首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We isolated five new temperature-sensitive alleles of the essential cell division gene ftsZ in Escherichia coli, using P1-mediated, localized mutagenesis. The five resulting single amino acid changes (Gly109-->Ser109 for ftsZ6460, Ala129-->Thr129 for ftsZ972, Val157-->Met157 for ftsZ2066, Pro203-->Leu203 for ftsZ9124, and Ala239-->Val239 for ftsZ2863) are distributed throughout the FtsZ core region, and all confer a lethal cell division block at the nonpermissive temperature of 42 degrees C. In each case the division block is associated with loss of Z-ring formation such that fewer than 2% of cells show Z rings at 42 degrees C. The ftsZ9124 and ftsZ6460 mutations are of particular interest since both result in abnormal Z-ring formation at 30 degrees C and therefore cause significant defects in FtsZ polymerization, even at the permissive temperature. Neither purified FtsZ9124 nor purified FtsZ6460 exhibited polymerization when it was assayed by light scattering or electron microscopy, even in the presence of calcium or DEAE-dextran. Hence, both mutations also cause defects in FtsZ polymerization in vitro. Interestingly, FtsZ9124 has detectable GTPase activity, although the activity is significantly reduced compared to that of the wild-type FtsZ protein. We demonstrate here that unlike expression of ftsZ84, multicopy expression of the ftsZ6460, ftsZ972, and ftsZ9124 alleles does not complement the respective lethalities at the nonpermissive temperature. In addition, all five new mutant FtsZ proteins are stable at 42 degrees C. Therefore, the novel isolates carrying single ftsZ(Ts) point mutations, which are the only such strains obtained since isolation of the classical ftsZ84 mutation, offer significant opportunities for further genetic characterization of FtsZ and its role in cell division.  相似文献   

2.
Chloroplast division is initiated by assembly of a mid-chloroplast FtsZ (Z) ring comprising two cytoskeletal proteins, FtsZ1 and FtsZ2. The division-site regulators ACCUMULATION AND REPLICATION OF CHLOROPLASTS3 (ARC3), MinD1, and MinE1 restrict division to the mid-plastid, but their roles are poorly understood. Using genetic analyses in Arabidopsis thaliana, we show that ARC3 mediates division-site placement by inhibiting Z-ring assembly, and MinD1 and MinE1 function through ARC3. ftsZ1 null mutants exhibited some mid-plastid FtsZ2 rings and constrictions, whereas neither constrictions nor FtsZ1 rings were observed in mutants lacking FtsZ2, suggesting FtsZ2 is the primary determinant of Z-ring assembly in vivo. arc3 ftsZ1 double mutants exhibited multiple parallel but no mid-plastid FtsZ2 rings, resembling the Z-ring phenotype in arc3 single mutants and showing that ARC3 affects positioning of FtsZ2 rings as well as Z rings. ARC3 overexpression in the wild type and ftsZ1 inhibited Z-ring and FtsZ2-ring assembly, respectively. Consistent with its effects in vivo, ARC3 interacted with FtsZ2 in two-hybrid assays and inhibited FtsZ2 assembly in a heterologous system. Our studies are consistent with a model wherein ARC3 directly inhibits Z-ring assembly in vivo primarily through interaction with FtsZ2 in heteropolymers and suggest that ARC3 activity is spatially regulated by MinD1 and MinE1 to permit Z-ring assembly at the mid-plastid.  相似文献   

3.
The essential cell division protein FtsZ forms a dynamic ring structure at the future division site. This Z-ring contracts during cell division while maintaining a position at the leading edge of the invaginating septum. Using immunofluorescence microscopy we have characterized two situations in which non-ring FtsZ structures are formed. In ftsZ26 (temperature sensitive, Ts) mutant cells, FtsZ-spirals are formed and lead to formation of spirally invaginating septa, which in turn cause morphological abnormalities. In rodA sui mutant cells, which grow as spheres instead of rods, FtsZ-arcs are formed where asymmetric septal invaginations are initiated. The FtsZ-arcs later mature into complete FtsZ-rings. Our data show that Z-spirals and Z-arcs can contract and that in doing so, they determine the shape of the invaginating septa. These results also strongly suggest that in normal cell division, FtsZ is positioned to a single nucleation site on the inner membrane, from which it polymerizes bidirectionally around the cell circumference to form the Z-ring.  相似文献   

4.
The Fts proteins play an important role in the control of cell division in Escherichia coli. These proteins, which possibly form a functional complex, are encoded by genes that form an operon. In this study, we examined the properties of the temperature-sensitive mutation ftsZ84 harbored by low- or high-copy-number plasmids. Cells of strain AB1157, which had the ftsZ84 mutation, did not form colonies on salt-free L agar at 30 degrees C. When a low-copy-number plasmid containing the ftsZ84 mutation was present in these mutant cells, colony formation was restored on this medium at 30 degrees C, suggesting that FtsZ84 is probably less active than the wild-type protein and is therefore limiting in its capacity to trigger cell divisions. On the other hand, when the ftsZ84 mutation was harbored by the high-copy-number plasmid pBR325, colony formation was prevented on salt-free L agar plates whether the recipients were ftsZ84 mutant or parental cells, suggesting that, at high levels, FtsZ84 acts as a division inhibitor. The fact that colony formation was also prevented at 42 degrees C indicates that the FtsZ84 protein is not inactivated at the nonpermissive temperature. The possibility that FtsZ84 is a more efficient division inhibitor than the wild-type FtsZ is discussed. Evidence is also presented showing that a gene adjacent to mutT codes for a product that, under certain conditions, suppresses the ftsZ84 mutation.  相似文献   

5.
The first visible event in prokaryotic cell division is the assembly of the soluble, tubulin-like FtsZ GTPase into a membrane-associated cytokinetic ring that defines the division plane in bacterial and archaeal cells. In the temperature-sensitive ftsZ84 mutant of Escherichia coli, this ring assembly is impaired at the restrictive temperature causing lethal cell filamentation. Here I present genetic and morphological evidence that a 2-fold higher dosage of the division gene zipA suppresses thermosensitivity of the ftsZ84 mutant by stabilizing the labile FtsZ84 ring structure in vivo. I demonstrate that purified ZipA promotes and stabilizes protofilament assembly of both FtsZ and FtsZ84 in vitro and cosediments with the protofilaments. Furthermore, ZipA organizes FtsZ protofilaments into arrays of long bundles or sheets that probably represent the physiological organization of the FtsZ ring in bacterial cells. The N-terminal cytoplasmic domain of membrane-anchored ZipA contains sequence elements that resemble the microtubule-binding signature motifs in eukaryotic Tau, MAP2 and MAP4 proteins. It is postulated that the MAP-Tau-homologous motifs in ZipA mediate its binding to FtsZ, and that FtsZ-ZipA interaction represents an ancient prototype of the protein-protein interaction that enables MAPs to suppress microtubule catastrophe and/or to promote rescue.  相似文献   

6.
FtsZ is an essential division protein in bacteria that functions by forming a ring at midcell that mediates septation. To further study the function of the Z ring the effect of a temperature-sensitive mutation, ftsZ84(Ts), on ring dynamics and septal progression was examined. Shifting a strain carrying an ftsZ84(Ts) mutation to the nonpermissive temperature led to loss of Z rings within 1 min. Septal ingrowth was immediately inhibited, and sharply demarcated septa, present at the time of the shift, were gradually replaced by blunted septa. These results indicate that the Z ring is required throughout septation. Shifting filaments to permissive temperature led to a rapid localization of FtsZ84 at regular intervals. Included in these localization events were complete and partial rings as well as spots, although some of these eventually aborted. These results reveal the rapid dynamics of FtsZ localization and indicate that nucleation sites are formed in the absence of FtsZ function. Interestingly, Z rings could not reform at division sites that were constricted although they could reform at sites that had not begun constriction.  相似文献   

7.
The earliest stage in bacterial cell division is the formation of a ring, composed of the tubulin-like protein FtsZ, at the division site. Tight spatial and temporal regulation of Z-ring formation is required to ensure that division occurs precisely at midcell between two replicated chromosomes. However, the mechanism of Z-ring formation and its regulation in vivo remain unresolved. Here we identify the defect of an interesting temperature-sensitive ftsZ mutant (ts1) of Bacillus subtilis. At the nonpermissive temperature, the mutant protein, FtsZ(Ts1), assembles into spiral-like structures between chromosomes. When shifted back down to the permissive temperature, functional Z rings form and division resumes. Our observations support a model in which Z-ring formation at the division site arises from reorganization of a long cytoskeletal spiral form of FtsZ and suggest that the FtsZ(Ts1) protein is captured as a shorter spiral-forming intermediate that is unable to complete this reorganization step. The ts1 mutant is likely to be very valuable in revealing how FtsZ assembles into a ring and how this occurs precisely at the division site.  相似文献   

8.
Streptomyces coelicolor A3(2) undergoes at least two kinds of cell division: vegetative septation leading to cross-walls in the substrate mycelium; and developmentally regulated sporulation septation in aerial hyphae. By isolation and characterization of a non-sporulating ftsZ mutant, we demonstrate a difference between the two types of septation. The ftsZ17(Spo) allele gave rise to a classical white phenotype. The mutant grew as well as the parent on plates, and formed apparently normal hyphal cross-walls, although with a small reduction in frequency. In contrast, sporulation septation was almost completely abolished, resulting in a phenotype reminiscent of whiH and ftsZdelta2p mutants. The ftsZ17(Spo) allele was partially dominant and had no detectable effect on the cellular FtsZ content. As judged from both immunofluorescence microscopy of FtsZ and translational fusion of ftsZ to egfp, the mutation prevented correct temporal and spatial assembly of Z rings in sporulating hyphae. Homology modelling of S. coelicolor FtsZ indicated that the mutation, an A249T change in the C-terminal domain, would be expected to alter the protein on the lateral face of FtsZ protofilaments. The results suggest that cytokinesis may be developmentally controlled at the level of Z-ring assembly during sporulation of S. coelicolor A3(2).  相似文献   

9.
Bacterial cell division relies on the formation and contraction of the Z ring, coordinated and regulated by a dynamic protein complex called the divisome. The cell division factor ZapA interacts directly with FtsZ and thereby increases FtsZ protofilament association and Z-ring stability. Here, we investigated ZapB interaction with ZapA and its effect on Z-ring formation and FtsZ protofilament bundling. The combination of the ftsZ84 allele that encodes an FtsZ variant that polymerizes inefficiently with a zapB null mutant resulted in a synthetic defective phenotype. Overproduction of ZapA led to the formation of aberrant FtsZ helical structures and delocalization of ZapB. The N-terminal end of ZapB was essential for ZapB-ZapA interaction, and amino acid changes close to the N terminus of ZapB exhibited reduced interaction with ZapA. Sedimentation assays showed that ZapB interacts strongly with ZapA and reduces ZapA's interaction with FtsZ in vitro. The morphology of the structures formed by ZapA and ZapB together was similar to the cables formed by ZapB in the presence of CaCl(2), a known ZapB bundling agent. The in vivo and in vitro data support a model in which ZapA interacts strongly with ZapB and the ZapA-ZapB interaction is favored over ZapA-FtsZ.  相似文献   

10.
Escherichia coli cells lacking low-molecular-weight penicillin-binding proteins (LMW PBPs) exhibit morphological alterations that also appear when the septal protein FtsZ is mislocalized, suggesting that peptidoglycan modification and division may work together to produce cell shape. We found that in strains lacking PBP5 and other LMW PBPs, higher FtsZ concentrations increased the frequency of branched cells and incorrectly oriented Z rings by 10- to 15-fold. Invagination of these rings produced improperly oriented septa, which in turn gave rise to asymmetric cell poles that eventually elongated into branches. Branches always originated from the remnants of abnormal septation events, cementing the relationship between aberrant cell division and branch formation. In the absence of PBP5, PBP6 and DacD localized to nascent septa, suggesting that these PBPs can partially substitute for the loss of PBP5. We propose that branching begins when mislocalized FtsZ triggers the insertion of inert peptidoglycan at unusual positions during cell division. Only later, after normal cell wall elongation separates the patches, do branches become visible. Thus, a relationship between the LMW PBPs and cytoplasmic FtsZ ultimately affects cell division and overall shape.  相似文献   

11.
In Escherichia coli, division site placement is regulated by the dynamic behavior of the MinCDE proteins, which oscillate from pole to pole and confine septation to the centers of normal rod-shaped cells. Some current mathematical models explain these oscillations by considering interactions among the Min proteins without recourse to additional localization signals. So far, such models have been applied only to regularly shaped bacteria, but here we test these models further by employing aberrantly shaped E. coli cells as miniature reactors. The locations of MinCDE proteins fused to derivatives of green fluorescent protein were monitored in branched cells with at least three conspicuous poles. MinCDE most often moved from one branch to another in an invariant order, following a nonreversing clockwise or counterclockwise direction over the time periods observed. In cells with two short branches or nubs, the proteins oscillated symmetrically from one end to the other. The locations of FtsZ rings were consistent with a broad MinC-free zone near the branch junctions, and Min rings exhibited the surprising behavior of moving quickly from one possible position to another. Using a reaction-diffusion model that reproduces the observed MinCD oscillations in rod-shaped and round E. coli, we predict that the oscillation patterns in branched cells are a natural response of Min behavior in cellular geometries having different relative branch lengths. The results provide further evidence that Min protein oscillations act as a general cell geometry detection mechanism that can locate poles even in branched cells.  相似文献   

12.
We have characterized the in vivo phenotypes of 17 mutations of Escherichia coli ftsZ. In particular, we determined whether these mutations can complement a null ftsZ phenotype, and we demonstrated that two noncomplementing mutations show partial dominant-negative behavior. We performed immunofluorescence microscopy to determine whether these mutants could assemble into normal or abnormal structures in vivo. The mutants separated into four classes-those that complemented the null and formed normal FtsZ rings, those that complemented the null but formed aberrant FtsZ structures, those that formed aberrant FtsZ structures and did not complement, and those that were unable to form any FtsZ structures. We did not find any mutations that produced nonfunctional Z rings of normal appearance. Surprisingly, some mutants that produced extensively spiraled Z-ring structures divided and grew with a normal doubling time. The analysis was carried out using a complementation system based on an ftsZ deletion strain, a temperature-sensitive rescue plasmid, and a complementation vector that placed mutated ftsZ alleles under the control of the pBAD promoter, which offered several advantages over previous systems.  相似文献   

13.
14.
Isogenic ftsZ, ftsQ, ftsA, pbpB, and ftsE cell division mutants of Escherichia coli were compared with their parent strain in temperature shift experiments. To improve detection of phenotypic differences in division behavior and cell shape, the strains were grown in glucose-minimal medium with a decreased osmolality (about 100 mosM). Already at the premissive temperature, all mutants, particularly the pbpB and ftsQ mutants, showed an increased average cell length and cell mass. The pbpB and ftsQ mutants also exhibited a prolonged duration of the constriction period. All strains, except ftsZ, continued to initiate new constrictions at 42 degrees C, suggesting the involvement of FtsZ in an early step of the constriction process. The new constrictions were blunt in ftsQ and more pronounced in ftsA and pbpB filaments, which also had elongated median constrictions. Whereas the latter strains showed a slow recovery of cell division after a shift back to the permissive temperature, ftsZ and ftsQ filaments recovered quickly. Recovery of filaments occurred in all strains by the separation of newborn cells with an average length of two times LO, the length of newborn cells at the permissive temperature. The increased size of the newborn cells could indicate that the cell division machinery recovers too slowly to create normal-sized cells. Our results indicate a phenotypic resemblance between ftsA and pbpB mutants and suggest that the cell division gene products function in the order FtsZ-FtsQ-FtsA, PBP3. The ftsE mutant continued to constrict and divide at 42 degrees C, forming short filaments, which recovered quickly after a shift back to the permissive temperature. After prolonged growth at 42 degree C, chains of cells, which eventually swelled up, were formed. Although the ftsE mutant produced filaments in broth medium at the restrictive temperature, it cannot be considered a cell division mutant under the presently applied conditions.  相似文献   

15.
Cytokinesis in bacteria is initiated by polymerization of the tubulin homologue FtsZ into a circular structure at midcell, the Z-ring. This structure functions as a scaffold for all other cell division proteins. Several proteins support assembly of the Z-ring, and one such protein, SepF, is required for normal cell division in Gram-positive bacteria and cyanobacteria. Mutation of sepF results in deformed division septa. It is unclear how SepF contributes to the synthesis of normal septa. We have studied SepF by electron microscopy (EM) and found that the protein assembles into very large (~50 nm diameter) rings. These rings were able to bundle FtsZ protofilaments into strikingly long and regular tubular structures reminiscent of eukaryotic microtubules. SepF mutants that disturb interaction with FtsZ or that impair ring formation are no longer able to align FtsZ filaments in vitro, and fail to support normal cell division in vivo. We propose that SepF rings are required for the regular arrangement of FtsZ filaments. Absence of this ordered state could explain the grossly distorted septal morphologies seen in sepF mutants.  相似文献   

16.
In Escherichia coli, cytokinesis is orchestrated by FtsZ, which forms a Z-ring to drive septation. Spatial and temporal control of Z-ring formation is achieved by the Min and nucleoid occlusion (NO) systems. Unlike the well-studied Min system, less is known about the anti-DNA guillotining NO process. Here, we describe studies addressing the molecular mechanism of SlmA (synthetic lethal with a defective Min system)-mediated NO. SlmA contains a TetR-like DNA-binding fold, and chromatin immunoprecipitation analyses show that SlmA-binding sites are dispersed on the chromosome except the Ter region, which segregates immediately before septation. SlmA binds DNA and FtsZ simultaneously, and the SlmA-FtsZ structure reveals that two FtsZ molecules sandwich a SlmA dimer. In this complex, FtsZ can still bind GTP and form protofilaments, but the separated protofilaments are forced into an anti-parallel arrangement. This suggests that SlmA may alter FtsZ polymer assembly. Indeed, electron microscopy data, showing that SlmA-DNA disrupts the formation of normal FtsZ polymers and induces distinct spiral structures, supports this. Thus, the combined data reveal how SlmA derails Z-ring formation at the correct place and time to effect NO.  相似文献   

17.
The Mycobacterium tuberculosis FtsZ (FtsZ(TB)), unlike other eubacterial FtsZ proteins, shows slow GTP-dependent polymerization and weak GTP hydrolysis activities [E.L. White, L.J. Ross, R.C. Reynolds, L.E. Seitz, G.D. Moore, D.W. Borhani, Slow polymerization of Mycobacterium tuberculosis FtsZ, J. Bacteriol. 182 (2000) 4028-4034]. In an attempt to understand the biological significance of these findings, we created mutations in the GTP-binding (FtsZ(G103S)) and GTP hydrolysis (FtsZ(D210G)) domains of FtsZ and characterized the activities of the mutant proteins in vitro and in vivo. We show that FtsZ(G103S) is defective for binding to GTP and polymerization activities, and exhibited reduced GTPase activity whereas FtsZ(D210G) protein is proficient in binding to GTP, showing reduced polymerization activity but did not show any measurable GTPase activity. Visualization of FtsZ-GFP structures in ftsZ merodiploid strains by fluorescent microscopy revealed that FtsZ(D210G) is proficient in associating with Z-ring structures whereas FtsZ(G103S) is not. Finally, we show that Mycobacterium smegmatis ftsZ mutant strains producing corresponding mutant FtsZ proteins are non-viable indicating that mutant FtsZ proteins cannot function as the sole source for FtsZ, a result distinctly different from that reported for Escherichia coli. Together, our results indicate that optimal GTPase and polymerization activities of FtsZ are required to sustain cell division in mycobacteria and that the same conserved mutations in different bacterial species have distinct phenotypes.  相似文献   

18.
ftsZ is an essential cell division gene in Escherichia coli.   总被引:28,自引:21,他引:7       下载免费PDF全文
The ftsZ gene is thought to be an essential cell division gene in Escherichia coli. We constructed a null allele of ftsZ in a strain carrying additional copies of ftsZ on a plasmid with a temperature-sensitive replication defect. This strain was temperature sensitive for cell division and viability, confirming that ftsZ is an essential cell division gene. Further analysis revealed that after a shift to the nonpermissive temperature, cell division ceased when the level of FtsZ started to decrease, indicating that septation is very sensitive to the level of FtsZ. Subsequent studies showed that nucleoid segregation was normal while FtsZ was decreasing and that ftsZ expression was not autoregulated. The null allele could not be complemented by lambda 16-2, even though this bacteriophage can complement the thermosensitive ftsZ84 mutation and carries 6 kb of DNA upstream of the ftsZ gene.  相似文献   

19.
In the Escherichia coli pgsA null mutant, which lacks the major acidic phospholipids, the Rcs phosphorelay signal transduction system is activated, causing thermosensitive growth. The mutant grows poorly at 37 degrees C and lyses at 42 degrees C. We showed that the poor growth at 37 degrees C was corrected by disruption of the rcsA gene, which codes for a coregulator protein that interacts with the RcsB response regulator of the phosphorelay system. However, mutant cells still lysed when incubated at 42 degrees C even in the absence of RcsA. We conclude that the activated Rcs phosphorelay in the pgsA null mutant has both RcsA-dependent and -independent growth inhibitory effects. Since the Rcs system has been shown to positively regulate the essential cell division genes ftsA and ftsZ independently of RcsA, we measured cellular levels of the FtsZ protein, but found that the growth defect of the mutant at 42 degrees C did not involve a change in the level of this protein.  相似文献   

20.
Mutations in the essential cell division gene ftsZ confer resistance to SulA, a cell division inhibitor that is induced as part of the SOS response. In this study we have purified and characterized the gene products of six of these mutant ftsZ alleles, ftsZ1, ftsZ2, ftsZ3, ftsZ9, ftsZ100, and ftsZ114, and compared their properties to those of the wild-type gene product. The binding of GTP was differentially affected by these mutations. FtsZ3 exhibited no detectable GTP binding, and FtsZ9 and FtsZ100 exhibited markedly reduced GTP binding. In contrast, FtsZ1 and FtsZ2 bound GTP almost as well as the wild type, and FtsZ114 displayed increased GTP binding. Furthermore, we observed that all mutant FtsZ proteins exhibited markedly reduced intrinsic GTPase activity. It is likely that mutations in ftsZ that confer sulA resistance alter the conformation of the protein such that it assumes the active form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号