首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homogeneously developed oak ( Quercus robur L.) microcuttings were challenged in a Petri-dish system with the mycobionts Piloderma croceum J. Erikss. & Hjortst. and Paxillus involutus (Batsch) Fr. Non-destructive observations over 10 wk followed by d. wt measurements at the end of the assays served to precisely characterize root and shoot development, dynamics of mycorrhizal colonization and morphological ratio. In the system, plant development, and especially root morphogenesis, had more similarities to those of stump cuttings or of older seedlings than to those of 3-month-old seedlings. Whereas Paxillus involutus displayed early mycorrhizal colonization and had no significant morphological effects on the host Piloderma croceum modified markedly the entire plant development before a delayed mycorrhiza formation. The latter mycobiont stimulated elongation and production of the lateral root system and also increased the leaf surface. However, no corresponding weight increases were noted, which was reflected by significant increase of both specific root length and specific leaf area. These differential effects are discussed in relation to data concerning carbon requirement and auxin production of the mycobionts. The developed system was shown to be highly suitable for comparative studies with diverse mycobionts on recognition and physiological balance between partners before, and in the early stage of, formation of mycorrhizas.  相似文献   

2.
Here, a conceptual model is presented for the development of Phytophthora disease in pedunculate oak. The model is presented using the causal loop diagram tool and gives an overview of how various abiotic and biotic factors, such as soil moisture, nutrient availability and mycorrhizal colonization, may affect the reproduction and the infective capacity of soil-borne Phytophthora species, the susceptibility of the host and subsequent disease development. It is suggested that the link between the root damage caused by Phytophthora species and overall tree vitality is in the assimilation and allocation of carbon within the plants. The potential impact of environmental factors on these processes is discussed. The model is presented with reference to scenarios related to variation in soil moisture and nutrient availability. The need for species-specific validation of the model and the implications of the model are discussed.  相似文献   

3.
4.
5.
BACKGROUND AND AIMS: Populations of oak (Quercus petraea and Q. robur) were investigated using morphological and molecular (AFLP) analyses to assess species distinction. The study aimed to describe species distinction in Irish oak populations and to situate this in a European context. METHODS: Populations were sampled from across the range of the island of Ireland. Leaf morphological characters were analysed through clustering and ordination methods. Putative neutral molecular markers (AFLPs) were used to analyse the molecular variation. Cluster and ordination analyses were also performed on the AFLP markers in addition to calculations of genetic diversity and F-statisitcs. KEY RESULTS: A notable divergence was uncovered between the morphological and molecular analyses. The morphological analysis clearly differentiated individuals into their respective species, whereas the molecular analysis did not. Twenty species-specific AFLP markers were observed from 123 plants in 24 populations but none of these was species-diagnostic. Principal Coordinate Analysis of the AFLP data revealed a clustering, across the first two axes, of individuals according to population rather than according to species. High F(ST) values calculated from AFLP markers also indicated population differentiation (F(ST) = 0.271). Species differentiation accounted for only 13 % of the variation in diversity compared with population differentiation, which accounted for 27 %. CONCLUSIONS: The results show that neutral molecular variation is partitioned more strongly between populations than between species. Although this could indicate that the populations of Q. petraea and Q. robur studied may not be distinct species at a molecular level, it is proposed that the difficulty in distinguishing the species in Irish oak populations using AFLP markers is due to population differentiation masking species differences. This could result from non-random mating in small, fragmented woodland populations. Hybridization and introgression between the species could also have a significant role.  相似文献   

6.
Saplings of pedunculate oak (Quercus robur L.) were exposed at an outdoor facility to modulated levels of elevated UV-B radiation (280–315 nm) under treatment arrays of cellulose diacetate-filtered fluorescent lamps which also produced UV-A radiation (315–400 nm). Saplings were also exposed to UV-A radiation alone under control arrays of polyester-filtered lamps and to ambient levels of solar radiation under arrays of unenergized lamps. The UV-B treatment corresponded to a 30% elevation above the ambient level of erythemally weighted UV-B radiation. Sapling growth and the occurrence of associated organisms were examined over two years. In both years, leaves of saplings exposed to UV-B treatment were thicker and smaller in area relative to leaves exposed to ambient and control levels of radiation. UV-B treatment also retarded bud burst at one sampling in the first year of the study. Some responses were recorded which were common to both treatment and control arrays, implying that UV-A radiation, or some other factor associated with energized lamps, was responsible for the observed effects. Saplings under treatment and control arrays were taller in the first year of the study, suffered greater herbivory from chewing insects, and had lower root dry weights and greater insertion heights of secondary branches than saplings exposed to ambient levels of radiation. Exposure of saplings to elevated UV-A radiation alone under control arrays increased estimated leaf volumes in the second year of the study and reduced the number of secondary branches and the total number of branches per sapling after two years, relative to both treatment and ambient arrays. There were no effects of elevated ultraviolet radiation on shoot or total plant weight, root/shoot ratios, stem diameter, the numbers or insertion heights of primary or tertiary branches, total leaf number, timing of leaf fall or frequency of ectomycorrhizas. Our study suggests that any increases in UV-B radiation as a result of stratospheric ozone depletion will influence the growth of Q. robur primarily through effects on leaf morphology.  相似文献   

7.
DNA-based quantification methods such as real-time TaqMan PCR allow a rapid and highly sensitive species-specific quantification of isolated fungal DNA material, but most quantification systems are only able to measure relative amounts of biomass or biomass changes during different treatments. In this experiment, an already established DNA quantification system for the ectomycorrhizal fungus Piloderma croceum, based on the ITS region of ribosomal DNA, was calibrated to absolute biomass to obtain a direct correlation between mycelial biomass and isolated ITS copies. Thin layers of sterile mycelia were cultured on slides. The mycelial biomass was calculated from measurements of the total hyphal length using image analysis, followed by determination of the mycelial volume, and multiplied by the specific weight of hyphae obtained from literature data. Using the very same mycelium, the number of ITS copies was quantified by TaqMan PCR. The mean value of 1047 (+/- 185) copies per mm hypha results in possible data for a direct conversion: one billion (10 (9)) ITS copies corresponded to 0.79 mg hyphal dry weight. For the ribosomal ITS multi-copy genes, the number of ITS copies could be calculated to approx. 152 (+/- 26) copies per dikaryotic cell. These conversion data now allow determination of the mycelial biomass of Piloderma croceum using real-time TaqMan PCR, a prerequisite for competition experiments with Piloderma croceum.  相似文献   

8.
Abstract: The influence of prolonged water limitation on leaf gas exchange, isoprene emission, isoprene synthase activities and intercellular isoprene concentrations was investigated under standard conditions (30 °C leaf temperature and 1000 μmol photons m-2 s-1 PPFD) in greenhouse experiments with five-year-old pubescent oak ( Quercus pubescens Willd.) and four-year-old pedunculate oak ( Quercus robur L.) saplings. Net assimilation rates proved to be highly sensitive to moderate drought in both oak species, and were virtually zero at water potentials (Ψpd) below - 1.3 MPa in Q. robur and below - 2.5 MPa in Q. pubescens . The response of stomatal conductance to water stress was slightly less distinct. Isoprene emission was much more resistant to drought and declined significantly only at Ψpd below - 2 MPa in Q. robur and below - 3.5 MPa in Q. pubescens . Even during the most severe water stress, isoprene emission of drought-stressed saplings was still approximately one-third of the control in Q. robur and one-fifth in Q. pubescens . Isoprene synthase activities were virtually unaffected by drought stress. Re-watering led to partial recovery of leaf gas exchange and isoprene emission. Intercellular isoprene concentrations were remarkably enhanced in water-limited saplings of both oak species during the first half of the respective drought periods with maximum mean values up to ca. 16 μl l-1 isoprene for Q. pubescens and ca. 11 μl l-1 isoprene for pedunculate oak, supporting the hypothesis that isoprene serves as a short-term thermoprotective agent in isoprene-emitting plant species.  相似文献   

9.
ABSTRACT.
  • 1 Survivorship within the galls of the sexual and agamic generations of Andricus quercuscalicis (Burgsdorf) is estimated from field populations.
  • 2 The sexual generation on Turkey oak suffers a 20% death rate through parasitism by Mesopolobus spp. The emerging parasitoids are virtually all males.
  • 3 The agamic generation on the acorn cups of English oak is not attacked by any parasites or inquilines at our Berkshire site despite the fact that most of the species which parasitize the gall in continental Europe are on the British list.
  • 4 Agamic galls cause average losses of between 30% and 50% of the total acorn crop in different years. Individual trees differ greatly in their rates of loss, many losing over 90%, others losing virtually none.
  相似文献   

10.
11.
Ectomycorrhiza development alters gene expression in the fungal and plant symbionts. The identification of a large number of genes expressed exclusively or predominantly in the symbiosis will contribute greatly to the understanding of the development of the ectomycorrhizal symbiosis. We have constructed a cDNA library of 4-day-old Eucalyptus globulus-Pisolithus tinctorius ectomycorrhiza and sequenced 850 cDNAs cloned randomly or obtained through suppression subtractive hybridization (SSH). Based on the absence of a database match, 43% of the ectomycorrhiza ESTs are coding for novel genes. At the developmental stage analysed (fungal sheath formation), the majority of the identified sequences represented 'housekeeping' proteins, i.e. proteins involved in gene/protein expression, cell-wall proteins, metabolic enzymes, and components of signalling systems. We screened arrayed cDNAs to identify symbiosis-regulated genes by using differential hybridization. Comparisons of signals from free-living partners and symbiotic tissues revealed significant differences in expression levels (differential expression ratio >2.5) for 17% of the genes analysed. No ectomycorrhiza-specific gene was detected. The results successfully demonstrate the use of the cDNA array and SSH systems as general approaches for dissecting symbiosis development, and provide the first global picture of the cellular functions operating in ectomycorrhiza.  相似文献   

12.
13.
The high sucrose phosphate synthase (SPS) capacity and the low soluble acid invertase activity of mature leaves of the first flush of leaves remained stable during second flush development. Conversely, fluctuations of sucrose synthase (SS) activity were in parallel with the sucrose requirement of the second flush. Sucrose synthase activity (synthesis direction) in first flush leaves could increase in 'response' to sink demand constituted by the second flush growth. Only the ptotosynthates provided by flush mature leaves were translocated for a current flush, while the starch content of these leaves remained stable. After their emergence, second flush leaves showed an increase in SPS and SS (Synthetic direction) activities. The high sucrose synthesis in second flush leaves was used for leaf expansion. When young leaves were 30% fully expanded (stage II20), SPS activity showed little change whereas SS activity declined rapidly toward and after full leaf expansion. The starch accumulation in the young leaves occured simultaneously with their expansion. Developing leaves showed a high level of acid invertase activity until maximum leaf expansion (stage II1). In first and second flush leaves, changes in acid invertase activity correlated positively with changes in reducing sugar concentrations. Alkaline invertase and sucrose synthase (cleavage direction) activities showed similar changes with low values when compared with those of acid invertase activity, especially in second flush leaves. The present results suggest that soluble acid invertase was the primary enzyme responsible for sucrose catabolism in the expanding common oak leaf.  相似文献   

14.
15.
Abstract: The rates of photosynthesis and transpiration, as well as the concentrations of organic compounds (total soluble non-protein N compounds [TSNN], soluble carbohydrates), in the xylem sap were determined during two growth seasons in one-year-old Quercus robur saplings. From the data, the total C gain of the leaves, by both photosynthesis and the transpiration stream, was calculated. Large amounts of C were allocated to the leaves by the transpiration stream; depending on the time of day and the environmental conditions the portion of C originating from xylem transport amounted to 8 to 91% of total C delivery to the leaves. Particularly under conditions of reduced photosynthesis, e.g., during midday depression of photosynthesis, a high percentage of the total C delivery was provided to the leaves by the transpiration stream (83 to 91 %). Apparently, attack by phloem-feeding aphids lowered the assimilate transport from roots to shoots; as a consequence the portion of C available to the leaves from xylem transport amounted to only 12 to 16 %. The most abundant organic compounds transported in the xylem sap were sugars (sucrose, glucose, fructose) with concentrations of ca. 50 to 500 μmol C ml-1, whereas C from N compounds was of minor significance (3 to 20 μmol ml-1 C). The results indicate a significant cycling of C in the plants because the daily transport of C with the transpiration stream exceeded the daily photosynthetic CO2 fixation in several cases. This cycling pool of C may sustain delivery of photosynthate to heterotrophic tissues, independent of short time fluctuations in photosynthetic CO2 fixation.  相似文献   

16.
Understanding the genes differentially expressing in aberrant organs of metabolic syndrome (MetS) facilitates the uncovering of molecular mechanisms and the identification of novel therapeutic targets for the disease. This study aimed to identify differentially expressed genes related to MetS in livers of E3 rats with high-fat-diet-induced metabolic syndrome (HFD-MetS). E3 rats were fed with high-fat diet for 24 weeks to induce MetS. Then, suppression subtractive hybridization (SSH) technology was used to identify the genes differentially expressed between HFD-MetS and control E3 rat livers. Twenty positive recombinant clones were chosen randomly from forward subtractive library and sent to sequence. BLAST analysis in GenBank database was used to determine the property of each cDNA fragment. In total, 11 annotated genes, 3 ESTs, and 2 novel gene fragments were identified by SSH technology. The expression of four genes (Alb, Pip4k2a, Scd1, and Tf) known to be associated with MetS and other five genes (Eif1, Rnase4, Rps12, Rup2, and Tmsb4) unknown to be relevant to MetS was significantly up-regulated in the livers of HFD-MetS E3 rats compared with control rats using real-time quantitative PCR (RT-qPCR). By analyzing the correlations between the expression of these nine genes and serum concentrations of TG, Tch, HDL-C, and LDL-C, we found that there were significant positive correlations between TG and the expression of five genes (Alb, Eif1, Pip4k2a, Rps12, and Tmsb4x), Tch and three genes (Rnase4, Scd1, and Tmsb4x), and LDL-C and two genes (Rnase4 and Scd1), as well there were significant negative correlations between HDL-C and the expression of three genes (Rup2, Scd1, and Tf). This study provides important clues for unraveling the molecular mechanisms of MetS.  相似文献   

17.
18.
19.
The effects of several concentrations of indole-3-acetic acid (IAA) and sucrose on xylogenic cambial activity and secondary xylem differentiation were investigated in isolated stem segments of Quercus robur L. supplied with liquid medium in aseptic conditions. After 5 weeks of culture auxin controlled cambial cell division and the number and size of vessel elements even without sugar in the medium. Sucrose modified these IAA effects, although little cambial activity occurred without auxin. The xylem increment correlated with changes of auxin concentration with the optimum at 28.5 μ M IAA. The formation of wide vessels was correlated with the optimal concentration of auxin. The frequency of vessel differentiation increased with auxin concentration. High concentrations of sucrose (0.24 M and 0.96 M ) reduced both the number of vessels and their diameter. The frequency of vessel formation was inhibited more than the vessel size by changes of sugar concentration. The vessels formed under low concentrations of IAA were circular in transverse section. With increase in IAA concentration the shape of the vessel cross-section changed to oval with the largest dimension in the radial direction.  相似文献   

20.
Identification of early senescence-associated genes in rice flag leaves   总被引:3,自引:0,他引:3  
Liu L  Zhou Y  Zhou G  Ye R  Zhao L  Li X  Lin Y 《Plant molecular biology》2008,67(1-2):37-55
Leaf senescence is one of the key stages of plant leaf development. It is a highly complex but ordered process involving expression of large scale senescence associated genes, and its molecular mechanisms still remain unclear. By using suppression subtractive hybridization, 815 ESTs that are up-regulated at the onset of rice flag leaf senescence have been isolated. A total of 533 unigenes have been confirmed by macroarray detection and sequencing. 183 of these unigenes have GO annotations, involved in macromolecule metabolism, protein biosynthesis regulation, energy metabolism, gene expression regulations, detoxification, pathogenicity and stress, cytoskeleton organization and flower development. Another 121 unigenes co-localized with previously reported known stay-green QTLS. RT-PCR analysis on the other novel genes indicated that they can be up-regulated in natural early senescence and induced by hormone. Our results indicate that senescence is closely related to various metabolic pathways, thus providing new insight into the onset of leaf senescence mechanism. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号