首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Old Yellow Enzyme (OYE1) was the first flavin-dependent enzyme identified and characterized in detail by the entire range of physical techniques. Irrespective of this scrutiny, true physiological role of the enzyme remains a mystery. In a recent study, we systematically identified OYE proteins from various fungi and classified them into three classes viz. Class I, II and III. However, there is no information about the structural organization of Class III OYEs, eukaryotic Class II OYEs and Class I OYEs of filamentous fungi. Ascochyta rabiei, a filamentous phytopathogen which causes Ascochyta blight (AB) in chickpea possesses six OYEs (ArOYE1-6) belonging to the three OYE classes. Here we carried out comparative homology modeling of six ArOYEs representing all the three classes to get an in depth idea of structural and functional aspects of fungal OYEs. The predicted 3D structures of A. rabiei OYEs were refined and evaluated using various validation tools for their structural integrity. Analysis of FMN binding environment of Class III OYE revealed novel residues involved in interaction. The ligand para-hydroxybenzaldehyde (PHB) was docked into the active site of the enzymes and interacting residues were analyzed. We observed a unique active site organization of Class III OYE in comparison to Class I and II OYEs. Subsequently, analysis of stereopreference through structural features of ArOYEs was carried out, suggesting differences in R/S selectivity of these proteins. Therefore, our comparative modeling study provides insights into the FMN binding, active site organization and stereopreference of different classes of ArOYEs and indicates towards functional differences of these enzymes. This study provides the basis for future investigations towards the biochemical and functional characterization of these enigmatic enzymes.  相似文献   

2.
The crystal structure of the binary complex of nonactivated ribulose-1,5-bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum and a transition state analogue, 2-carboxy-D-arabinitol 1,5-bisphosphate has been determined to 2.6 A resolution with x-ray crystallographic methods. The transition state analogue binds in a rather extended conformation at the active site. The orientation of the transition state analogue within the active site could be determined from the electron density maps. The P1 phosphate group of the analogue binds at a site built up of residues from loops 5 and 6 of the alpha/beta-barrel. The phosphate group interacts with the side chains of the conserved residues Arg-288, His-321, and Ser-368 and with main chain nitrogens from residues Thr-322 and Gly-323. The second phosphate group of the transition state analogue binds at the opposite side of the barrel close to loops 1 and 8. Significant differences for the positions and interactions of the P2 phosphate group with the enzyme are found in the two subunits of the dimer. The different mode of binding for this phosphate group in the two subunits is interpreted as a consequence of different conformations of the polypeptide chain observed in loops 6 and 8. The P2 phosphate group interacts with the sidechains of Lys-166 and Lys-329. Loop 6, which is disordered in the nonactivated, nonliganded enzyme is considerably more ordered in one of the subunits, probably due to the interaction of the side chain of Lys-329 with the P2 phosphate group. Almost all oxygen atoms are hydrogen bonded to groups on the enzyme. The carboxyl group forms hydrogen bonds to the side chain of the conserved Asn-111. The binding of the transition state analogue to the nonactivated enzyme is different from the binding of the analogue to activated spinach ribulose-bisphosphate carboxylase.  相似文献   

3.
In the absence of oxygen many bacteria are able to utilise fumarate as a terminal oxidant for respiration. In most known organisms the fumarate reductases are membrane-bound iron-sulfur flavoproteins but Shewanella species produce a soluble, periplasmic flavocytochrome c(3) that catalyses this reaction. The active sites of all fumarate reductases are clearly conserved at the structural level, indicating a common mechanism. The structures of fumarate reductases from two Shewanella species have been determined. Fumarate, succinate and a partially hydrated fumarate ligand are found in equivalent locations in different crystals, tightly bound in the active site and close to N5 of the FAD cofactor, allowing identification of amino acid residues that are involved in substrate binding and catalysis. Conversion of fumarate to succinate requires hydride transfer from FAD and protonation by an active site acid. The identity of the proton donor has been open to question but we have used structural considerations to suggest that this function is provided by an arginine side chain. We have confirmed this experimentally by analysing the effects of site-directed mutations on enzyme activity. Substitutions of Arg402 lead to a dramatic loss of activity whereas neither of the two active site histidine residues is required for catalysis.  相似文献   

4.
The X-ray structure of chitinase from the fungal pathogen Coccidioides immitis has been solved to 2.2 A resolution. Like other members of the class 18 hydrolase family, this 427 residue protein is an eight-stranded beta/alpha-barrel. Although lacking an N-terminal chitin anchoring domain, the enzyme closely resembles the chitinase from Serratia marcescens. Among the conserved features are three cis peptide bonds, all involving conserved active site residues. The active site is formed from conserved residues such as tryptophans 47, 131, 315, 378, tyrosines 239 and 293, and arginines 52 and 295. Glu171 is the catalytic acid in the hydrolytic mechanism; it was mutated to a Gln, and activity was abolished. Allosamidin is a substrate analog that strongly inhibits the class 18 enzymes. Its binding to the chitinase hevamine has been observed, and we used conserved structural features of the two enzymes to predict the inhibitors binding to the fungal enzyme.  相似文献   

5.
The crystal structure of unactivated ribulose 1,5-bisphosphate carboxylase/oxygenase from Nicotiana tabacum complexed with a transition state analog, 2-carboxy-D-arabinitol 1,5-bisphosphate, was determined to 2.7 A resolution by X-ray crystallography. The transition state analog binds at the active site in an extended conformation. As compared to the binding of the same analog in the activated enzyme, the analog binds in a reverse orientation. The active site Lys 201 is within hydrogen bonding distance of the carboxyl oxygen of the analog. Loop 6 (residues 330-339) remains open and flexible upon binding of the analog in the unactivated enzyme, in contrast to the closed and ordered loop 6 in the activated enzyme complex. The transition state analog is exposed to solvent due to the open conformation of loop 6.  相似文献   

6.
BtDyP from Bacteroides thetaiotaomicron (strain VPI-5482) and TyrA from Shewanella oneidensis are dye-decolorizing peroxidases (DyPs), members of a new family of heme-dependent peroxidases recently identified in fungi and bacteria. Here, we report the crystal structures of BtDyP and TyrA at 1.6 and 2.7 A, respectively. BtDyP assembles into a hexamer, while TyrA assembles into a dimer; the dimerization interface is conserved between the two proteins. Each monomer exhibits a two-domain, alpha+beta ferredoxin-like fold. A site for heme binding was identified computationally, and modeling of a heme into the proposed active site allowed for identification of residues likely to be functionally important. Structural and sequence comparisons with other DyPs demonstrate a conservation of putative heme-binding residues, including an absolutely conserved histidine. Isothermal titration calorimetry experiments confirm heme binding, but with a stoichiometry of 0.3:1 (heme:protein).  相似文献   

7.
The metal-dependent deacetylase LpxC catalyzes the first committed step of lipid A biosynthesis in Gram-negative bacteria. Accordingly, LpxC is an attractive target for the development of inhibitors that may serve as potential new antibiotics for the treatment of Gram-negative bacterial infections. Here, we report the 2.7 A resolution X-ray crystal structure of LpxC complexed with the substrate analogue inhibitor TU-514 and the 2.0 A resolution structure of LpxC complexed with imidazole. The X-ray crystal structure of LpxC complexed with TU-514 allows for a detailed examination of the coordination geometry of the catalytic zinc ion and other enzyme-inhibitor interactions in the active site. The hydroxamate group of TU-514 forms a bidentate chelate complex with the zinc ion and makes hydrogen bond interactions with conserved active site residues E78, H265, and T191. The inhibitor C-4 hydroxyl group makes direct hydrogen bond interactions with E197 and H58. Finally, the C-3 myristate moiety of the inhibitor binds in the hydrophobic tunnel of the active site. These intermolecular interactions provide a foundation for understanding structural aspects of enzyme-substrate and enzyme-inhibitor affinity. Comparison of the TU-514 complex with cacodylate and imidazole complexes suggests a possible substrate diphosphate binding site and highlights residues that may stabilize the tetrahedral intermediate and its flanking transition states in catalysis. Evidence of a catalytic zinc ion in the native zinc enzyme coordinated by H79, H238, D242, and two water molecules with square pyramidal geometry is also presented. These results suggest that the native state of this metallohydrolase may contain a pentacoordinate zinc ion, which contrasts with the native states of archetypical zinc hydrolases such as thermolysin and carboxypeptidase A.  相似文献   

8.
The crystal structures of a soluble mutant of the flavoenzyme mandelate dehydrogenase (MDH) from Pseudomonas putida and of the substrate-reduced enzyme have been analyzed at 1.35-A resolution. The mutant (MDH-GOX2) is a fully active chimeric enzyme in which residues 177-215 of the membrane-bound MDH are replaced by residues 176-195 of glycolate oxidase from spinach. Both structures permit full tracing of the polypeptide backbone chain from residues 4-356, including a 4-residue segment that was disordered in an earlier study of the oxidized protein at 2.15 A resolution. The structures of MDH-GOX2 in the oxidized and reduced states are virtually identical with only a slight increase in the bending angle of the flavin ring upon reduction. The only other structural changes within the protein interior are a 10 degrees rotation of an active site tyrosine side chain, the loss of an active site water, and a significant movement of six other water molecules in the active site by 0.45 to 0.78 A. Consistent with solution studies, there is no apparent binding of either the substrate, mandelate, or the oxidation product, benzoylformate, to the reduced enzyme. The observed structural changes upon enzyme reduction have been interpreted as a rearrangement of the hydrogen bonding pattern within the active site that results from binding of a proton to the N-5 position of the anionic hydroquinone form of the reduced flavin prosthetic group. Implications for the low oxidase activity of the reduced enzyme are also discussed.  相似文献   

9.
The crystal structure of the catalytic domain of the site-specific recombination enzyme gamma delta resolvase has been determined at 2.7 A resolution. Its first 120 amino acids form a central five-stranded, beta-pleated sheet surrounded by five alpha helices. In one of the four dyad-related dimers, the two active site Ser-10 residues are 19 A apart, perhaps close enough to contact and become covalently linked to the DNA at the recombination site. This dimer also forms the only closely packed tetramer found in the crystal. The subunit interface at a second dyad-related dimer is more extensive and more highly conserved among the homologous recombinases; however, its active site Ser-10 residues are more than 30 A apart. Side chains, identified by mutations that eliminate catalysis but not DNA binding, are located on the subunit surface near the active site serine and at the interface between a third dyad-related pair of subunits of the tetramer.  相似文献   

10.
The crystal structure of cholesterol oxidase, a 56kDa flavoenzyme was anisotropically refined to 0.95A resolution. The final crystallographic R-factor and R(free) value is 11.0% and 13.2%, respectively. The quality of the electron density maps has enabled modeling of alternate conformations for 83 residues in the enzyme, many of which are located in the active site. The additional observed structural features were not apparent in the previous high-resolution structure (1.5A resolution) and have enabled the identification of a narrow tunnel leading directly to the isoalloxazine portion of the FAD prosthetic group. The hydrophobic nature of this narrow tunnel suggests it is the pathway for molecular oxygen to access the isoalloxazine group for the oxidative half reaction. Resolving the alternate conformations in the active site residues provides a model for the dynamics of substrate binding and a potential oxidation triggered gating mechanism involving access to the hydrophobic tunnel. This structure reveals that the NE2 atom of the active site histidine residue, H447, critical to the redox activity of this flavin oxidase, acts as a hydrogen bond donor rather than as hydrogen acceptor. The atomic resolution structure of cholesterol oxidase has revealed the presence of hydrogen atoms, dynamic aspects of the protein and how side-chain conformations are correlated with novel structural features such as the oxygen tunnel. This new structural information has provided us with the opportunity to re-analyze the roles played by specific residues in the mechanism of the enzyme.  相似文献   

11.
1-Deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) is the second enzyme in the non-mevalonate pathway of isoprenoid biosynthesis. The structure of the apo-form of this enzyme from Zymomonas mobilis has been solved and refined to 1.9-A resolution, and that of a binary complex with the co-substrate NADPH to 2.7-A resolution. The subunit of DXR consists of three domains. Residues 1-150 form the NADPH binding domain, which is a variant of the typical dinucleotide-binding fold. The second domain comprises a four-stranded mixed beta-sheet, with three helices flanking the sheet. Most of the putative active site residues are located on this domain. The C-terminal domain (residues 300-386) folds into a four-helix bundle. In solution and in the crystal, the enzyme forms a homo-dimer. The interface between the two monomers is formed predominantly by extension of the sheet in the second domain. The adenosine phosphate moiety of NADPH binds to the nucleotide-binding fold in the canonical way. The adenine ring interacts with the loop after beta1 and with the loops between alpha2 and beta2 and alpha5 and beta5. The nicotinamide ring is disordered in crystals of this binary complex. Comparisons to Escherichia coli DXR show that the two enzymes are very similar in structure, and that the active site architecture is highly conserved. However, there are differences in the recognition of the adenine ring of NADPH in the two enzymes.  相似文献   

12.
dUTP pyrophosphatases (dUTPases) are essential for genome integrity. Recent results allowed characterization of the role of conserved residues. Here we analyzed the Asp/Asn mutation within conserved Motif I of human and mycobacterial dUTPases, wherein the Asp residue was previously implicated in Mg2+-coordination. Our results on transient/steady-state kinetics, ligand binding and a 1.80 Å resolution structure of the mutant mycobacterial enzyme, in comparison with wild type and C-terminally truncated structures, argue that this residue has a major role in providing intra- and intersubunit contacts, but is not essential for Mg2+ accommodation. We conclude that in addition to the role of conserved motifs in substrate accommodation, direct subunit interaction between protein atoms of active site residues from different conserved motifs are crucial for enzyme function.  相似文献   

13.
Polyamine oxidase (PAO) carries out the FAD-dependent oxidation of the secondary amino groups of spermidine and spermine, a key reaction in the polyamine catabolism. The active site of PAO consists of a 30 A long U-shaped catalytic tunnel, whose innermost part is located in front of the flavin ring. To provide insight into the PAO substrate specificity and amine oxidation mechanism, we have investigated the crystal structure of maize PAO in the reduced state and in complex with three different inhibitors, guazatine, 1,8-diaminooctane, and N(1)-ethyl-N(11)-[(cycloheptyl)methyl]-4,8-diazaundecane (CHENSpm). In the reduced state, the conformation of the isoalloxazine ring and the surrounding residues is identical to that of the oxidized enzyme. Only Lys300 moves away from the flavin to compensate for the change in cofactor protonation occurring upon reduction. The structure of the PAO.inhibitor complexes reveals an exact match between the inhibitors and the PAO catalytic tunnel. Inhibitor binding does not involve any protein conformational change. Such lock-and-key binding occurs also in the complex with CHENSpm, which forms a covalent adduct with the flavin N5 atom. Comparison of the enzyme complexes hints at an "out-of-register" mechanism of inhibition, in which the inhibitor secondary amino groups are not properly aligned with respect to the flavin to allow oxidation. Except for the Glu62-Glu170 pair, no negatively charged residues are involved in the recognition of substrate and inhibitor amino groups, which is in contrast to other polyamine binding proteins. This feature may be exploited in the design of drugs specifically targeting PAO.  相似文献   

14.
The protonation state of residues around the Q(o) binding site of the cytochrome bc(1) complex from Paracoccus denitrificans and their interaction with bound quinone(s) was studied by a combined electrochemical and FTIR difference spectroscopic approach. Site-directed mutations of two groups of conserved residues were investigated: (a) acidic side chains located close to the surface and thought to participate in a water chain leading up to the heme b(L) edge, and (b) residues located in the vicinity of this site. Interestingly, most of the mutants retain a high degree of catalytic activity. E295Q, E81Q and Y297F showed reduced stigmatellin affinity. On the basis of electrochemically induced FTIR difference spectra, we suggest that E295 and D278 are protonated in the oxidized form or that their mutation perturbs protonated residues. Mutations Y302, Y297, E81 and E295, directly perturb signals from the oxidized quinone and of the protein backbone. By monitoring the interaction with the inhibitor stigmatellin for the wild-type enzyme at various redox states, interactions of the bound stigmatellin with amino acid side chains such as protonated acidic residues and the backbone were observed, as well as difference signals arising from the redox active inhibitor itself and the replaced quinone. The infrared difference spectra of the above Q(o) site mutations in the presence of stigmatellin confirm the previously established role of E295 as a direct interaction partner in the enzyme from P.denitrificans as well. The protonated residue E295 is proposed to change the hydrogen-bonding environment upon stigmatellin binding in the oxidized form, and is deprotonated in the reduced form. Of the residues located close to the surface, D278 remains protonated and unperturbed in the oxidized form but its frequency shifts in the reduced form. The mechanistic implications of our observations are discussed, together with previous inhibitor binding data, and referred to the published X-ray structures.  相似文献   

15.
The "flavin destructase" enzyme BluB catalyzes the unprecedented conversion of flavin mononucleotide (FMN) to 5,6-dimethylbenzimidazole (DMB), a component of vitamin B(12). Because of its unusual chemistry, the mechanism of this transformation has remained elusive. This study reports the identification of 12 mutant forms of BluB that have severely reduced catalytic function, though most retain the ability to bind flavin. The "flavin destructase" BluB is an unusual enzyme that fragments the flavin cofactor FMNH(2) in the presence of oxygen to produce 5,6-dimethylbenzimidazole (DMB), the lower axial ligand of vitamin B(12) (cobalamin). Despite the similarities in sequence and structure between BluB and the nitroreductase and flavin oxidoreductase enzyme families, BluB is the only enzyme known to fragment a flavin isoalloxazine ring. To explore the catalytic residues involved in this unusual reaction, mutants of BluB impaired in DMB biosynthesis were identified in a genetic screen in the bacterium Sinorhizobium meliloti. Of the 16 unique point mutations identified in the screen, the majority were located in conserved residues in the active site or in the unique "lid" domain proposed to shield the active site from solvent. Steady-state enzyme assays of 12 purified mutant proteins showed a significant reduction in DMB synthesis in all of the mutants, with eight completely defective in DMB production. Ten of these mutants have weaker binding affinities for both oxidized and reduced FMN, though only two have a significant effect on complex stability. These results implicate several conserved residues in BluB's unique ability to fragment FMNH(2) and demonstrate the sensitivity of BluB's active site to structural perturbations. This work lays the foundation for mechanistic studies of this enzyme and further advances our understanding of the structure-function relationship of BluB.  相似文献   

16.
The atomic structure of glycinamide ribonucleotide transformylase, an essential enzyme in purine biosynthesis, has been determined at 3.0 A resolution. The last three C-terminal residues and a sequence stretch of 18 residues (residues 113 to 130) are not visible in the electron density map. The enzyme forms a dimer in the crystal structure. Each monomer is divided into two domains, which are connected by a central mainly parallel seven-stranded beta-sheet. The N-terminal domain contains a Rossmann type mononucleotide fold with a phosphate ion bound to the C-terminal end of the first beta-strand. A long narrow cleft stretches from the phosphate to a conserved aspartic acid, Asp144, which has been suggested as an active-site residue. The cleft is lined by a cluster of residues, which are conserved between bacterial, yeast, avian and human enzymes, and likely represents the binding pocket and active site of the enzyme. GAR Tfase binds a reduced folate cofactor and glycinamide ribonucleotide for the catalysis of one of the initial steps in purine biosynthesis. Folate analogs and multi-substrate inhibitors of the enzyme have antineoplastic effects and the structure determination of the unliganded enzyme and enzyme-inhibitor complexes will aid the development of anti-cancer drugs.  相似文献   

17.
The micronutrient selenium is present in proteins as selenocysteine (Sec). In eukaryotes and archaea, Sec is formed in a tRNA-dependent conversion of O-phosphoserine (Sep) by O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SepSecS). Here, we present the crystal structure of Methanococcus maripaludis SepSecS complexed with PLP at 2.5 Å resolution. SepSecS, a member of the Fold Type I PLP enzyme family, forms an (α2)2 homotetramer through its N-terminal extension. The active site lies on the dimer interface with each monomer contributing essential residues. In contrast to other Fold Type I PLP enzymes, Asn247 in SepSecS replaces the conserved Asp in binding the pyridinium nitrogen of PLP. A structural comparison with Escherichia coli selenocysteine lyase allowed construction of a model of Sep binding to the SepSecS catalytic site. Mutations of three conserved active site arginines (Arg72, Arg94, Arg307), protruding from the neighboring subunit, led to loss of in vivo and in vitro activity. The lack of active site cysteines demonstrates that a perselenide is not involved in SepSecS-catalyzed Sec formation; instead, the conserved arginines may facilitate the selenation reaction. Structural phylogeny shows that SepSecS evolved early in the history of PLP enzymes, and indicates that tRNA-dependent Sec formation is a primordial process.  相似文献   

18.
The beta-galactosidase from an extreme thermophile, Thermus thermophilus A4 (A4-beta-Gal), is thermostable and belongs to the glycoside hydrolase family 42 (GH-42). As the first known structures of a GH-42 enzyme, we determined the crystal structures of free and galactose-bound A4-beta-Gal at 1.6A and 2.2A resolution, respectively. A4-beta-Gal forms a homotrimeric structure resembling a flowerpot. Each monomer has an active site located inside a large central tunnel. The N-terminal domain of A4-beta-Gal has a TIM barrel fold, as predicted from hydrophobic cluster analysis. The putative catalytic residues of A4-beta-Gal (Glu141 and Glu312) superimpose well with the catalytic residues of Escherichia coli beta-galactosidase. The environment around the catalytic nucleophile (Glu312) is similar to that in the case of E.coli beta-galactosidase, but the recognition mechanism for a substrate is different. Trp182 of the next subunit of the trimer constitutes a part of the active-site pocket, indicating that the trimeric structure is essential for the enzyme activity. Structural comparison with other glycoside hydrolases revealed that many features of the 4/7 superfamily are conserved in the A4-beta-Gal structure. On the basis of the results of 1H NMR spectroscopy, A4-beta-Gal was determined to be a "retaining" enzyme. Interestingly, the active site was similar with those of retaining enzymes, but the overall fold of the TIM barrel domain was very similar to that of an inverting enzyme, beta-amylase.  相似文献   

19.
Yue QK  Kass IJ  Sampson NS  Vrielink A 《Biochemistry》1999,38(14):4277-4286
Cholesterol oxidase is a monomeric flavoenzyme which catalyzes the oxidation and isomerization of cholesterol to cholest-4-en-3-one. The enzyme interacts with lipid bilayers in order to bind its steroid substrate. The X-ray structure of the enzyme from Brevibacterium sterolicum revealed two loops, comprising residues 78-87 and residues 433-436, which act as a lid over the active site and facilitate binding of the substrate [Vrielink et al. (1991) J. Mol. Biol. 219, 533-554; Li et al. (1993) Biochemistry 32, 11507-11515]. It was postulated that these loops must open, forming a hydrophobic channel between the membrane and the active site of the protein and thus sequestering the cholesterol substrate from the aqueous environment. Here we describe the three-dimensional structure of the homologous enzyme from Streptomyces refined to 1.5 A resolution. Structural comparisons to the enzyme from B. sterolicum reveal significant conformational differences in these loop regions; in particular, a region of the loop comprising residues 78-87 adopts a small amphipathic helical turn with hydrophobic residues directed toward the active site cavity and hydrophilic residues directed toward the external surface of the molecule. It seems reasonable that this increased rigidity reduces the entropy loss that occurs upon binding substrate. Consequently, the Streptomyces enzyme is a more efficient catalyst. In addition, we have determined the structures of three active site mutants which have significantly reduced activity for either the oxidation (His447Asn and His447Gln) or the isomerization (Glu361Gln). Our structural and kinetic data indicate that His447 and Glu361 act as general base catalysts in association with conserved water H2O541 and Asn485. The His447, Glu361, H2O541, and Asn485 hydrogen bond network is conserved among other oxidoreductases. This catalytic tetrad appears to be a structural motif that occurs in flavoenzymes that catalyze the oxidation of unactivated alcohols.  相似文献   

20.
Using site-directed mutagenesis we have investigated the catalytic residues in a xylanase from Bacillus circulans. Analysis of the mutants E78D and E172D indicated that mutations in these conserved residues do not grossly alter the structure of the enzyme and that these residues participate in the catalytic mechanism. We have now determined the crystal structure of an enzyme-substrate complex to 108 A resolution using a catalytically incompetent mutant (E172C). In addition to the catalytic residues, Glu 78 and Glu 172, we have identified 2 tyrosine residues, Tyr 69 and Tyr 80, which likely function in substrate binding, and an arginine residue, Arg 112, which plays an important role in the active site of this enzyme. On the basis of our work we would propose that Glu 78 is the nucleophile and that Glu 172 is the acid-base catalyst in the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号