins that bind more tightly than BECN1. Because high concentrations of a less-active enantiomer of ABT-263 also induced BAX- and BAK1-independent LC3B lipidation, induction of this marker of autophagy appears to be an off-target effect. Indeed, robust autophagic flux was not induced by BH3 mimetic compounds in the absence of BAX and BAK1. Therefore at concentrations that are on target and achievable in vivo, BH3 mimetics only induce autophagy in a BAX- and BAK1-dependent manner.  相似文献   

8.
MCL-1 (myeloid cell leukemia-1) is a distinguished and pivotal member of the pro-survival BCL-2 family of proteins, and we isolated IEX-1 (immediate early response gene X-1) as a MCL-1-interacting protein using the yeast two-hybrid system and confirmed their endogenous association in human cells. The underlying mechanisms by which IEX-1 affects cell survival and death are largely unknown. Ectopic expression of IEX-1-induced caspase-dependent apoptosis in 293T cells, and the response was significantly modulated by changes in the MCL-1 expression level in cells. Forced expression of IEX-1 was unable to induce cell death or to perturb mitochondrial membrane potential in BIM-depleted cells. Additionally, knockouts of NOXA or PUMA did not affect the activities of IEX-1, indicating that the pro-death action of IEX-1 specifically requires BIM. Our findings provide insight into a new regulatory circuit that controls cell death and survival by the coordinated action of MCL-1, IEX-1, and BIM.  相似文献   

9.
Beclin 1 has recently been identified as novel BH3-only protein, meaning that it carries one Bcl-2-homology-3 (BH3) domain. As other BH3-only proteins, Beclin 1 interacts with anti-apoptotic multidomain proteins of the Bcl-2 family (in particular Bcl-2 and its homologue Bcl-X(L)) by virtue of its BH3 domain, an amphipathic alpha-helix that binds to the hydrophobic cleft of Bcl-2/Bcl-X(L). The BH3 domains of other BH3-only proteins such as Bad, as well as BH3-mimetic compounds such as ABT737, competitively disrupt the inhibitory interaction between Beclin 1 and Bcl-2/Bcl-X(L). This causes autophagy of mitochondria (mitophagy) but not of the endoplasmic reticulum (reticulophagy). Only ER-targeted (not mitochondrion-targeted) Bcl-2/Bcl-X(L) can inhibit autophagy induced by Beclin 1, and only Beclin 1-Bcl-2/Bcl-X(L) complexes present in the ER (but not those present on heavy membrane fractions enriched in mitochondria) are disrupted by ABT737. These findings suggest that the Beclin 1-Bcl-2/Bcl-X(L) complexes that normally inhibit autophagy are specifically located in the ER and point to an organelle-specific regulation of autophagy. Furthermore, these data suggest a spatial organization of autophagy and apoptosis control in which BH3-only proteins exert two independent functions. On the one hand, they can induce apoptosis, by (directly or indirectly) activating the mitochondrion-permeabilizing function of pro-apoptotic multidomain proteins from the Bcl-2 family. On the other hand, they can activate autophagy by liberating Beclin 1 from its inhibition by Bcl-2/Bcl-X(L) at the level of the endoplasmic reticulum.  相似文献   

10.
ICOS costimulation requires IL-2 and can be prevented by CTLA-4 engagement   总被引:32,自引:0,他引:32  
We investigated the relationship between ICOS, CD28, CTLA-4, and IL-2 to gain a better understanding of this family of costimulatory receptors in the immune response. Using magnetic beads coated with anti-CD3 and varying amounts of anti-ICOS and anti-CTLA-4 Abs, we show that CTLA-4 ligation blocks ICOS costimulation. In addition to inhibiting cellular proliferation, CTLA-4 engagement prevented ICOS-costimulated T cells from producing IL-4, IL-10, and IL-13. Both an indirect and direct mechanism of CTLA-4's actions were examined. First, CTLA-4 engagement on resting cells was found to indirectly block ICOS costimulation by interferring with the signals needed to induce ICOS cell surface expression. Second, on preactivated cells that had high levels of ICOS expression, CTLA-4 ligation blocked the ICOS-mediated induction of IL-4, IL-10, and IL-13, suggesting an interference with downstream signaling pathways. The addition of IL-2 not only overcame both mechanisms, but also greatly augmented the level of cellular activation suggesting synergy between ICOS and IL-2 signaling. This cooperation between ICOS and IL-2 signaling was explored further by showing that the minimum level of IL-2 produced by ICOS costimulation was required for T cell proliferation. Finally, exogenous IL-2 was required for sustained growth of ICOS-costimulated T cells. These results indicate that stringent control of ICOS costimulation is maintained initially by CTLA-4 engagement and later by a requirement for exogenous IL-2.  相似文献   

11.
12.
The in vivo antitumour activity of the natural photosensitizer hypericin was evaluated. C3H/DiSn mice were inoculated with fibrosarcoma G5:1:13 cells. When the tumour reached a volume of 40-80mm3 the mice were intraperitoneally injected with hypericin, either in a single dose (5mg/kg; 1 or 6h before laser irradiation) or two fractionated doses (2.5 mg/kg; 6 and 1 h before irradiation with laser light; 532 nm, 70mW/cm2, 168 J/cm2). All tumours in control groups treated with hypericin alone as well as those irradiated with laser light alone had similar growth rates and none of these tumours regressed spontaneously. Complete remission of tumour in photodynamic therapy (PDT)-treated groups was similar (14-17% single dose vs. 33% fractionated dose), but the fractionated schedule of hypericin dosing was found to be more efficient than the single dose, measured by survival assay (p < 0.05). Our experimental model showed that fractionated administration of hypericin can produce a better therapeutic response than single administration.  相似文献   

13.
14.
Approximately half of patients with stage IV neuroblastoma are expected to relapse despite current therapy, and when this occurs, there is little likelihood of achieving a cure. Very few clinical trials have been conducted to determine whether cellular immune responses could be harnessed to fight this tumor, largely because potential tumor antigens for cytotoxic T lymphocytes (CTL) are limited. MAGE-A1, MAGE-A3, and NY-ESO-1 are cancer-testis (CT) antigens expressed on a number of malignant solid tumors, including neuroblastoma, but many tumor cell lines down-regulate the expression of CT antigens as well as major histocompatibility (MHC) antigens, precluding recognition by antigen-specific T cells. If expression of cancer antigens on neuroblastoma could be enhanced pharmacologically, CT antigen-specific immunotherapy could be considered for this tumor. We have demonstrated that the expression of MAGE-A1, MAGE-A3, and NY-ESO-1 can be upregulated on neuroblastoma cells following exposure to pharmacologic levels of the demethylating agent 5-aza-2′-deoxycytidine (decitabine, DAC). Expression of NY-ESO-1, MAGE-A1, or MAGE-A3 was induced in 10/10 neuroblastoma cell lines after 5 days of exposure to DAC. Culture of neuroblastoma cell lines with IFN-γ was also associated with an increased expression of either MHC Class I or II by cytofluorometry, as reported by other groups. MAGE-A1, MAGE-A3, and NY-ESO-1-specific CTL were cultured from volunteer donors by stimulating peripheral blood mononuclear cells with dendritic cells pulsed with overlapping peptide mixes derived from full-length proteins, and these CTL preferentially lysed HLA partially matched, DAC-treated neuroblastoma and glioblastoma cell lines. These studies show that demethylating chemotherapy can be combined with IFN-γ to increase the expression of CT antigens and MHC molecules on neuroblastoma cells, and pre-treatment with these agents makes tumor cell lines more susceptible to CTL-mediated killing. These data provide a basis to consider the use of demethylating chemotherapy in neuroblastoma patients, in conjunction with immune therapies that facilitate the expansion of CT antigen-specific CTL.  相似文献   

15.
The escalating levels of antibiotic resistance among pathogenic bacteria and the side effects of chemotherapeutic drugs in use forced the efforts of scientists to search for natural antimicrobial and anticancer substances with novel structures and unique mechanism of action. Focusing on bioproducts, recent trends in drug research have shown that microalgae (including the cyanobacteria) are promising organisms to furnish novel and safer biologically active compounds. Many microalgal metabolites have been found to possess potent antibacterial, antifungal, antiviral, anticancer and antiinflammatory activities, as well as antioxidant, enzyme inhibiting and immunostimulating properties. In this paper, the studies on the biological activity of microalgae associated with potential medical and pharmaceutical applications are briefly presented. Attention is focused on the impact of cultivation temperature, irradiance and growth stage on the biomass accumulation, activity and pathways of cell metabolism and the possibilities of using these variable factors to increase the diversity and quantity of biologically active substances synthesized by microalgae.  相似文献   

16.
[目的]研究口蹄疫病毒RNA聚合酶在BHK-21细胞中的稳定表达状况,为研究RNA聚合酶生物学活性及其基囚工程疫苗研制提供科学依据.[方法]从重组质粒pMD18-T-3D扩增口蹄疫病毒3D基因,通过分子克隆技术构建莺组逆转录病毒表达载体pBPSTR1-3D.用pBPSTR1-3D和pVSV-G双质粒瞬时转染GP2-293包装细胞,收获重组逆转录病毒,然后感染BHK-21细胞,嘌呤霉素持续筛选12 d后获得阳性克隆,并用有限稀释法挑选单个阳性细胞克隆.[结果]应用PCR、RT-PCR技术可从体外反复传代的阳性细胞中扩增到3D基因,证实目的外源基因能转录并被稳定整合进宿主细胞基因组中.经SDS-PAGE、Western blot、间接免疫荧光检测到在不同代次的阳性细胞中有目的蛋白表达.[结论]本试验利用逆转录病毒载体介导的基因转移技术,将外源基因插入到靶细胞的基因组中,构建了稳定表达口蹄疫病毒RNA聚合酶的包装细胞系,为研究3D基因表达及其蛋白定位提供了方便,也为下一步研究RNA聚合酶生物学功能和疫苗研制提供了科学依据.  相似文献   

17.
Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G1 arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G1 arrest. This G1 arrest was associated with up-regulation of p27kip1, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cell lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G1 arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 ΔEGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.  相似文献   

18.
The TOPRIM DXDXXG residues of type IA and II topoisomerases are involved in Mg(II) binding and the cleavage-rejoining of DNA. Mutation of the strictly conserved glycine to serine in Yersinia pestis and Escherichia coli topoisomerase I results in bacterial cell killing due to inhibition of DNA religation after DNA cleavage. In this study, all other substitutions at the TOPRIM glycine of Y. pestis topoisomerase I were examined. While the Gly to Ala substitution allowed both DNA cleavage and religation, other mutations abolished DNA cleavage. DNA cleavage activity retained by the Gly to Ser mutant could be significantly enhanced by a second mutation of the methionine residue adjacent to the active site tyrosine. Induction of mutant topoisomerase with both the TOPRIM glycine and active site region methionine mutations resulted in up to 40-fold higher cell killing rate when compared with the single TOPRIM Gly to Ser mutant. Bacterial type IA topoisomerases are potential targets for discovery of novel antibiotics. These results suggest that compounds that interact simultaneously with the TOPRIM motif and the molecular surface around the active site tyrosine could be highly efficient topoisomerase poisons through both enhancement of DNA cleavage and inhibition of DNA rejoining.  相似文献   

19.
The epidermal growth factor receptor (EGFR) serves as a molecular target for novel cancer therapeutics such as tyrosine kinase inhibitors (TKI) and EGFR Abs. Recently, specific mutations in the EGFR kinase domain of lung cancers were identified, which altered the signaling capacity of the receptor and which correlated with clinical response or resistance to TKI therapy. In the present study, we investigated the impact of such EGFR mutations on antitumor cell activity of EGFR Abs. Thus, an EGFR-responsive cell line model was established, in which cells with tumor-derived EGFR mutations (L858R, G719S, delE746-A750) were significantly more sensitive to TKI than wild-type EGFR-expressing cells. A clinically relevant secondary mutation (T790M) abolished TKI sensitivity. Significantly, antitumor effects of EGFR Abs, including signaling and growth inhibition and Ab-dependent cellular cytotoxicity, were not affected by any of these mutations. Somatic tumor-associated EGFR kinase mutations, which modulate growth inhibition by TKI, therefore do not impact the activity of therapeutic Abs in vitro.  相似文献   

20.
Transgenic tobacco (Nicotiana tabacum L. cv. Wisconsin 38) lines expressing a mutant calmodulin (VU-3) that hyperactivates NAD kinase exhibit an enhanced elicitor-stimulated oxidative-burst reaction (S.A. Harding et al., 1997, EMBO J. 16: 1137–1144). VU-3 transgenic tobacco was used in the present study to investigate the relationship between calmodulin signalling, the production of active oxygen species and cell death in response to infection with an incompatible pathogen. Following P. syringae pv. syringae 61 infection, suspension cells derived from VU-3 transgenic plants exhibited a stronger oxidative burst (3- to 4-fold higher primary and secondary burst reactions), greater media alkalinization (3-fold) and more rapid cell death (4-fold greater mortality at 20 h post infection) than did infected control tobacco cells. Infection of leaf tissues with P. syringae pv. syringae 61 also resulted in an enhanced cell death response compared to control tobacco tissues. This cell death response of VU-3 leaf tissues, but not control leaf tissues, was further enhanced by the presence of 50 μM salicylic acid, suggesting that this transgenic line is more sensitive to the effects of this agent. Overall, the data support the model that calmodulin signalling pathways are involved in the plant oxidative burst and contribute to the regulation of cell death in infected plant tissues undergoing the hypersensitive response. Received: 6 January 1998 / Accepted: 7 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号