首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ion channels are transmembrane proteins whose canonical function is the transport of ions across the plasma membrane to regulate cell membrane potential and play an essential role in neural communication, nerve conduction, and muscle contraction. However, over the last few years, non-canonical functions have been identified for many channels, having active roles in phagocytosis, invasiveness, proliferation, among others. The participation of some channels in cell proliferation has raised the question of whether they may play an active role in mitosis. There are several reports showing the participation of channels during interphase, however, the direct participation of ion channels in mitosis has received less attention. In this article, we summarize the current evidence on the participation of ion channels in mitosis. We also summarize some tools that would allow the study of ion channels and cell cycle regulatory molecules in individual cells during mitosis.  相似文献   

2.
A structural perspective on ClC channel and transporter function   总被引:1,自引:0,他引:1  
Dutzler R 《FEBS letters》2007,581(15):2839-2844
The ClC chloride channels and transporters constitute a large family of membrane proteins that is involved in a variety of physiological processes. All members share a conserved molecular architecture that consists of a complex transmembrane transport domain followed by a cytoplasmic domain. Despite the strong conservation, the family shows an unusually broad variety of functional behaviors as some members work as gated chloride channels and others as secondary active chloride transporters. The conservation in the structure and the functional resemblance of gating and coupled transport suggests a strong mechanistic relationship between these seemingly contradictory transport modes. The cytoplasmic domains constitute putative regulatory components that are ubiquitous in eukaryotic ClC family members and that in certain cases interact with nucleotides thus linking ion transport to nucleotide sensing by yet unknown mechanisms.  相似文献   

3.
4.
Interactions of connexins with other membrane channels and transporters   总被引:2,自引:0,他引:2  
Cell-to-cell communication through gap junctions exists in most animal cells and is essential for many important biological processes including rapid transmission of electric signals to coordinate contraction of cardiac and smooth muscle, the intercellular propagation of Ca(2+) waves and synchronization of physiological processes between adjacent cells within a tissue. Recent studies have shown that connexins (Cx) can have either direct or indirect interactions with other plasma membrane ion channels or membrane transport proteins with important functional consequences. For example, in tissues most severely affected by cystic fibrosis (CF), activation of the CF Transmembrane Conductance Regulator (CFTR) has been shown to influence connexin function. Moreover, a direct interaction between Cx45.6 and the Major Intrinsic Protein/AQP0 in lens appears to influence the process of cell differentiation whereas interactions between aquaporin 4 (AQP4) and Cx43 in mouse astrocytes may coordinate the intercellular movement of ions and water between astrocytes. In this review, we discuss evidence supporting interactions between Cx and membrane channels/transporters including CFTR, aquaporins, ionotropic glutamate receptors, and between pannexin1, another class of putative gap-junction-forming proteins, and Kvbeta3, a regulatory beta-subunit of voltage gated potassium channels. Although the precise molecular nature of these interactions has yet to be defined, their consequences may be critical for normal tissue homeostasis.  相似文献   

5.
Transporters of secondary metabolites   总被引:8,自引:0,他引:8  
The membrane transport of plant secondary metabolites is a newly developing research area. Recent progress in genome and expressed sequence tag (EST) databases has revealed that many transporters and channels exist in plant genome. Studies of the genetic sequences that encode these proteins, and of phenotypes caused by the mutation of these sequences, have been used to characterize the membrane transport of plant secondary metabolites. Such studies have clarified that membrane transport is fairly specific and highly regulated for each secondary metabolite. Not only genes that are involved in the biosynthesis of secondary metabolites but also genes that are involved in their transport will be important for systematic metabolic engineering aimed at increasing the productivity of valuable secondary metabolites in planta.  相似文献   

6.
Bass RB  Locher KP  Borths E  Poon Y  Strop P  Lee A  Rees DC 《FEBS letters》2003,555(1):111-115
The passage of most molecules across biological membranes is mediated by specialized integral membrane proteins known as channels and transporters. Although these transport families encompass a wide range of functions, molecular architectures and mechanisms, there are common elements that must be incorporated within their structures, namely the translocation pathway, ligand specificity elements and regulatory sensors to control the rate of ligand flow across the membrane. This minireview discusses aspects of the structure and mechanism of two bacterial transport systems, the stretch-activated mechanosensitive channel of small conductance (MscS) and the ATP-dependent vitamin B12 uptake system (BtuCD), emphasizing their general implications for transporter function.  相似文献   

7.
Some intracellular organelles found in eukaryotes such as plants have arisen through the endocytotic engulfment of prokaryotic cells. This accounts for the presence of plant membrane intrinsic proteins that have homologs in prokaryotic cells. Other organelles, such as those of the endomembrane system, are thought to have evolved through infolding of the plasma membrane. Acquisition of intracellular components (organelles) in the cells supplied additional functions for survival in various natural environments. The organelles are surrounded by biological membranes, which contain membrane-embedded K+ transport systems allowing K+ to move across the membrane. K+ transport systems in plant organelles act coordinately with the plasma membrane intrinsic K+ transport systems to maintain cytosolic K+ concentrations. Since it is sometimes difficult to perform direct studies of organellar membrane proteins in plant cells, heterologous expression in yeast and Escherichia coli has been used to elucidate the function of plant vacuole K+ channels and other membrane transporters. The vacuole is the largest organelle in plant cells; it has an important task in the K+ homeostasis of the cytoplasm. The initial electrophysiological measurements of K+ transport have categorized three classes of plant vacuolar cation channels, and since then molecular cloning approaches have led to the isolation of genes for a number of K+ transport systems. Plants contain chloroplasts, derived from photoautotrophic cyanobacteria. A novel K+ transport system has been isolated from cyanobacteria, which may add to our understanding of K+ flux across the thylakoid membrane and the inner membrane of the chloroplast. This chapter will provide an overview of recent findings regarding plant organellar K+ transport proteins.  相似文献   

8.
ICln is a multifunctional protein involved in regulatory mechanisms as different as membrane ion transport and RNA splicing. The protein is water-soluble, and during regulatory volume decrease after cell swelling, it is able to migrate from the cytosol to the cell membrane. Purified, water-soluble ICln is able to insert into lipid bilayers to form ion channels. Here, we show that ICln159, a truncated ICln mutant, which is also able to form ion channels in lipid bilayers, belongs to the pleckstrin homology (PH) domain superfold family of proteins. The ICln PH domain shows unusual properties as it lacks the electrostatic surface polarization seen in classical PH domains. However, similar to many classical PH domain-containing proteins, ICln interacts with protein kinase C, and in addition, interacts with cAMP-dependent protein kinase and cGMP-dependent protein kinase type II but not cGMP-dependent protein kinase type Ibeta. A major phosphorylation site for all three kinases is Ser-45 within the ICln PH domain. Furthermore, ICln159 interacts with LSm4, a protein involved in splicing and mRNA degradation, suggesting that the ICln159 PH domain may serve as a protein-protein interaction platform.  相似文献   

9.
Ion channels control the electrical properties of neurons and other excitable cell types by selectively allowing ion to flow through the plasma membrane. To regulate neuronal excitability, the biophysical properties of ion channels are modified by signaling proteins and molecules, which often bind to the channels themselves to form a heteromeric channel complex. Traditional assays examining the interaction between channels and regulatory proteins generally provide little information on the time-course of interactions in living cells. We have now used a novel label-free technology to detect changes in the distribution of mass close to the plasma membrane following modulation of potassium channels by G protein-coupled receptors (GPCRs). This technology uses optical sensors embedded in microplates to detect changes in the refractive index at the surface of cells. Although the activation of GPCRs has been studied with this system, protein-protein interactions due to modulation of ion channels have not yet been characterized. Here we present data that the characteristic pattern of mass distribution following GPCR activation is significantly modified by the presence of a sodium-activated potassium channel, Slack-B, a channel that is known to be potently modulated by activation of these receptors.  相似文献   

10.
Membrane proteins control the traffic across cell membranes and thereby play an essential role in cell function from transport of various solutes to immune response via molecular recognition. Because it is very difficult to determine the structures of membrane proteins experimentally, computational methods have been increasingly used to study their structure and function. Here we focus on two classes of membrane proteins—ion channels and transporters—which are responsible for the generation of action potentials in nerves, muscles, and other excitable cells. We describe how computational methods have been used to construct models for these proteins and to study the transport mechanism. The main computational tool is the molecular dynamics (MD) simulation, which can be used for everything from refinement of protein structures to free energy calculations of transport processes. We illustrate with specific examples from gramicidin and potassium channels and aspartate transporters how the function of these membrane proteins can be investigated using MD simulations.  相似文献   

11.
12.
13.
Control of voltage-dependent Ca2+ channels by G protein-coupled receptors   总被引:9,自引:0,他引:9  
G proteins act as transducers between membrane receptors activated by extracellular signals and enzymatic effectors controlling the concentration of cytosolic signal molecules such as cAMP, cGMP, inositol phosphates and Ca2+. In some instances, the receptor/G protein-induced changes in the concentration of cytosolic signal molecules correlate with activity changes of voltage-dependent Ca2+ channels. Ca2+ channel modulation, in these cases, requires the participation of protein kinases whose activity is stimulated by cytosolic signal molecules. The respective protein kinases phosphorylate Ca2+ channel-forming proteins or unknown regulatory components. More recent findings suggest another membrane-confined mechanism that does not involve cytosolic signal molecules but rather a more direct control of voltage-dependent Ca2+ channels by G proteins. Modulation of Ca2+ channel activity that follows this apparently membrane-confined mechanism has been described to occur in neuronal, cardiac, and endocrine cells. The G protein involved in the hormonal stimulation of Ca2+ channels in endocrine cells may belong to the family of Gi-type G proteins, which are functionally uncoupled from activating receptors by pertussis toxin. The G protein Gs, which is activated by cholera toxin, may stimulate cardiac Ca2+ channels without the involvement of a cAMP-dependent intermediate step. Hormonal inhibition of Ca2+ channels in neuronal and endocrine cells is mediated by a pertussis toxin-sensitive G protein, possibly Go. Whether G proteins act by binding directly to Ca2+ channels or through interaction with as yet undetermined regulatory components of the plasma membrane remains to be clarified.  相似文献   

14.
Cell volume regulation: osmolytes, osmolyte transport, and signal transduction   总被引:10,自引:0,他引:10  
In recent years, it has become evident that the volume of a given cell is an important factor not only in defining its intracellular osmolality and its shape, but also in defining other cellular functions, such as transepithelial transport, cell migration, cell growth, cell death, and the regulation of intracellular metabolism. In addition, besides inorganic osmolytes, the existence of organic osmolytes in cells has been discovered. Osmolyte transport systems—channels and carriers alike—have been identified and characterized at a molecular level and also, to a certain extent, the intracellular signals regulating osmolyte movements across the plasma membrane. The current review reflects these developments and focuses on the contributions of inorganic and organic osmolytes and their transport systems in regulatory volume increase (RVI) and regulatory volume decrease (RVD) in a variety of cells. Furthermore, the current knowledge on signal transduction in volume regulation is compiled, revealing an astonishing diversity in transport systems, as well as of regulatory signals. The information available indicates the existence of intricate spatial and temporal networks that control cell volume and that we are just beginning to be able to investigate and to understand. E. Kinne-Saffran deceased on December 6, 2002  相似文献   

15.
Recent work has demonstrated that the signal recognition particle (SRP) is required for the efficient insertion of many proteins into the Escherichia coli inner membrane (IM). Based on an analogy to eukaryotic SRP, it is likely that bacterial SRP binds to inner membrane proteins (IMPs) co-translationally and then targets them to protein transport channels ("translocons"). Here we present evidence that SecA, which has previously been shown to facilitate the export of proteins targeted in a post-translational fashion, is also required for the membrane insertion of proteins targeted by SRP. The introduction of SecA mutations into strains that have modest SRP deficiencies produced a synthetic lethal effect, suggesting that SecA and SRP might function in the same biochemical pathway. Consistent with this explanation, depletion of SecA by inactivating a temperature-sensitive amber suppressor in a secAam strain completely blocked the membrane insertion of AcrB, a protein that is targeted by SRP. In the absence of substantial SecA, pulse-labeled AcrB was retained in the cytoplasm even after a prolonged chase period and was eventually degraded. Although protein export was also severely impaired by SecA depletion, the observation that more than 20% of the OmpA molecules were translocated properly showed that translocons were still active. Taken together, these results imply that SecA plays a much broader role in the transport of proteins across the E. coli IM than has been previously recognized.  相似文献   

16.
Mitochondrial Ceramide and the Induction of Apoptosis   总被引:11,自引:0,他引:11  
In most cell types, a key event in apoptosis is the release of proapoptotic intermembrane space proteins from mitochondria to the cytoplasm. In general, it is the release of these intermembrane space proteins that is responsible for the activation of caspases and DNases that are responsible for the execution of apoptosis. The mechanism for the increased permeability of the mitochondrial outer membrane during the induction phase of apoptosis is currently unknown and highly debated. This review will focus on one such proposed mechanism, namely, the formation of ceramide channels in the mitochondrial outer membrane. Ceramides are known to play a major regulatory role in apoptosis by inducing the release of proapoptotic proteins from the mitochondria. As mitochondria are known to contain the enzymes responsible for the synthesis and hydrolysis of ceramide, there exists a mechanism for regulating the level of ceramide in mitochondria. In addition, mitochondrial ceramide levels have been shown to be elevated prior to the induction phase of apoptosis. Ceramide has been shown to form large protein permeable channels in planar phospholipid and mitochondrial outer membranes. Thus, ceramide channels are good candidates for the pathway with which proapoptotic proteins are released from mitochondria during the induction phase of apoptosis.  相似文献   

17.
Abnormal regulation of ion channels in cystic fibrosis epithelia.   总被引:9,自引:0,他引:9  
M J Welsh 《FASEB journal》1990,4(10):2718-2725
Cystic fibrosis (CF), the most common lethal genetic disease in Caucasians, is characterized by defective electrolyte transport in several epithelia. In sweat duct, pancreatic, intestinal, and airway epithelia, abnormalities in transepithelial ion transport may account for the manifestations of the disease. A Cl- impermeable apical cell membrane is a common feature in these CF epithelia. The rate of transepithelial Cl- transport is controlled in part by hormonally regulated apical membrane Cl- channels; in CF epithelia, Cl- channels are present but their regulation is defective. Most regulation studies have focused on an outwardly rectifying Cl- channel, although other channels may be involved in Cl- secretion. Phosphorylation of Cl- channels or associated regulatory proteins by cAMP-dependent protein kinase or by protein kinase C (at a low internal [Ca2+]) in excised patches of membrane activates Cl- channels in normal cells but not in CF cells. Phosphorylation with protein kinase C at a high internal [Ca2+] in excised patches of membrane inactivates the channel; such inactivation is normal in CF cells. Cl- channels can also be activated by other maneuvers including an increase in the cytosolic [Ca2+], sustained membrane depolarization, an increase in temperature, proteolysis, and changes in osmolarity; the response to such maneuvers is not defective in CF. In addition to the Cl- channel abnormalities, Na+ absorption is increased in CF epithelia. It is not certain whether the increased rate of Na+ absorption results from an increase in the number of cation channels or an alteration of their kinetics. The relation of these ion channel abnormalities to the CF gene product is unknown, but an understanding of the function of the protein product and its defective function in CF should yield important new insights into the pathogenesis and potential therapy of this disease.  相似文献   

18.
19.
The ionic gradients across cell membranes generate a transmembrane voltage that regulates the function of numerous membrane proteins such as ion channels, transporters, pumps and enzymes. The mechanisms by which proteins sense voltage is diverse: ion channels have a conserved, positively charged transmembrane region that moves in response to changes in membrane potential, some G-protein coupled receptors possess a specific voltage-sensing motif and some membrane pumps and transporters use the ions that they transport across membranes to sense membrane voltage. Characterizing the general features of voltage sensors might lead to the discovery of further membrane proteins that are voltage regulated.  相似文献   

20.
生物膜结构研究的一些进展   总被引:15,自引:1,他引:14  
膜蛋白三维结构的解析存在很多困难.最近几年由于一些通道(如K+通道,Cl-通道,水通道Aquaporin 1等)和泵(如Ca2+泵)的结晶获得成功,这些膜蛋白具有原子分辨率三维结构的解析才得以完成,从而基本阐明一些极性分子和离子选择性通过生物膜的分子机理.在膜脂结构方面,动物细胞质膜膜脂的分布是不均匀的.近年来已多方面证明,质膜具有一些被命名为“脂筏(lipid rafts)”和“质膜微囊(Caveolae)”的微区.它们富含鞘脂和胆固醇。简单介绍了这些脂质微区的大小、组分以及动态变化.根据研究结果,这类脂质微区含有大量信号分子,很可能具有信号传递中心的作用.此外,对脂筏在膜运送过程中的作用也进行一些评述.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号