首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endogenous microparticles (MPs) were systematically profiled during the time course of self-limited inflammation. Precursors for specialized proresolving lipid mediators were identified in MPs from inflammatory exudates using liquid chromatography tandem mass spectrometry-based metabolomics. Hence, we postulated that formation of anti-inflammatory and proresolving lipid mediators could underlie beneficial effects attributed to MPs and that this process could serve as a basis for biomimicry. Using human neutrophil-derived MPs, we constructed novel nanoparticles (NPs) containing aspirin-triggered resolvin D1 or a lipoxin A(4) analog. Enriched NPs dramatically reduced polymorphonuclear cell influx in murine peritonitis, shortened resolution intervals, and exhibited proresolving actions accelerating keratinocyte healing. The enriched NPs protected against inflammation in the temporomandibular joint. These findings indicate that humanized NPs, termed nano-proresolving medicines, are mimetics of endogenous resolving mechanisms, possess potent beneficial bioactions, can reduce nanotoxicity, and offer new therapeutic approaches.  相似文献   

2.
Protectin D1, neuroprotectin D1 when generated by neural cells, is a member of a new family of bioactive products generated from docosahexaenoic acid. The complete stereochemistry of protectin D1 (10,17S-docosatriene), namely, chirality of the carbon-10 alcohol and geometry of the conjugated triene, required for bioactivity remained to be assigned. To this end, protectin D1/neuroprotectin D1 (PD1) generated by human neutrophils during murine peritonitis and by neural tissues was separated from natural isomers and subjected to liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. Comparisons with six 10,17-dihydroxydocosatrienes prepared by total organic and biogenic synthesis showed that PD1 from human cells carrying potent bioactivity is 10R,17S-dihydroxy-docosa-4Z,7Z,11E,13E,15Z,19Z-hexaenoic acid. Additional isomers identified included trace amounts of Delta15-trans-PD1 (isomer III), 10S,17S-dihydroxy-docosa-4Z,7Z,11E,13Z,15E,19Z-hexaenoic acid (isomer IV), and a double dioxygenation product 10S,17S-dihydroxy-docosa-4Z,7Z,11E,13Z,15E,19Z-hexaenoic acid (isomer I), present in exudates. 18O2 labeling showed that 10S,17S-diHDHA (isomer I) carried 18O in the carbon-10 position alcohol, indicating sequential lipoxygenation, whereas PD1 formation proceeded via an epoxide. PD1 at 10 nM attenuated (approximately 50%) human neutrophil transmigration, whereas Delta15-trans-PD1 was essentially inactive. PD1 was a potent regulator of polymorphonuclear leukocyte (PMN) infiltration (approximately 40% at 1 ng/mouse) in peritonitis. The rank order at 1- to 10-ng dose was PD1 approximately PD1 methyl ester > Delta15-trans-PD1 > 10S,17S-diHDHA (isomer I). 10S,17S-dihydroxy-docosa-4Z,7Z,11E,13E,15Z,19Z-hexaenoic acid (isomer VI) proved > or = PD1 in blocking PMN infiltration, but was not a major product of leukocytes. PD1 also reduced PMN infiltration after initiation (2 h) of inflammation and was additive with resolvin E1. These results indicate that PD1 is a potent stereoselective anti-inflammatory molecule.  相似文献   

3.
A characteristic fragmentation was observed for PUFAs that contain allylic vicinal diol groups (resolvin D1, D2, D4, E3, lipoxin A4, B4, and maresin 2), which were derivatized with N,N-dimethylethylenediamine (DMED), in positive-ion ESI-MS/MS. The findings indicate that when these compounds contain an allylic hydroxyl group that is located distal to the terminal DMED moiety in the case of resolvin D1, D4, and lipoxin A4, an aldehyde (-CH=O) is predominately formed, which arises from the breakdown in between vicinal diols, whereas, in the case of an allylic hydroxyl group that is located proximal to the DMED moiety, as in resolvin D2, E3, lipoxin B4, and maresin 2, an allylic carbene (-CH=CH-CH:) is formed. These specific fragmentations could be used as diagnostic ions for characterizing the above seven PUFAs. As a result, it was possible to detect resolvin D1, D2, E3, lipoxin A4, and B4 in sera (20 μl) obtained from healthy volunteers by multiple-reaction monitoring using LC/ESI-MS/MS.  相似文献   

4.
Lipoxins (LX) and their aspirin-triggered 15-epimer endogenous isoforms are endogenous anti-inflammatory and pro-resolution eicosanoids. In this study, we examined the impact of LX and aspirin-triggered LXA(4)-stable analogs (ATLa) on human T cell functions. 15-epi-16-(p-fluoro)phenoxy-LXA(4) (ATLa(1)) blocked the secretion of TNF-alpha from human PBMC after stimulation by anti-CD3 Abs, with the IC(50) value of approximately 0.05 nM. A similar action was also exerted by the native aspirin-triggered 15-epi-LXA(4), a new 15-epi-16-(p-trifluoro)phenoxy-LXA(4) analog (ATLa(2)), as well as LXB(4), and its analog 5-(R/S)-methyl-LXB(4). The LXA(4) receptor (ALX) is expressed in peripheral blood T cells and mediates the inhibition of TNF-alpha secretion from activated T cells by ATLa(1). This action was accomplished by inhibition of the anti-CD3-induced activation of extracellular signal-regulated kinase, which is essential for TNF-alpha secretion from anti-CD3-activated T cells. These results demonstrate novel roles for LX and aspirin-triggered LX in the regulation of T cell-mediated responses relevant in inflammation and its resolution. Moreover, they provide potential counterregulatory signals in communication(s) between the innate and acquired immune systems.  相似文献   

5.
The macrophage plays a major role in the induction and resolution phases of inflammation; however, how lipid mediator-derived signals may modulate macrophage function in the resolution of inflammation driven by microbes (e.g., in inflammatory bowel disease) is not well understood. We examined the effects of aspirin-triggered lipoxin (ATL), a stable analog of lipoxin A(4), on the antimicrobial responses of human peripheral blood mononuclear cell-derived macrophages and the monocytic THP-1 cell line. Additionally, we assessed the expression and localization of the lipoxin receptor, formyl peptide receptor 2 (FPR2), in colonic mucosal biopsies from patients with Crohn's disease to determine whether the capacity for lipoxin signaling is altered in inflammatory bowel disease. We found that THP-1 cells treated with ATL (100 nM) displayed increased phagocytosis of inert fluorescent beads and Escherichia coli in a scavenger receptor- and PI3K-dependent, opsonization-independent manner. This ATL-induced increase in phagocytosis was also observed in primary human macrophages, where it was associated with an inhibition of E. coli-induced IL-1β and IL-8 production. Finally, we found that FPR2 gene expression was increased approximately sixfold in the colon of patients with Crohn's disease, a finding reproduced in vitro by the treatment of THP-1 cells with interferon-γ or lipopolysaccharide. These results suggest that lipoxin signaling is upregulated in inflammatory environments, and, in addition to their known role in tissue resolution following injury, lipoxins can enhance macrophage clearance of invading microbes.  相似文献   

6.
Lipoxins and their aspirin-triggered 15-epimers are endogenous anti-inflammatory agents that block neutrophil chemotaxis in vitro and inhibit neutrophil influx in several models of acute inflammation. In this study, we examined the effects of 15-epi-16-(p-fluoro)-phenoxy-lipoxin A(4) methyl ester, an aspirin-triggered lipoxin A(4)-stable analog (ATLa), on the protein phosphorylation pattern of human neutrophils. Neutrophils stimulated with the chemoattractant fMLP were found to exhibit intense phosphorylation of a 55-kDa protein that was blocked by ATLa (10-50 nM). This 55-kDa protein was identified as leukocyte-specific protein 1, a downstream component of the p38-MAPK cascade in neutrophils, by mass spectrometry, Western blotting, and immunoprecipitation experiments. ATLa (50 nM) also reduced phosphorylation/activation of several components of the p38-MAPK pathway in these cells (MAPK kinase 3/MAPK kinase 6, p38-MAPK, MAPK-activated protein kinase-2). These results indicate that ATLa exerts its anti-inflammatory effects, at least in part, by blocking activation of the p38-MAPK cascade in neutrophils, which is known to promote chemotaxis and other proinflammatory responses by these cells.  相似文献   

7.
Lipoxins (LXs) or the lipoxygenase interaction products are generated from arachidonic acid via sequential actions of lipoxygenases and subsequent reactions to give specific trihydroxytetraene-containing eicosanoids. These unique structures are formed during cell-cell interactions and appear to act at both temporal and spatially distinct sites from other eicosanoids produced during the course of inflammatory responses and to stimulate natural resolution. Lipoxin A4 (LXA4) and lipoxin B4 (LXB4) are positional isomers that each possesses potent cellular and in vivo actions. These LX structures are conserved across species. The results of numerous studies reviewed in this work now confirm that they are the first recognized eicosanoid chemical mediators that display both potent anti-inflammatory and pro-resolving actions in vivo in disease models that include rabbit, rat, and mouse systems. LXs act at specific GPCRs as agonists to regulate cellular responses of interest in inflammation and resolution. Aspirin has a direct impact in the LX circuit by triggering the biosynthesis of endogenous epimers of LX, termed the aspirin-triggered 15-epi-LX, that share the potent anti-inflammatory actions of LX. Stable analogs of LXA4, LXB4, and aspirin-triggered lipoxin were prepared, and several of these display potent actions in vitro and in vivo. The results reviewed herein implicate a role of LX and their analogs in many common human diseases including airway inflammation, asthma, arthritis, cardiovascular disorders, gastrointestinal disease, periodontal disease, kidney diseases and graft-vs.-host disease, as well as others where uncontrolled inflammation plays a key role in disease pathogenesis. Hence, the LX pathways and mechanisms reviewed to date in this work provide a basis for new approaches to treatment of many common human diseases that involve inflammation.  相似文献   

8.
Elevated plasma levels of the acute-phase reactant serum amyloid A (SAA) have been used as a marker and predictor of inflammatory diseases. SAA regulates leukocyte activation; however, it is not known whether it also modulates neutrophil apoptosis, which is critical to the optimal expression and resolution of inflammation. Culture of human neutrophils with SAA (0.1-20 microg/ml) markedly prolonged neutrophil longevity by delaying constitutive apoptosis. SAA evoked concurrent activation of the ERK and PI3K/Akt signaling pathways, leading to phosphorylation of BAD at Ser(112) and Ser(136), respectively, and to prevention of collapse of mitochondrial transmembrane potential, cytochrome c release, and caspase-3 activation. These actions were abrogated by pharmacological inhibition of the formyl peptide receptor, ERK or PI3K. Furthermore, aspirin-triggered 15-epi-lipoxin A(4) (15-epi-LXA(4)) and its stable analog 15-epi-16-p-fluorophenoxy-LXA(4), which binds to the same receptor as SAA, effectively overrode the antiapoptosis signal from SAA even when neutrophils were treated with 15-epi-LXA(4) at either 1 or 4 h postculture with SAA. 15-Epi-LXA(4) itself did not affect neutrophil survival and apoptosis. Our results indicate that SAA at clinically relevant concentrations promotes neutrophil survival by suppressing the apoptotic machinery, an effect that can be opposed by 15-epi-LXA(4). The opposing actions of SAA and aspirin-triggered 15-epi-LXA(4) may contribute to the local regulation of exacerbation and resolution of inflammation, respectively.  相似文献   

9.
Products of cyclooxygenase (COX)-2 contribute to mucosal defense. Acetylation of COX-2 by aspirin has been shown to result in the generation of 15(R)-epi-lipoxin A4, which exerts protective effects in the stomach. In gastritis, it is possible that lipoxin A4 makes a greater contribution to mucosal defense. We tested this hypothesis in the rat, by using the iodoacetamide-induced gastritis model. Iodoacetamide was added to the drinking water for 5 days. Rats were then given aspirin, and the extent of gastric damage was blindly assessed 3 h later. Gastric 15(R)-epi-lipoxin A4 and PGE2 levels were determined. The effects of pretreatment with a selective COX-2 inhibitor, rofecoxib, and of a lipoxin receptor antagonist were assessed. Effects of aspirin and the other test drugs on leukocyte adherence within mesenteric venules were assessed by intravital microscopy. Aspirin elicited greater lipoxin synthesis in the inflamed than in the normal stomach, and there was reduced gastric damage. Rofecoxib inhibited lipoxin synthesis and exacerbated aspirin-induced damage. The lipoxin antagonist also exacerbated aspirin-induced damage. In rats with gastritis, aspirin reduced leukocyte adherence (in contrast to an increase in normal rats), and this effect was reversed by rofecoxib or by the lipoxin antagonist. These results support the notion that aspirin-triggered lipoxin synthesis via COX-2 makes an important contribution to mucosal defense in both the normal and inflamed stomach.  相似文献   

10.
Resolvins of the D series are generated from docosahexaenoic acid, which are enriched in fish oils and are believed to exert beneficial roles on diverse inflammatory disorders, including inflammatory bowel disease (IBD). In this study, we investigated the anti-inflammatory effects of the aspirin-triggered resolvin D1 (AT-RvD1), its precursor (17(R)-hydroxy docosahexaenoic acid [17R-HDHA]) and resolvin D2 (RvD2) in dextran sulfate sodium (DSS)- or 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Our results showed that the systemic treatment with AT-RvD1, RvD2, or 17R-HDHA in a nanogram range greatly improved disease activity index, body weight loss, colonic damage, and polymorphonuclear infiltration in both colitis experimental models. Moreover, these treatments reduced colonic cytokine levels for TNF-α, IL-1β, MIP-2, and CXCL1/KC, as well as mRNA expression of NF-κB and the adhesion molecules VCAM-1, ICAM-1, and LFA-1. Furthermore, AT-RvD1, but not RvD2 or 17R-HDHA, depended on lipoxin A4 receptor (ALX) activation to inhibit IL-6, MCP-1, IFN-γ, and TNF-α levels in bone marrow-derived macrophages stimulated with LPS. Similarly, ALX blockade reversed the beneficial effects of AT-RvD1 in DSS-induced colitis. To our knowledge, our findings showed for the first time the anti-inflammatory effects of resolvins of the D series and precursor 17R-HDHA in preventing experimental colitis. We also demonstrated the relevant role exerted by ALX activation on proresolving action of AT-RvD1. Moreover, AT-RvD1 showed a higher potency than 17R-HDHA and RvD2 in preventing DSS-induced colitis. The results suggest that these lipid mediators possess a greater efficacy when compared with other currently used IBD therapies, such as monoclonal anti-TNF, and have the potential to be used for treating IBD.  相似文献   

11.
Lipoxin A4 (LXA4) and aspirin-triggered 15-epi-LXA4 are structurally and functionally distinct eicosanoids, with potent anti-inflammatory and immunomodulatory actions. Therapeutic use of LXA4 is greatly limited by its rapid metabolism in vivo and chemical instability. First-generation synthetic LXA4 analogs such as methyl (5R,6R,7E,9E,11Z,13E,15S)-16-(4-fluorophenoxy)-5,6,15-trihydroxy-7,9,11,13-hexadecatetraenoate (2, ATLa), were designed to minimize metabolism from the omega-end of the molecule. Pharmacokinetic analysis of ATLa revealed beta-oxidation as a novel route for LXA4 metabolism, prompting the development of second-generation 3-oxa-LXA4 analogs with improved pharmacokinetic disposition. Second-generation 3-oxa-LXA4 analogs such as (5R,6R,7E,9E,11Z,13E,15S)-16-(4-fluorophenoxy)-3-oxa-5,6,15-trihydroxy-7,9,11,13-hexadecatetraenoic acid (3), have shown potency and efficacy comparable to ATLa in diverse animal models after topical, intravenous or oral delivery. These include several acute (2-24 h) inflammatory reactions: calcium ionophore-induced skin edema and inflammation (topical), LTB4/PGE2-induced skin inflammation and vascular leak (topical), zymosan A-induced peritonitis (i.v. and oral) and ischemia-reperfusion-induced secondary organ injury (i.v.). Remarkably, 3-oxa-LXA4 analogs have potent once daily oral efficacy in preventing and promoting the resolution of established colitis induced by the hapten trinitrobenzene sulphonic acid (TNBS), an acute/chronic 7-14-day model of Crohn's disease. The second-generation 3-oxa-LXA4 analogs thus provide new stable pharmacophores with which to explore the emerging role of lipoxins as a new therapeutic principle for regulating inflammation, allergy and immune dysfunction in preclinical and clinical research.  相似文献   

12.
Lipoxins in gastric mucosal health and disease   总被引:1,自引:0,他引:1  
Lipoxins have well characterized anti-inflammatory properties. In recent years, lipoxin A4 and its epimeric counterpart, which is synthesized via aspirin-acetylated cyclooxygenase-2, have been shown to exert very potent protective effects in the stomach. Indeed, suppression of aspirin-triggered lipoxin synthesis, through co-administration of a selective COX-2 inhibitor, results in a significant exacerbation of gastric injury. The gastroprotective effects of lipoxin A4 appear to be receptor mediated, and may be attributable to the ability of this agent to suppress leukocyte adherence to the vascular endothelium and to elevate gastroduodenal blood flow. These effects may be mediated via lipoxin-induced nitric oxide generation. Lipoxins activate a receptor that can also be activated by annexin-1, another substance involved in resolution of inflammation and gastroprotection.  相似文献   

13.
We recently uncovered two new families of potent docosahexaenoic acid-derived mediators, termed D series resolvins (Rv; resolution phase interaction products) and protectins. Here, we assign the stereochemistry of the conjugated double bonds and chirality of alcohols present in resolvin D1 (RvD1) and its aspirin-triggered 17R epimer (AT-RvD1) with compounds prepared by total organic synthesis. In addition, docosahexaenoic acid was converted by a single lipoxygenase in a "one-pot" reaction to RvD1 in vitro. The synthetic compounds matched the physical and biological properties of those enzymatically generated. RvD1 proved to be 7S,8R,17S-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid, AT-RvD1 matched 7S,8R,17R-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid, and they both stopped transendothelial migration of human neutrophils (EC(50) approximately 30 nM). In murine peritonitis in vivo, RvD1 and AT-RvD1 proved equipotent (at nanogram dosages), limiting polymorphonuclear leukocyte infiltration in a dose-dependent fashion. RvD1 was converted by eicosanoid oxidoreductase to novel 8-oxo- and 17-oxo-RvD1 that gave dramatically reduced bioactivity, whereas enzymatic conversion of AT-RvD1 was sharply reduced. These results establish the complete stereochemistry and actions of RvD1 and AT-RvD1 as well as demonstrate the stereoselective basis for their enzymatic inactivation. RvD1 regulates human polymorphonuclear leukocyte transendothelial migration and is anti-inflammatory. When its carbon 17S alcohol is enzymatically converted to 17-oxo-RvD1, it is essentially inactive, whereas the 17R alcohol configuration in its aspirin-triggered form (AT-RvD1) resists rapid inactivation. These results may contribute to the beneficial actions of aspirin and omega-3 fish oils in humans.  相似文献   

14.
Aspirin (ASA) and dexamethasone (DEX) are widely used anti-inflammatory agents yet their mechanism(s) for blocking polymorphonuclear neutrophil (PMN) accumulation at sites of inflammation remains unclear. Here, we report that inhibition of PMN infiltration by ASA and DEX is a property shared by aspirin-triggered lipoxins (ATL) and the glucocorticoid-induced annexin 1 (ANXA1)-derived peptides that are both generated in vivo and act at the lipoxin A(4) receptor (ALXR/FPRL1) to halt PMN diapedesis. These structurally diverse ligands specifically interact directly with recombinant human ALXR demonstrated by specific radioligand binding and function as well as immunoprecipitation of PMN receptors. In addition, the combination of both ATL and ANXA1-derived peptides limited PMN infiltration and reduced production of inflammatory mediators (that is, prostaglandins and chemokines) in vivo. Together, these results indicate functional redundancies in endogenous lipid and peptide anti-inflammatory circuits that are spatially and temporally separate, where both ATL and specific ANXA1-derived peptides act in concert at ALXR to downregulate PMN recruitment to inflammatory loci.  相似文献   

15.
The present study examined the effect of previous severe exercise upon (i) respiratory exchange during maximal exercise, and (ii) the respiratory Vco2/Vo2 exchange ratio (R) as a predictor of maximum oxygen uptake (Vo2max). Thirteen healthy males performed a progressive treadmill test to Vo2max: at rest (T1); after a 1 h run on the level treadmill at a speed corresponding 82.4 +/- 7.3% of their Vo2max (T2); after 1 h recovery (T3); and after 24 h recovery (T4). Respiratory gases were continuously monitored. No changes in average work Vo2, Vo2max or maximum heart rate were found between trials. Average work Vco2 was lower in T2 (2.055 +/- 0.093 1.min-1, p less than 0.001), T3 (2.080 +/- 0.087 1.min-1, p less than 0.001) and T4 (2.337 +/- 0.154 1.min-1, NS) compared with T1 (2.360 +/- 0.147 1.min-1). This resulted in lower average R values in T2 (0.81 +/- 0.02, p less than 0.001), T3 (0.83 +/- 0.02, p less than 0.001) and T4 (0.94 +/- 0.02, NS) in relation to T1 (0.95 +/- 0.02). Analysis of the %Vo2max/R relationship over the final 5 min of each test showed a shift to the left during T2 (p less than 0.001), T3 (p less than 0.001) and T4 (NS) compared with T1. As a result predictions of Vo2max based on R (Vo2max/R) were similar to recorded Vo2max in T1 (+ 0.6%) and T4 (+ 2.2%). But higher in T2 (+ 8.7%, p less than 0.001) and T3 (+ 6.9%, p less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
Lipoxins (LXs) are lipoxygenase-derived eicosanoids and putative endogenous braking signals for inflammation in the gastrointestinal tract and other organs. Aspirin triggers the production of 15-epimers during cell-cell interaction in a cytokine-primed milieu, and aspirin-triggered 15-epi-5(S),6(R),15(S)-trihydroxy-7,9,13-trans-11-cis-eicosatetraenoic acid (15-epi-LXA(4)) may contribute to the bioactivity profile of this prototype nonsteroidal anti-inflammatory drug in vivo. We determined the effect of LXA(4), 15-(R/S)-methyl-11,12-dehydro-LXA(4) methyl ester (15-(R/S)-methyl-LXA(4)), and stable analogs of LXA(4) on TNF-alpha-stimulated neutrophil-enterocyte interaction in vitro and TNF-alpha-stimulated chemokine release, changes in mucosal architecture, and enterocyte apoptosis in cytokine-activated intact human colonic mucosa ex vivo. LXA(4), 15-(R/S)-epi-LXA(4), and 16-phenoxy-11,12-dehydro-17,18,19,20-tetranor-LXA(4) methyl ester (16-phenoxy-LXA(4)) inhibited TNF-alpha-stimulated neutrophil adherence to epithelial monolayers at nanomolar concentrations. In parallel experiments involving human colonic mucosa ex vivo, LXA(4)potently attenuated TNF-alpha-stimulated release of the C-X-C chemokine IL-8, and the C-C chemokines monocyte-chemoattractant protein-1 (MCP-1) and RANTES. Exposure of strips of normal human colonic mucosa to TNF-alpha induced disruption of mucosa architecture and enhanced colonocyte apoptosis via a caspase-3-independent mechanism. Prior exposure of the mucosa strips to 15-(R/S)-methyl-LXA(4) attenuated TNF-alpha-stimulated colonocyte apoptosis and protected the mucosa against TNF-alpha-induced mucosal damage. In aggregate, our data demonstrate that lipoxins and aspirin-triggered 15-epi-LXA(4) are potent antagonists of TNF-alpha-mediated neutrophil-enterocyte interactions in vitro, attenuate TNF-alpha-triggered chemokine release and colonocyte apoptosis, and are protective against TNF-alpha-induced morphological disruption in human colonic strips ex vivo. Our observations further expand the anti-inflammatory profile of these lipoxygenase-derived eicosanoids and suggest new therapeutic approaches for the treatment of inflammatory bowel disease.  相似文献   

18.
Anesthetics impact the resolution of inflammation   总被引:1,自引:0,他引:1  

Background

Local and volatile anesthetics are widely used for surgery. It is not known whether anesthetics impinge on the orchestrated events in spontaneous resolution of acute inflammation. Here we investigated whether a commonly used local anesthetic (lidocaine) and a widely used inhaled anesthetic (isoflurane) impact the active process of resolution of inflammation.

Methods and Findings

Using murine peritonitis induced by zymosan and a systems approach, we report that lidocaine delayed and blocked key events in resolution of inflammation. Lidocaine inhibited both PMN apoptosis and macrophage uptake of apoptotic PMN, events that contributed to impaired PMN removal from exudates and thereby delayed the onset of resolution of acute inflammation and return to homeostasis. Lidocaine did not alter the levels of specific lipid mediators, including pro-inflammatory leukotriene B4, prostaglandin E2 and anti-inflammatory lipoxin A4, in the cell-free peritoneal lavages. Addition of a lipoxin A4 stable analog, partially rescued lidocaine-delayed resolution of inflammation. To identify protein components underlying lidocaine''s actions in resolution, systematic proteomics was carried out using nanospray-liquid chromatography-tandem mass spectrometry. Lidocaine selectively up-regulated pro-inflammatory proteins including S100A8/9 and CRAMP/LL-37, and down-regulated anti-inflammatory and some pro-resolution peptides and proteins including IL-4, IL-13, TGF-â and Galectin-1. In contrast, the volatile anesthetic isoflurane promoted resolution in this system, diminishing the amplitude of PMN infiltration and shortening the resolution interval (Ri) ∼50%. In addition, isoflurane down-regulated a panel of pro-inflammatory chemokines and cytokines, as well as proteins known to be active in cell migration and chemotaxis (i.e., CRAMP and cofilin-1). The distinct impact of lidocaine and isoflurane on selective molecules may underlie their opposite actions in resolution of inflammation, namely lidocaine delayed the onset of resoluion (Tmax), while isoflurane shortened resolution interval (Ri).

Conclusions

Taken together, both local and volatile anesthetics impact endogenous resolution program(s), altering specific resolution indices and selective cellular/molecular components in inflammation-resolution. Isoflurane enhances whereas lidocaine impairs timely resolution of acute inflammation.  相似文献   

19.
Effective arterial elastance (E(a)), defined as the ratio of left ventricular (LV) end-systolic pressure and stroke volume, lumps the steady and pulsatile components of the arterial load in a concise way. Combined with E(max), the slope of the LV end-systolic pressure-volume relation, E(a)/E(max) has been used to assess heart-arterial coupling. A mathematical heart-arterial interaction model was used to study the effects of changes in peripheral resistance (R; 0.6-1.8 mmHg x ml(-1) x s) and total arterial compliance (C; 0.5-2.0 ml/mmHg) covering the human pathophysiological range. E(a), E(a)/E(max,) LV stroke work, and hydraulic power were calculated for all conditions. Multiple-linear regression analysis revealed a linear relation between E(a), R/T (where T is cycle length), and 1/C: E(a) = -0.13 + 1.02R/T + 0.31/C, indicating that R/T contributes about three times more to E(a) than arterial stiffness (1/C). It is demonstrated that different pathophysiological combinations of R and C may lead to the same E(a) and E(a)/E(max) but can result in differences of 10% in stroke work and 50% in maximal power.  相似文献   

20.
Lipoxins (LX) are bioactive eicosanoids that can be formed during cell to cell interactions in human tissues to self limit key responses in host defense and promote resolution. Aspirin treatment initiates biosynthesis of carbon 15 epimeric LXs, and both series of epimers (LX and aspirin-triggered 15-epi-LX) display counter-regulatory actions with neutrophils. In this study, we report that synthetic lipoxin A(4) (LXA(4)) and 15-epi-LXA(4) (i.e., 15(R)-LXA(4) or aspirin-triggered LXA(4)) are essentially equipotent in inhibiting human polymorphonuclear leukocytes (PMN) in vitro chemotaxis in response to leukotriene B(4), with the maximum inhibition ( approximately 50% reduction) obtained at 1 nM LXA(4). At higher concentrations, 15-epi-LXA(4) proved more potent than LXA(4) as its corresponding carboxyl methyl ester. Also, exposure of PMN to LXA(4) and 15-epi-LXA(4) markedly decreased PMN transmigration across both human microvessel endothelial and epithelial cells, where 15-epi-LXA(4) was more active than LXA(4) at "stopping" migration across epithelial cells. Differences in potency existed between LXA(4) and 15-epi-LXA(4) as their carboxyl methyl esters appear to arise from cell type-specific conversion of their respective carboxyl methyl esters to their corresponding carboxylates as monitored by liquid chromatography tandem mass spectrometry. Both synthetic LXA(4) and 15-epi-LXA(4) as free acids activate recombinant human LXA(4) receptor (ALXR) to regulate gene expression, whereas the corresponding methyl ester of LXA(4) proved to be a partial ALXR antagonist and did not effectively regulate gene expression. These results demonstrate the potent stereospecific actions shared by LXA(4) and 15-epi-LXA(4) for activating human ALXR-regulated gene expression and their ability to inhibit human PMN migration during PMN vascular as well as mucosal cell to cell interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号