首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The insect larvae/baculovirus protein production process was dramatically simplified by expressing fusion proteins containing green fluorescent protein (GFP) and the product-of-interest. In this case, human interleukin-2 (hIL-2) and chloramphenicol acetyl-transferase (CAT) were model products. Specifically, our fusion construct was comprised of a histidine affinity ligand for simplified purification using immobilized metal affinity chromatography (IMAC), the UV-optimized GFP (GFPuv) as a marker, an enterokinase cleavage site for recovery of the product from the fusion, and the product, hIL-2 or CAT. Both the approximately 52 kDa GFPuv/hIL-2 and approximately 63 kDa GFPuv/CAT fusions were expressed in Trichoplusia ni larvae at 9.0 microg-hIL-2 and 24.1 microg-CAT per larva, respectively. The GFP enabled clear identification of the infection process, harvest time, and more importantly, the quantity of product protein. Because the GFP served as a marker, this technique obviates the need for in-process Western analyses (during expression, separation, and purification stages). As a purification marker, GFP facilitated rapid identification of product-containing elution fractions (Cha et al., 1999b), as well as product-containing waste fractions (e.g., cell pellet). Also, because the fluorescence intensity was linear with hIL-2 and CAT, we were able to select the highest-producing larvae. That is, three fold more product was found in the brightest larva compared to the average. Finally, because the GFP is attached to the product protein and the producing larvae can be selected, the infection and production processes can be made semi-continuous or continuous, replacing the current batch process. These advantages should help to enable commercialization of larvae as expression hosts.  相似文献   

2.
The fusion protein of green fluorescent protein (GFP) and human interleukin-2 (hIL-2) was produced in insect Trichoplusia ni larvae infected with recombinant baculovirus derived from the Autographa californica nuclear polyhedrosis virus (AcNPV). This fusion protein was composed of a metal ion binding site (His)6 for rapid one-step purification using immobilized metal affinity chromatography (IMAC), UV-optimized GFP (GFPuv), enterokinase cleavage site for recovering hIL-2 from purified fusion protein, and hIL-2 protein. The additional histidine residues on fusion protein enabled the efficient purification of fusion protein based on immobilized metal affinity chromatography. In addition to advantages of GFP as a fusion marker, GFP was able to be used as a selectable purification marker; we easily determined the correct purified fusion protein sample fraction by simply detecting GFP fluorescence.  相似文献   

3.
 Organophosphorus hydrolase (OPH) is capable of degrading a variety of pesticides and nerve agents. We have developed a versatile monitoring technique for detecting the amount of OPH during the expression and purification steps. This involves fusion of the gene for green fluorescent protein (GFP) to the 5′ end of the OPH gene and subsequent expression in Escherichia coli. The synthesized fusion protein was directly visualized due to the optical properties of GFP. Western blot analyses showed that the correct fusion protein was expressed after IPTG-induction. Also, the in vivo GFP fluorescence intensity was proportional to the OPH enzyme activity. Moreover, the OPH, which forms a dimer in its active state, retained activity while fused to GFP. Enterokinase digestion experiments showed that OPH was separated from the GFP reporter after purification via immobilized metal affinity chromatography, which in turn was monitored by fluorescence. The strategy of linking GFP to OPH has enormous potential for improving enzyme production efficiency, as well as enhancing field use, as it can be monitored at low concentrations with inexpensive instrumentation based on detecting green fluorescence. Received: 27 April 1999 / Received last revision: 18 October 1999 / Accepted: 1 November 1999  相似文献   

4.
Human interleukin-2 (hIL-2) production in Escherichia coli and insect cell/baculovirus expression systems can be inefficient. Here we investigated secreted production of hIL-2 fused with green fluorescent protein (GFP) as a versatile fusion partner in optimized stably transfected insect Drosophila melanogaster S2 cells. This nonlytic S2 insect cell expression system employs a plasmid vector and allows for secretion of functional human proteins. We report that, following stable transfection and induction, S2 cells secreted hIL-2 as a fusion protein (approximately 2.3 microg/mL yield), with a secretion efficiency of approximately 90%. Regression analysis indicated a single linear relationship existed between GFP fluorescence and hIL-2 mass in both whole cell and secreted medium samples, indicating that in vivo monitoring and quantification of target foreign protein expression and even secretion is possible using this system. The simple comparative measurement of GFP fluorescence also allowed monitoring of secretion efficiency during periods of high GFP/hIL-2 expression.  相似文献   

5.
A fusion protein of human interleukin-2 (hIL-2) and green fluorescent protein (GFP) was expressed in insect Sf-9 cells infected with recombinant baculovirus derived from the Autographa californica nuclear polyhedrosis virus (AcNPV). This fusion protein was comprised of a histidine affinity ligand for simplified purification using immobilized metal affinity chromatography (IMAC), UV-optimized GFP (GFPuv) as a marker, an enterokinase cleavage site for recovery of hIL-2 from the fusion, and the model product hIL-2. Successful production of hIL-2 as a fusion protein (approximately 52,000 Da) with GFPuv was obtained. GFPuv enabled rapid monitoring and quantification of the hIL-2 by simply checking the fluorescence, obviating the need for Western blot and/or ELISA assays during infection and production stages. There was no increased 'metabolic burden' due to the presence of GFPuv in the fusion product. The additional histidine residues at the N-terminus enabled efficient one-step purification of the fusion protein using IMAC. Additional advantages of GFP as a fusion marker were seen, particularly during separation and purification in that hIL-2 containing fractions were identified simply by illumination with UV light. Our results demonstrated that GFP was an effective non-invasive on-line marker for the expression and purification of heterologous protein in the suspended insect cell/baculovirus expression system.  相似文献   

6.
It was previously shown that organophosphorus hydrolase (OPH) expression and purification could be tracked by fluorescence of green fluorescent protein (GFP) when synthesized as an N-terminal fusion with GFP (Cha et al., 2000; Wu et al., 2000). In order to enhance OPH productivity while utilizing the advantage of the reporter protein (GFP), two copies of OPH were cloned in tandem following the gfp(uv) gene (e.g., GFP-OPH(n=2)). Both anti-GFP and anti-OPH Western blots demonstrated that a higher yield was achieved in comparison to the one copy fusion (GFP-OPH). Importantly, the fusion protein was still fluorescent as determined via microscopy. In contrast, a fusion containing two copies of OPH without GFP, and an operon fusion of two OPHs with two independent ribosomal binding sites, did not result in a higher yield than one OPH expressed alone.  相似文献   

7.
In this study, we examine the use of green fluorescent protein (GFP) for monitoring a hexokinase (HXK)-GFP fusion protein in Saccharomyces cerevisiae for various events including expression, degradation, purification, and localization. The fusion, HXK-EK-GFP-6 x His, was constructed where the histidine tag (6 x His) would allow for convenient affinity purification, and the enterokinase (EK) cleavage site would be used for separation of HXK from GFP after affinity purification. Our results showed that both HXK and GFP remained active in the fusion and, more importantly, that there was a linear correlation between HXK activity and GFP fluorescence. Enterokinase cleavage studies revealed that both GFP fluorescence intensity and HXK activity remained unchanged after separation of the fusion proteins, which indicated that fusion of GFP did not cause structural alteration of HXK and thus did not affect the enzymatic activity of HXK. We also found that degradation of the fusion protein occurred, and that degradation was limited to HXK with GFP remaining intact in the fusion. Confocal microscopy studies showed that while GFP was distributed evenly in the yeast cytosol, HXK-GFP fusion followed the correct localization of HXK, which resulted in a di-localization of both cytosol and the nucleus. GFP proved to be a useful fusion partner that may lead to the possibility of integrating the bioprocesses by quantitatively following the entire process visually.  相似文献   

8.
A versatile gene-fusion technique for immobilizing and visualizing biologically active enzymes which includes from the N to C-termini, an affinity histidine tag, the green fluorescent protein (GFP), a proteolytic enzyme (enterokinase, EK) cleavage site and the enzyme of interest, were developed. Specifically, the organophosphorus hydrolase was bound to the affinity (His(6))-reporter(GFP)-EK fusion elements. Organophosphorus hydrolase (OPH) is capable of degrading a variety of pesticides and nerve agents. In the case of immobilized OPH, paraoxon was rapidly degraded when pumped through a packed column. In reaction mixtures containing CHES buffer at pH 6.9, a continual decay in OPH activity was observed and importantly, this was monitored by GFP fluorescence. This decay in activity was fully restored, along with fluorescence, upon washing with PBS buffer. Many subsequent experiments were performed at varied pH and in different background buffer solutions. In all cases when there was OPH activity there was also marked fluorescence from the GFP fusion partner. Likewise, when OPH activity was lost, so was GFP fluorescence and, importantly, both were regenerated when washed in the presence of the kosmotropic salt, phosphate. Recently, Waldo et al. (1999) showed that GFP fluorescence from whole cells indicated the extent of proper folding of normally aggregated proteins designed via directed evolution. The present work demonstrates an application wherein GFP fluorescence indicates stability and activity of its fusion partner.  相似文献   

9.
A hexa-histidine (6 x His) sequence was inserted into a surface loop of the green fluorescent protein (GFP) to develop a dual functional GFP useful for both monitoring and purification of recombinant proteins. Two variants (GFP172 and GFP157), differentiated by the site of insertion of the 6xHis sequence, were developed and compared with a control variant (GFPHis) having the 6xHis sequence at its C-terminus. The variants were produced in Escherichia coli and purified using immobilized metal affinity chromatography (IMAC). The purification efficiencies by IMAC for all variants were found to be comparable. Purified GFP172 and GFP157 variants retained approximately 60% of the fluorescence compared to that of GFPHis. The reduction in the fluorescence intensity associated with GFP172 and GFP157 was attributed to the lower percentage of fluorescent GFP molecules in these variants. Nonetheless, the rates of fluorescence acquisition were found to be similar for all functional variants. Protein misfolding at an elevated temperature (37 degrees C) was found to be less profound for GFP172 than for GFP157. The dual functional properties of GFP172 were tested with maltose binding protein (MBP) as the fusion partner. The MBP-GFP172 fusion protein remained fluorescent and was purified from E. coli lysate as well as from spiked tobacco leaf extracts in a single-step IMAC. For the latter, a recovery yield of approximately 75% was achieved and MBP-GFP172 was found to coelute with a degraded product of the fusion protein at a ratio of about 4:1. The primary advantage of the chimeric GFP tag having an internal hexa-histidine sequence is that such a tag allows maximum flexibility for protein or peptide fusions since both N- and C-terminal ends of the GFP are available for fusion.  相似文献   

10.
The structure of a chaperonin caging a substrate protein is not quite clear. We made engineered group II chaperonins fused with a guest protein and analyzed their structural and functional features. Thermococcus sp. KS-1 chaperonin alpha-subunit (TCP) which forms an eightfold symmetric double-ring structure was used. Expression plasmids were constructed which carried two or four TCP genes ligated head to tail in phase and a target protein gene at the 3' end of the linked TCP genes. Electron microscopy showed that the expressed gene products with the molecular sizes of ~120 kDa (di-TCP) and ~230 kDa (tetra-TCP) formed double-ring complexes similar to those of wild-type TCP. The tetra-TCP retained ATPase activity and its thermostability was significantly higher than that of the wild type. A 260-kDa fusion protein of tetra-TCP and green fluorescent protein (GFP, 27 kDa) was able to form the double-ring complexes with green fluorescence. Image analyses indicated that the GFP moiety of tetra-TCP/GFP fusion protein was accommodated in the central cavity, and tetra-TCP/GFP formed the closed-form similar to that crystallographically resolved in group II chaperonins. Furthermore, it was suggested that caging GFP expanded the cavity around the bottom. Using this tetra-TCP fusion strategy, two virus structural proteins (21-25 kDa) toxic to host cells or two antibody fragments (25-36 kDa) prone to aggregate were well expressed in the soluble fraction of Escherichia coli. These fusion products also assembled to double-ring complexes, suggesting encapsulation of the guest proteins. The antibody fragments liberated by site-specific protease digestion exhibited ligand-binding activities.  相似文献   

11.
The effects of cobalt ion addition and inducer concentration were studied in the fermentation of E. coli BL21 expressing a GFP (green fluorescent protein)-OPH (organophosphorus hydrolase) fusion protein. It was found that cobalt ion addition improved the OPH activity significantly. When 2 mM of CoCl(2) was supplied during the IPTG-induction phase, OPH activity was enhanced approximately 10-fold compared to the case without cobalt or by the addition of cobalt to the cell extracts. Results indicate, therefore, that incorporation of the cobalt during synthesis is needed for enhanced activity. Also, the maximum OPH activity was not linearly related to inducer concentration. A mathematical model was then constructed to simulate these phenomena. Model parameters were determined by constrained least-squares and optimal IPTG and cobalt addition concentrations were obtained, pinpointing the conditions for the maximum productivity. Finally, the GFP fluorescence intensity was found linear to the OPH activity in each fermentation, demonstrating the function of GFP for monitoring its fusion partner's quantity in the bioreactor.  相似文献   

12.
In this study, expression of green fluorescence protein (GFP) on the external surface of Escherichia coli was achieved by construction of a fusion protein between Lpp-OmpA hybrid and a GFP variant, GFPmut2. The GFP was fused in frame to the carboxyl-terminus of Lpp-OmpA fusion previously shown to direct various other heterologous proteins to E. coli cell surface. Western blot analysis of membrane fractions identified the Lpp-OmpA-GFP fusion protein with the expected size (43 kDa). Immunofluorescence microscopy, immunoelectron microscopy, protease and extracellular pH sensitivity assays further confirmed that GFP is anchored on the outer membrane. The GFP displayed on the E. coli outer surface retained its fluorescence and was not susceptible to the indigenous outer membrane protease OmpT even though there are two putative OmpT proteolytic sites present in GFP. Optimization of the expression conditions was conducted using fluorometry, eliminating cumbersome immuno-labeling procedures. Surface-displayed GFP could be used in a variety of applications including screening of polypeptide libraries, development of live vaccines, construction of whole cell allosteric biosensors, and signal transduction studies.  相似文献   

13.
We report, the surface presentation of organophosphorus hydrolase (OPH) and green fluorescent protein (GFP) fusions by employing the adhesin-involved-in-diffuse-adherence (AIDA-I) translocator domain as a transporter and anchoring motif. The surface location of the OPH-GFP fusion protein was confirmed by immunofluorescence microscopy, and protease accessibility, followed by Western blotting analysis. The investigation of growth kinetics and stability of resting cultures showed that the presence of the AIDA-I translocator domain in the outer membrane neither inhibits cell growth nor affects cell viability. Furthermore, the surface-exposed OPH-GFP was shown to have enzymatic activity and a functional fluorescence moiety. These results suggest that AIDA-I autotransporter is a useful tool to present heterologous macromolecule passenger proteins on the bacterial surface. Our strategy of linking GFP to OPH and the possibility to employ various bacterial species as host has enormous potential for enhancing field use.  相似文献   

14.
The use of Pichia pastoris for protein production was simplified by creation of fusion proteins containing green fluorescent protein (GFP) and the product of interest. Human interleukin-2 (hIL-2) was used as a model product: GFP enabled clear identification of fusion protein expression and, more importantly, the quantification of hIL-2. Although GFP fusions for bioprocess monitoring have been demonstrated in other hosts, this is its first use in P. pastoris.  相似文献   

15.
A bifunctional fusion protein consisting of organophosphorus hydrolase (OPH) and elastin-like polypeptide (ELP) was synthesized for the detoxification of organophosphorus compounds. ELPs undergo a reversible phase transition upon an increase in temperature, forming hydrophobic aggregates. This thermally triggered property of phase transition allows for a simple and rapid means of purifying the fusion protein. Over 1,300-fold purification was achieved after only 2 cycles of inverse phase transition. The purified fusion protein showed identical kinetic properties as the native OPH with only a modest 10% increase in K(m) and a 5% decrease of K(cat). The ability of the ELP domain to form collapsed aggregates also improved long-term stability of the fusion enzyme. Aggregated ELP-OPH retained nearly 100% activity over a span of three weeks. In addition to facilitating purification and stability, the ELP moiety served as a hydrophobic tag for one-step immobilization of the fusion protein onto hydrophobic surfaces. The ELP-OPH was capable of rapidly degrading paraoxon while immobilized. The protein also retained ELP functionality of reversible phase transition thereby allowing for the regeneration of the treated surface. This technology offers a swift and convenient means for purification, immobilization, and regeneration of OPH onto a variety of hydrophobic surfaces by simple environmental triggers.  相似文献   

16.
We investigated the ability of the N-terminal domain of InaK, an ice nucleation protein from Pseudomonas syringae KCTC1832, to act as an anchoring motif for the display of foreign proteins on the Escherichia coli cell surface. Total expression level and surface display efficiency of green fluorescent protein (GFP) was compared following their fusion with either the N-terminal domain of InaK (InaK-N), or with the known truncated InaK containing both N- and C-terminal domains (InaK-NC). We report that the InaK-N/GFP fusion protein showed a similar cell surface display efficiency ( approximately 50%) as InaK-NC/GFP, demonstrating that the InaK N-terminal region alone can direct translocation of foreign proteins to the cell surface and can be employed as a potential cell surface display motif. Moreover, InaK-N/GFP showed the highest levels of total expression and surface display based on unit cell density. InaK-N was also successful in directing cell surface display of organophosphorus hydrolase (OPH), confirming its ability to act as a display motif.  相似文献   

17.
Here we report the cell surface display of organophosphorus hydrolase (OPH) and green fluorescent protein (GFP) fusion by employing the N- and C-terminal domains of ice nucleation protein (INPNC) as an anchoring motif. An E. coliPseudomonas shuttle vector, pNOG33, coding for INPNC–OPH–GFP was constructed for targeting the fusion onto the cell surface of p-nitrophenol (PNP)-degrading P. putida JS444. The surface localization of INPNC–OPH–GFP was verified by cell fractionation, Western blot, proteinase accessibility, and immunofluorescence microscopy. Furthermore, the functionality of the surface-exposed OPH–GFP was demonstrated by OPH assays and fluorescence measurements. Surface display of macromolecular OPH–GFP fusion (63 kDa) neither inhibited cell growth nor affected cell viability. These results suggest that INP is an useful tool for the presentation of heterologous proteins on cell surfaces of indigenous microbes. The engineered P. putida JS444 degraded organophosphates (OPs) as well as PNP rapidly and could be easily monitored by fluorescence. Parathion (100 mg kg−1) could be degraded completely within 15 days in soil inoculated with the engineered strain. These merits make this engineered strain an ideal biocatalyst for in situ bioremediation of OP-contaminated soil.  相似文献   

18.
Cao P  Zhang S  Zhang J  Wang M 《Biochimie》2006,88(6):629-635
A fusion between gene encoding fluoresce-enhanced green fluorescent protein variant (EGFP) and soluble domain of human B-cell-activating factor of the TNF family (sBAFF) was constructed and expressed in Escherichia coli. The EGFP/sBAFF had an apparent molecular weight of 45 kDa and was detected with anti-hsBAFF and anti-His(6) monoclonal antibodies. After being purified by immobilized metal affinity chromatography (IMAC), the fusion protein retained similar fluorescence spectra to those of EGFP. Biological activity assays showed the EGFP/sBAFF as well as sBAFF could co-stimulated human B lymphocyte proliferation in vitro. In addition, EGFP/sBAFF has shown specific binding to BAFF receptors positive-cells and the stained cells could be analyzed with flow cytometry. Thus, the fusion protein represents a readily obtainable source of biologically active sBAFF that may prove useful in further studies on BAFF and its receptors.  相似文献   

19.
We previously found that the human interleukin-2 (hIL-2) fused with green fluorescent protein (GFP) mainly remained in the insect cell debris after disruption due to the highly hydrophobic property of hIL-2 itself. Even though the significant GFPuv/hIL-2 fusion proteins were associated with cell membrane fractions, these were still functionally active. Therefore, to increase the total product yield, we performed partial recovery of the cell membrane-bounded hIL-2 fusion protein from the insoluble cell debris using several non-ionic, zwitterionic, and anionic detergents.  相似文献   

20.
Green fluorescent protein (GFP) is an excellent biosensor as a result of its ability to be easily monitored in a wide variety of applications. Enzymes and proteins have been used as biological indicators to evaluate the immediate efficacy of industrial procedures, such as blanching, pasteurization, and disinfection treatments, as well as to monitor the satisfactory preservation of a product subjected to disinfection or sterilization. The purpose of this work was to study GFP stability in chlorinated water for injection (WFI) and chlorinated buffered solutions at various pH ranges, with and without agitation, to evaluate the exposure time required for chlorine to decrease 90% of its fluorescence intensity (decimal reduction time, D-value, min, 25 degrees C). Fluorescence intensity (Ex/Emmax = 394/509 nm) was measured immediately after the addition of GFP (8.0-9.0 microg/mL) into buffered or unbuffered chlorine solutions with or without constant stirring. With solutions constantly stirred, GFP fluorescence decreased abruptly on contact with chlorine in concentrations greater than 150 ppm, with D-values between 1.3 min (147 ppm chlorine) and 1.7 min (183 ppm chlorine). In phosphate buffered chlorine solutions (pH = 7.15 +/- 0.08), GFP retained its structure between 52 and 94 ppm, but protein stability decreased 10-fold when exposed to 110 ppm chlorine. The recovery of GFP fluorescence intensity due to renaturation was observed between 30 and 100 ppm chlorine in WFI (final pH = 11.01 +/- 0.23) without stirring. Stirring enhanced the contact between GFP and chlorine throughout the assay and provided a more accurate D-value evaluation. GFP performed as a suitable fluorescent marker for monitoring disinfection effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号