首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the platelets of the mouse are refractory to the direct effects of platelet-activating-factor (PAF), tail vein injection of 10-150 micrograms/kg PAF produces lethal anaphylactic shock. Sensitivity varies with strain and source: Swiss Webster mice show a range of sensitivity and DBA/2 (complement C5-deficient) mice are very resistant. At lethal doses of PAF, animals show labored respiration and general depression; death occurs within 15-45 min. Dexamethasone administered at least 1.5 hr prior consistently protects, whereas the cyclooxygenase inhibitors do not. Antihistamines, adrenergic antagonists, and methysergide have no effect, but cyproheptadine is partially protective at near lethal doses. Calcium entry blockers and calcium chelators, tetracycline and chlortetracycline are partially protective at very high doses consistent with non-specific effects on calcium dependent processes. The arachidonic acid lipoxygenase inhibitors BW755c, phenidone, nordihydroguaiaretic acid and diphenyldisulfide provide nearly complete protection after oral administration of 50-200 mg/kg. Phosphodiesterase inhibitors and dapsone are also effective orally. The leukotriene antagonist FPL55712 administered intraperitoneally (10 mg/kg) 5 min. prior to PAF challenge provides almost complete protection. PAF-induced mortality in the mouse represents a small animal model of systemic anaphylaxis particularly useful for the systemic testing of arachidonic acid lipoxygenase inhibitors and leukotriene antagonists.  相似文献   

2.
Septic shock is one of leading causes of morbidity and mortality in hospital patients. However, genetic factors predisposing to septic shock are not fully understood. Our previous work showed that MCP-induced protein 1 (MCPIP1) was induced by lipopolysaccharides (LPSs), which then negatively regulates LPS-induced inflammatory signaling in vitro. Here we report that although MCPIP1 was induced by various toll-like receptor (TLR) ligands in macrophages, MCPIP1-deficient mice are extremely susceptible to TLR4 ligand (LPS)-induced septic shock and death, but not to the TLR2, 3, 5 and 9 ligands-induced septic shock. Consistently, LPS induced tumor necrosis factor α (TNFα) production in MCPIP1-deficient mice was 20-fold greater than that in their wild-type littermates. Further analysis revealed that MCPIP1-deficient mice developed severe acute lung injury after LPS injection and JNK signaling was highly activated in MCPIP1-deficient lungs after LPS stimulation. Finally, macrophage-specific MCPIP1 transgenic mice were partially protected from LPS-induced septic shock, suggesting that inflammatory cytokines from sources other than macrophages may significantly contribute to the pathogenesis of LPS-induced septic shock. Taken together, these results suggest that MCPIP1 selectively suppresses TLR4 signaling pathway and protects mice from LPS-induced septic shock.  相似文献   

3.
The contributions of Fc receptors (FcRs) for IgG (FcgammaRs) and complement to immune complex (IC)-mediated peritonitis were evaluated in BALB/c-, C57BL/6-, FcRgamma chain-, and FcR type III for IgG (FcgammaRIII)-deficient mice, backcrossed to the C57BL/6 background. In BALB/c mice, but not in C57BL/6 mice, neutrophil migration was markedly attenuated after complement depletion. In mice lacking FcRgamma chain, neutrophil migration was abolished, whereas it was unaffected in FcgammaRIII-deficient mice. Huge amounts of TNF-alpha (TNF) were found in the peritoneal exudate of BALB/c and C57BL/6 mice but were absent in mice lacking FcRgamma chain or FcgammaRIII. Surprisingly, a functional inhibition of TNF in BALB/c and C57BL/6 mice had no effect on neutrophil infiltration. These data provide evidence that in IC peritonitis, the activation of FcR type I for IgG on peritoneal macrophages and the activation of the complement cascade, but not the interaction of ICs with FcgammaRIII and the subsequent release of TNF, initiate the inflammatory response in BALB/c and C57BL/6 mice.  相似文献   

4.
Injection of tumour necrosis factor (TNF) in animals causes severe liver cell toxicity, especially when D-(+)-galactosamine (GalN) is co-administered. After challenge with TNF/GalN, serum complement activity (CH50 and APCH50) decreased dramatically, suggesting strong activation of both the classical and the alternative pathways. TNF or GalN alone had no such effect. A cleavage product of complement protein C3 [C3(b)] was deposited on the surface of hepatocytes of TNF/GalN-treated mice. Intravenous administration of cobra venom factor (CVF), which depletes complement, inhibited the development of hepatitis. However, CVF pretreatment also protected C3-deficient mice. Pretreatment of mice with a C1q-depleting antibody did not prevent TNF/GalN lethality, although the anti-C1q antibody had depleted plasma C1q. Factor B-deficient and C3-deficient mice, generated by gene targeting, proved to be as sensitive to TNF/GalN as control mice. Furthermore, induction of lethal shock by platelet-activating factor, an important mediator in TNF-induced hepatic failure, was not reduced in C3-deficient mice. These data indicate that complement, although activated, plays no major role in the generation of acute lethal hepatic failure in this model and that CVF-induced protection is independent of complement depletion.  相似文献   

5.
Lipopolysaccharide (LPS) signaling through Toll-like receptor-4 (TLR-4) has been implicated in the pathogenesis of many infectious diseases. Some believe that TLR-mediated pathogenicity is due, in part, to the lipid pro-inflammatory mediator platelet-activating factor (PAF), but this has been questioned. To test the direct contribution of PAF in endotoxemia in murine models, we injected PAF intraperitoneally into Swiss albino mice in the presence and absence of LPS. PAF alone (5 μg/mouse) caused death within 15–20 min, but this could be prevented by pretreating mice with PAF-receptor (PAF-R) antagonists or PAF-acetylhydrolase (PAF-AH). A low dose of LPS (5 mg/kg body wt) did not impair PAF-induced death, whereas higher doses (10 or 20 mg/kg body wt) delayed death, probably via LPS cross-tolerance. Cross-tolerance occurred only when PAF was injected simultaneously with LPS or within 30 min of LPS injection. Tolerance does not appear to be due to an abundant soluble mediator. Histologic examination of lungs and liver and measurement of circulating TNF-α and IL-10 levels suggested that the inflammatory response is not diminished during cross-tolerance. Interestingly, aspirin, a non-specific cyclooxygenase (COX) inhibitor, partially blocked PAF-induced sudden death, whereas NS-398, a specific COX-2 inhibitor, completely protected mice from the lethal effects of PAF. Both COX inhibitors (at 20 mg/kg body wt) independently amplified the cross-tolerance exerted by higher dose of LPS, suggesting that COX-derived eicosanoids may be involved in these events. Thus, PAF does not seem to have a protective role in endotoxemia, but its effects are delayed by LPS in a COX-sensitive way. These findings are likely to shed light on basic aspects of the endotoxin cross-tolerance occurring in many disease conditions and may offer new opportunities for clinical intervention.  相似文献   

6.
The mechanisms that contribute to inflammatory damage following ischemic stroke are poorly characterized, but studies indicate a role for both complement and P-selectin. In this study, we show that compared with wild-type mice, C3-deficient mice showed significant improvement in survival, neurological deficit, and infarct size at 24 h after middle cerebral artery occlusion and reperfusion. Furthermore, P-selectin protein expression was undetectable in the cerebral microvasculature of C3-deficient mice following reperfusion, and there was reduced neutrophil influx, reduced microthrombus formation, and increased blood flow postreperfusion in C3-deficient mice. We further investigated the use of a novel complement inhibitory protein in a therapeutic paradigm. Complement receptor 2 (CR2)-Crry inhibits complement activation at the C3 stage and targets to sites of complement activation. Treatment of normal mice with CR2-Crry at 30 min postreperfusion resulted in a similar level of protection to that seen in C3-deficient mice in all of the above-measured parameters. The data demonstrate an important role for complement in cerebrovascular thrombosis, inflammation, and injury following ischemic stroke. P-selectin expression in the cerebrovasculature, which is also implicated in cerebral ischemia and reperfusion injury, was shown to be distal to and dependent on complement activation. Data also show that a CR2-targeted approach of complement inhibition provides appropriate bioavailability in cerebral injury to enable complement inhibition at a dose that does not significantly affect systemic levels of serum complement activity, a potential benefit for stroke patients where immunosuppression would be undesirable due to significantly increased susceptibility to lung infection.  相似文献   

7.
The ability of three platelet activating factor (PAF) antagonists, BN52021, L652, 731 and 48740RP, and the leukotriene antagonist FPL55712 to block iv PAF-induced death was tested in mice. PAF-induced sudden death was been previously characterized as a model of systemic anaphylaxis and circulatory shock related its hypotensive actions. Of the drugs, BN52021 and L652, 731 provided dose-dependent protection against PAF toxicity, whereas the others had no effect. 48740RP was, however active against PAF-induced rabbit platelet aggregation. BN52021 was inactive in three other mouse sudden death models in which arachidonic acid, U46619 or collagen combined with epinephrine is injected iv to provoke a thrombotic/ischemic sudden death. In contrast, the TXA2 antagonist SQ29548 inhibited the acute toxicity of two of these latter challenges (arachidonic acid and thromboxane agonist U46619), but was inactive against PAF lethality.These results suggest that PAF toxicity in mice is a specific model for PAF agonism, and is not mediated by TXA2 or peptido-leukotrienes. Further, PAF-induced mortality should be a simple and useful technique for testing potential PAF antagonists for activity by various routes of administration.  相似文献   

8.
Prostaglandins and Prostaglandin-analogues were investigated for their ability to protect mice from platelet-activating factor (PAF) induced shock. 75% mortality in female NMRI mice was induced by i.v. injection of 75 micrograms/kg PAF. Nileprost and PGE1, the most potent substances, produced a dose dependent protection against PAF. Iloprost and PGI2 were less effective. PGE2, nalador, flunoprost and U 46619 were neither protective nor deleterious. The strong difference in the effectiveness between the two prostaglandins of the E-series and the poor effect of PGI2 and the PGI2 analogue is remarkable. Flunoprost and U 46619 that increased the TXB2 synthesis or release in two experimental models did not enhance the PAF mortality; TXA2 seems to be only a secondary mediator of the acute PAF-induced death.  相似文献   

9.
The venom of the snake Bothrops asper, the most important poisonous snake in Central America, evokes an inflammatory response, the mechanisms of which are not well characterized. The objectives of this study were to investigate whether B. asper venom and its purified toxins--phospholipases and metalloproteinase--activate the complement system and the contribution of the effect on leucocyte recruitment. In vitro chemotaxis assays were performed using Boyden's chamber model to investigate the ability of serum incubated with venom and its purified toxins to induce neutrophil migration. The complement consumption by the venom was evaluated using an in vitro haemolytic assay. The importance of complement activation by the venom on neutrophil migration was investigated in vivo by injecting the venom into the peritoneal cavity of C5-deficient mice. Data obtained demonstrated that serum incubated with crude venom and its purified metalloproteinase BaP-1 are able to induce rat neutrophil chemotaxis, probably mediated by agent(s) derived from the complement system. This hypothesis was corroborated by the capacity of the venom to activate this system in vitro. The involvement of C5a in neutrophil chemotaxis induced by venom-activated serum was demonstrated by abolishing migration when neutrophils were pre-incubated with antirat C5a receptor antibody. The relevance of the complement system in in vivo leucocyte mobilization was further demonstrated by the drastic decrease of this response in C5-deficient mice. Pre-incubation of serum with the soluble human recombinant complement receptor type 1 (sCR 1) did not prevent the response induced by the venom, but abolished the migration evoked by metalloproteinase-activated serum. These data show the role of the complement system in bothropic envenomation and the participation of metalloproteinase in the effect. Also, they suggest that the venom may contain other component(s) which can cause direct activation of C5a.  相似文献   

10.
Adriamycin nephropathy is a model of focal segmental glomerulosclerosis, characterized by proteinuria and progressive glomerulosclerosis and tubulointerstitial damage. In this study, we examined the role of complement in the etiology of adriamycin nephropathy in mice. We used mice deficient in C1q, factor D, C3, and CD59, and compared them with strain-matched controls. C3 deposition occurred in the glomeruli of wild-type mice as early as 48 h following a single i.v. injection of adriamycin. C3-deficient mice developed significantly less proteinuria and less podocyte injury at day 3 postadriamycin than controls, suggesting that complement is important in mediating the early podocyte injury. At later time points, C3-deficient mice were protected from glomerulosclerosis, tubulointerstitial injury, and renal dysfunction. Factor D-deficient mice were also protected from renal disease, confirming the importance of alternative pathway activation in this model. In contrast, C1q-deficient mice developed similar disease to controls, indicating that the complement cascade was not activated via the classical pathway. CD59-deficient mice, which lack adequate control of C5b-9 formation, developed significantly worse histological and functional markers of renal disease than controls. Interestingly, although more C9 deposited in glomeruli of CD59-deficient mice than controls, in neither group was tubulointerstitial C9 staining apparent. We have demonstrated for the first time that alternative pathway activation of complement plays an important role in mediating the initial glomerular damage in this in vivo model of focal segmental glomerulosclerosis. Lack of CD59, which regulates the membrane attack complex, led to greater glomerular and tubulointerstitial injury.  相似文献   

11.
The development of LPS tolerance has been suggested to be mediated by an inhibition of cytokine synthesis. Here we have studied serum IL-6 and TNF levels in mice after LPS administration. Repeated administration of LPS (35 micrograms daily for 4 days) to mice induced a refractoriness (tolerance) to subsequent administrations of LPS in terms of induction of circulating IL-6 and TNF. To investigate the mechanism by which LPS down-regulates its own induction of cytokine synthesis and the relationship between IL-6 and TNF production, we attempted to revert the inhibition of IL-6 and TNF production using agents like PMA or IFN-gamma, previously reported to activate macrophage production of cytokines. Pretreatment with PMA (4 micrograms, 10 min before LPS) partially restored IL-6 production in LPS-tolerant mice given 2 micrograms LPS. On the other hand, PMA did not restore TNF induction in LPS-tolerant mice, even when administered with high doses of LPS (up to 200 micrograms). A similar reversal of LPS resistance to IL-6, but not TNF, induction by PMA was observed in genetically LPS-resistant C3H/HeJ mice. IFN-gamma also restored, although to a lesser extent than PMA, IL-6 production. However, unlike PMA, IFN-gamma could also partially restore TNF production in LPS-tolerant mice, although only when LPS was administered at high doses. By contrast with PMA, IFN-gamma was clearly more active in restoring TNF synthesis than that of IL-6. Similar results were obtained in genetically LPS-unresponsive C3H/HeJ mice. These data suggest that different mechanisms are implicated in the inhibition of IL-6 and TNF synthesis in LPS-tolerant mice and that part of this inhibition can be overcome by PMA or IFN-gamma.  相似文献   

12.
The role of leukotrienes (LTs) in the pathogenesis of platelet-activating factor (PAF)-induced death in mice was reinvestigated, since previously reported results are in conflict. A novel 5-lipoxygenase inhibitor, E6080, and a leukotriene antagonist, LY17883, protected mice from PAF-induced death in a dose-dependent manner, while the well-known 5-lipoxygenase inhibitor, AA861, was less effective than E6080. After the intravenous injection of PAF in mice, immunoreactive leukotriene C4 (i-LTC4), which was co-eluted with authentic LTC4 in HPLC, was significantly increased in bronchoalveolar lavage fluid (BALF). Oral administration of E6080 suppressed the increase in i-LTCM4. The results suggest that LTs may play an important role in PAF-induced lethality in mice.  相似文献   

13.
The relative inflammatory roles ofneutrophils, selectins, and terminal complement components areinvestigated in this study of skeletal muscle reperfusion injury. Miceunderwent 2 h of hindlimb ischemia followed by 3 h ofreperfusion. The role of neutrophils was defined by immunodepletion,which reduced injury by 38%, as did anti-selectin therapy withrecombinant soluble P-selectin glycoprotein ligand-immunoglobulin (Ig)fusion protein. Injury in C5-deficient and soluble complement receptortype 1-treated wild-type mice was 48% less than that of untreatedwild-type animals. Injury was restored in C5-deficient micereconstituted with wild-type serum, indicating the effector role ofC5-9. Neutropenic C5-deficient animals showed additive reductionin injuries (71%), which was lower than C5-deficientneutrophil-replete mice, indicating neutrophil activity withoutC5a. Hindlimb histological injury was worse in ischemicwild-type and C5-deficient animals reconstituted with wild-type serum.In conclusion, the membrane attack complex and neutrophils actadditively to mediate skeletal muscle reperfusion injury. Neutrophilactivity is independent of C5a but is dependent on selectin-mediated adhesion.

  相似文献   

14.
Abstract. Intravenous (i.v.) injection of mice with lipopolysaccharide (LPS), and the proteolytic enzymes trypsin and proteinase, mobilizes pluripotent haemopoietic stem cells (CFU-s) as well as granulocyte-macrophage progenitor cells (GM-CFU) and the early progenitors of the erythroid lineage (E-BFU) from the haemopoietic tissues into the peripheral blood. We investigated the involvement of the complement (C) system in this process. It appeared that the early mobilization induced by LPS and other activators of the alternative complement pathway, such as Listeria monocytogenes (Lm) and zymosan, but not that induced by the proteolytic enzymes, was absent in C5-deficient mice. the mobilization by C activators in these mice could be restored by injection of C5-sufficient serum, suggesting a critical role for C5.
The manner in which C5 was involved in the C activation-mediated stem cell mobilization was studied using a serum transfer system. C5-sufficient serum, activated in vitro by incubation with Lm and subsequently liberated from the bacteria, caused mobilization in both C5-sufficient and C5-deficient mice. C5-deficient serum was not able to do so. the resistance of the mobilizing principle to heat treatment (56°C, 30 min) strongly suggests that it is identical with the C5 split product C5a, or an in vivo derivative of C5a. This conclusion was reinforced by the observation that a single injection of purified rat C5a into C5-deficient mice also induced mobilization of CFU-s.  相似文献   

15.
Intravenous (i.v.) injection of mice with lipopolysaccharide (LPS), and the proteolytic enzymes trypsin and proteinase, mobilizes pluripotent haemopoietic stem cells (CFU-s) as well as granulocyte-macrophage progenitor cells (GM-CFU) and the early progenitors of the erythroid lineage (E-BFU) from the haemopoietic tissues into the peripheral blood. We investigated the involvement of the complement (C) system in this process. It appeared that the early mobilization induced by LPS and other activators of the alternative complement pathway, such as Listeria monocytogenes (Lm) and zymosan, but not that induced by the proteolytic enzymes, was absent in C5-deficient mice. The mobilization by C activators in these mice could be restored by injection of C5-sufficient serum, suggesting a critical role for C5. The manner in which C5 was involved in the C activation-mediated stem cell mobilization was studied using a serum transfer system. C5-sufficient serum, activated in vitro by incubation with Lm and subsequently liberated from the bacteria, caused mobilization in both C5-sufficient and C5-deficient mice. C5-deficient serum was not able to do so. The resistance of the mobilizing principle to heat treatment (56 degrees C, 30 min) strongly suggests that it is identical with the C5 split product C5a, or an in vivo derivative of C5a. This conclusion was reinforced by the observation that a single injection of purified rat C5a into C5-deficient mice also induced mobilization of CFU-s.  相似文献   

16.
Complement activation and neutrophil stimulation are two major components in events leading to ischemia and reperfusion (IR) injury. C1 inhibitor (C1INH) inhibits activation of each of the three pathways of complement activation and of the contact system. It is also endowed with anti-inflammatory properties that are independent of protease inhibition. The goal of these studies was to investigate the role and mechanism of C1INH in alleviating IR-induced intestinal injury. C57BL/6, C1INH-deficient (C1INH(-/-)), bradykinin type 2 receptor-deficient (Bk2R(-/-)), and C3-deficient mice (C3(-/-)) were randomized into three groups: sham operated control, IR, and IR + C1INH-treated groups. Ischemia was generated by occlusion of the superior mesenteric artery followed by reperfusion. C1INH or reactive center-cleaved inactive C1INH (iC1INH) was injected intravenously before reperfusion. IR resulted in intestinal injury in C57BL/6, C1INH(-/-), Bk2R(-/-), and C3(-/-) mice with significantly increased neutrophil infiltration into intestinal tissue. In each mouse strain, C1INH treatment reduced intestinal tissue injury and attenuated leukocyte infiltration compared with the untreated IR group. C1INH inhibited leukocyte rolling in the mesenteric veins of both C57BL/6 and C3-deficient mice subjected to IR. C1INH treatment also improved the survival rate of C57BL/6 and C1INH(-/-) mice following IR. Similar findings were observed in the IR animals treated with iC1INH. These studies emphasize the therapeutic benefit of C1INH in preventing intestinal injury caused by IR. In addition to the protective activities mediated via inhibition of the complement system, these studies indicate that C1INH also plays a direct role in suppression of leukocyte transmigration into reperfused tissue.  相似文献   

17.
Chen M  Forrester JV  Xu H 《PloS one》2011,6(8):e22818
We have shown previously that a para-inflammatory response exists at the retinal/choroidal interface in the aging eye; and this response plays an important role in maintaining retinal homeostasis under chronic stress conditions. We hypothesized that dysregulation of the para-inflammatory response may result in an overt pro-inflammatory response inducing retinal degeneration. In this study, we examined this hypothesis in mice deficient in chemokine CCL2 or its cognate receptor CCR2. CCL2- or CCR2-deficient mice developed retinal degenerative changes with age, characterized as retinal pigment epithelial (RPE) cell and photoreceptor cell death. Retinal cell death was associated with significantly more subretinal microglial accumulation and increased complement activation. In addition, monocytes from CCL2- or CCR2-deficient mice had reduced capacity for phagocytosis and chemotaxis, expressed less IL-10 but more iNOS, IL-12 and TNF-α when compared to monocytes from WT mice. Complement activation at the site of RPE cell death resulted in C3b/C3d but not C5b-9 deposition, indicating only partial activation of the complement pathway. Our results suggest that altered monocyte functions may convert the protective para-inflammatory response into an overtly harmful inflammation at the retina/choroidal interface in CCL2- or CCR2-deficient mice, leading to RPE and photoreceptor degeneration. These data support a concept whereby a protective para-inflammatory response relies upon a normally functioning innate immune system. If the innate immune system is deficient chronic stress may tip the balance towards an overt inflammatory response causing cell/tissue damage.  相似文献   

18.
Platelet-activating factor (PAF) is a potent endogenous mediator of bowel inflammation. It activates neutrophils that are needed to initiate the inflammatory response. Macrophage inflammatory protein-2 (MIP-2), a critical C-X-C chemokine secreted by macrophages and epithelial cells, is a potent chemoattractant for neutrophils. Whereas MIP-2 has been previously shown to mediate the injury in various organs, its role in acute intestinal injury has never been assessed. In this study, we first investigated the effect of PAF on MIP-2 expression in the intestine. Anesthetized young adult male Sprague-Dawley rats were injected intravenously with either PAF (1.5 microg/kg) or saline. Sixty minutes later, ileal MIP-2 gene expression was determined by semiquantitative RT-PCR, and plasma and ileal MIP-2 protein was determined by ELISA. In a second step, we assessed the role of MIP-2 in PAF-induced bowel injury. Rats were pretreated with rabbit anti-rat MIP-2 antibodies or control IgG for 90 min and then injected intravenously with PAF (2.5 microg/kg) for 90 min. We found that, in the rat intestine, 1) MIP-2 mRNA was only minimally expressed constitutively in sham-operated animals; 2) MIP-2 mRNA was significantly upregulated in response to PAF; 3) MIP-2 protein plasma levels and local production of MIP-2 in the ileum were markedly induced by PAF; 4) the administration of anti-rat MIP-2 IgG, but not control rabbit IgG, markedly reduced PAF-induced bowel injury (injury scores of 0.19 +/- 0.09 vs. 1.12 +/- 0.43, P < 0.05), hypotension, and leukopenia but did not reduce PAF-induced hemoconcentration. Thus we conclude that MIP-2 mediates PAF-induced intestinal injury.  相似文献   

19.
In vitro studies of hepatocytes have implicated over-activation of c-Jun N-terminal kinase (JNK) signaling as a mechanism of tumor necrosis factor-alpha (TNF)-induced apoptosis. However, the functional significance of JNK activation and the role of specific JNK isoforms in TNF-induced hepatic apoptosis in vivo remain unclear. JNK1 and JNK2 function was, therefore, investigated in the TNF-dependent, galactosamine/lipopolysaccharide (GalN/LPS) model of liver injury. The toxin GalN converted LPS-induced JNK signaling from a transient to prolonged activation. Liver injury and mortality from GalN/LPS was equivalent in wild-type and jnk1-/- mice but markedly decreased in jnk2-/- mice. This effect was not secondary to down-regulation of TNF receptor 1 expression or TNF production. In the absence of jnk2, the caspase-dependent, TNF death pathway was blocked, as reflected by the failure of caspase-3 and -7 and poly(ADP-ribose) polymerase cleavage to occur. JNK2 was critical for activation of the mitochondrial death pathway, as in jnk2-/- mice Bid cleavage and mitochondrial translocation and cytochrome c release were markedly decreased. This effect was secondary to the failure of jnk2-/- mice to activate caspase-8. Liver injury and caspase activation were similarly decreased in jnk2 null mice after GalN/TNF treatment. Ablation of jnk2 did not inhibit GalN/LPS-induced c-Jun kinase activity, although activity was completely blocked in jnk1-/- mice. Toxic liver injury is, therefore, associated with JNK over-activation and mediated by JNK2 promotion of caspase-8 activation and the TNF mitochondrial death pathway through a mechanism independent of c-Jun kinase activity.  相似文献   

20.
Probiotics have been used as alternative prevention and therapy modalities in intestinal inflammatory disorders including inflammatory bowel diseases (IBD) and necrotizing enterocolitis (NEC). Pathophysiology of IBD and NEC includes the production of diverse lipid mediators, including platelet-activating factor (PAF) that mediate inflammatory responses in the disease. PAF is known to activate NF-κB, however, the mechanisms of PAF-induced inflammation are not fully defined. We have recently described a novel PAF-triggered pathway of NF-κB activation and IL-8 production in intestinal epithelial cells (IECs), requiring the pivotal role of the adaptor protein Bcl10 and its interactions with CARMA3 and MALT1. The current studies examined the potential role of the probiotic Lactobacillus acidophilus in reversing the PAF-induced, Bcl10-dependent NF-κB activation and IL-8 production in IECs. PAF treatment (5 µM×24 h) of NCM460 and Caco-2 cells significantly increased nuclear p65 NF-κB levels and IL-8 secretion (2-3-fold, P<0.05), compared to control, which were blocked by pretreatment of the cells for 6 h with L. acidophilus (LA) or its culture supernatant (CS), followed by continued treatments with PAF for 24 h. LA-CS also attenuated PAF-induced increase in Bcl10 mRNA and protein levels and Bcl10 promoter activity. LA-CS did not alter PAF-induced interaction of Bcl10 with CARMA3, but attenuated Bcl10 interaction with MALT1 and also PAF-induced ubiquitination of IKKγ. Efficacy of bacteria-free CS of LA in counteracting PAF-induced inflammatory cascade suggests that soluble factor(s) in the CS of LA mediate these effects. These results define a novel mechanism by which probiotics counteract PAF-induced inflammation in IECs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号