首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Buzz-pollination is a plant strategy that promotes gamete transfer by requiring a pollinator, typically bees (Hymenoptera: Apoidea), to vibrate a flower’s anthers in order to extract pollen. Although buzz-pollination is widespread in angiosperms with over 20,000 species using it, little is known about the functional connection between natural variation in buzzing vibrations and the amount of pollen that can be extracted from anthers. We characterized variability in the vibrations produced by Bombus terrestris bumblebees while collecting pollen from Solanum rostratum (Solanaceae), a buzz-pollinated plant. We found substantial variation in several buzzing properties both within and among workers from a single colony. As expected, some of this variation was predicted by the physical attributes of individual bumblebees: heavier workers produced buzzes of greater amplitude. We then constructed artificial “pollination buzzes” that varied in three parameters (peak frequency, peak amplitude, and duration), and stimulated S. rostratum flowers with these synthetic buzzes to quantify the relationship between buzz properties and pollen removal. We found that greater amplitude and longer duration buzzes ejected substantially more pollen, while frequency had no directional effect and only a weak quadratic effect on the amount of pollen removed. These findings suggest that foraging bumblebees may improve pollen collection by increasing the duration or amplitude of their buzzes. Moreover, given that amplitude is positively correlated with mass, preferential foraging by heavier workers is likely to result in the largest pollen yields per bee, and this could have significant consequences for the success of a colony foraging on buzz-pollinated flowers.  相似文献   

2.
MethodsEight sympatric buzz-pollinated species of Pedicularis that share bumblebee pollinator species were studied, giving a rare opportunity to compare sonication behaviour of a shared pollinator on different plant species.ConclusionsSonication behaviour of B. friseanus differs among Pedicularis species, not only because worker bees assort themselves among plant species by body size, but also because bees of a given size adjust the buzz frequency to achieve a vibration velocity corresponding to the floral traits of each plant species. These findings, and the floral traits that characterize these and other buzz-pollinated species, are compatible with the hypothesis of vibration-induced triboelectric charging of pollen grains.  相似文献   

3.
Summary Can bees accurately gauge accumulating bodily pollen as they harvest pollen from flowers? Several recent reports conclude that bees fail to assess pollen harvest rates when foraging for nectar and pollen. A native nightshade (Solanum elaeagnifolium Cavanilles) that is visited exclusively for pollen by both solitary and social bees (eg. Ptiloglossa and Bombus) was studied in SE Arizona and SW New Mexico. The flowers have no nectaries. Two experiments were deployed that eliminated pollen feedback to the bees by experimentally manipulating flowers prior to bee visits. The two methods were 1) plugging poricidal anthers with glue and 2) emptying anthers of pollen by vibration prior to bee visitation. Both experiments demonstrated that bees directly assess pollen harvest on a flower-by-flower basis, and significantly tailor their handling times, number of vibratile buzzes per flower and grooming bouts according to the ongoing harvest on a given flower. In comparison to experimental flowers, floral handling times were extended for both Bombus and Ptiloglossa on virgin flowers. Greater numbers of intrafloral buzzes and numbers of times bees groomed pollen and packed it into their scopae while still on the flower were also more frequent at virgin versus experimental flowers. Flowers with glued andreocia received uniformly brief visits from Bombus and Ptiloglossa with fewer sonications and virtually no bouts of grooming. Curtailed handling with few buzzes and grooms also characterized visits to our manually harvested flowers wherein pollen was artificially depleted. Sonicating bees respond positively to pollen-feedback while harvesting from individual flowers, and therefore we expect them to adjust their harvesting tempo according to the currency of available pollen (standing crop) within Solanum floral patches.  相似文献   

4.
Body size is an important trait linking pollinators and plants. Morphological matching between pollinators and plants is thought to reinforce pollinator fidelity, as the correct fit ensures that both parties benefit from the interaction. We investigated the influence of body size in a specialized pollination system (buzz‐pollination) where bees vibrate flowers to release pollen concealed within poricidal stamens. Specifically, we explored how body size influences the frequency of buzz‐pollination vibrations. Body size is expected to affect frequency as a result of the physical constraints it places on the indirect flight muscles that control the production of floral vibrations. Larger insects beat their wings less rapidly than smaller‐bodied insects when flying, but whether similar scaling relationships exist with floral vibrations has not been widely explored. This is important because the amount of pollen ejected is determined by the frequency of the vibration and the displacement of a bee's thorax. We conducted a field study in three ecogeographic regions (alpine, desert, grassland) and recorded flight and floral vibrations from freely foraging bees from 27 species across four families. We found that floral vibration frequencies were significantly higher than flight frequencies, but never exceeded 400 Hz. Also, only flight frequencies were negatively correlated with body size. As a bee's size increased, its buzz ratio (floral frequency/flight frequency) increased such that only the largest bees were capable of generating floral vibration frequencies that exceeded double that of their flight vibrations. These results indicate size affects the capacity of bees to raise floral vibration frequencies substantially above flight frequencies. This may put smaller bees at a competitive disadvantage because even at the maximum floral vibration frequency of 400 Hz, their inability to achieve comparable thoracic displacements as larger bees would result in generating vibrations with lower amplitudes, and thus less total pollen ejected for the same foraging effort.  相似文献   

5.
Enantiostyly (mirror-image flowers) is usually associated with buzz pollination. In buzz-pollinated flowers, pollen is released through terminal pores after bees vibrate the stamens. Several studies have evaluated the function of 'buzzing' in pollen release, but less attention has been paid to the effect of buzzing on pollen capture and deposition on stigmas. Evaluating the mechanism of pollen dispersion in buzz-pollinated flowers is important because it may affect mating patterns and reproductive success. In this study, we analysed the morphology of sexual organs (anther and stigma) using electron microscopy, and determined the relationship between sexual organ structure and pollen capture function through experimental manipulations of buzz-pollinated flowers of Chamaecrista chamaecristoides, as well as vibration frequencies on floral visitors. Pollen release occurs through two terminal pores at the tip of the stamens. However, unlike most angiosperms that have their stigmatic surface exposed, C.?chamaecristoides presents a stigmatic surface inside a cavity covered by trichomes. Experimental manipulations showed that effective fertilisation is only achieved when the style is vibrated, suggesting that buzzing is not only important for pollen release but also for pollen capture and deposition on the stigma. This result, in addition to vibration frequency analysis, suggests that although all floral visitors buzz flowers only those that buzz at higher frequencies achieve effective fertilisation. The anatomical features of sexual organs in flowers of C.?chamaecristoides demonstrate that this species possesses a highly specialised, elaborate morphology, with both genders selected for traits that promote buzz pollination.  相似文献   

6.

Given that pollinators usually visit flowers for hidden rewards, they need to rely on floral traits that indicate reward status (“honest signals”). However, the relationship between pollination, honest signals, and floral rewards is little documented in natural conditions. The Scotch broom (Cytisus scoparius) is an invasive shrub with polymorphism in the color of its flowers that can be yellow, orange, or red. In three areas dominated by the Scotch broom, we described the abundance of the floral morphs and estimated bumblebee (Bombus terrestris) visitation rate. We examined whether bumblebee visitation to the floral morphs was related to pollen reward. We collected flowers and classified their stamens according to their function: reward or pollen export. Then, we measured anther size and estimated pollen quantity. The yellow morph was more abundant and more visited by bumblebees than the orange and red morphs. The yellow flowers did indeed offer more pollen than the other morphs and this occurred only for rewarding anthers, suggesting that bumblebees could use yellow color as an honest signal to visit the most rewarding flowers. We discuss whether innate and/or learned preferences of bumblebees can explain why the yellow morph is more visited, pollinated, and abundant, while the other morphs are maintained at a lower frequency. This is one of the few field works that shows that variation in intra-specific floral traits is associated with variation in floral reward and pollinator visitation rate, helping to understand the foraging preferences of pollinators and the coexistence of floral morphs in nature.

Clinical trials registration: Not applicable.

  相似文献   

7.
Effects of recent experience on foraging decisions by bumble bees   总被引:2,自引:0,他引:2  
The temporal and spatial scales employed by foraging bees in sampling their environment and making foraging decisions should depend both on the limits of bumble bee memory and on the spatial and temporal pattern of rewards in the habitat. We analyzed data from previous experiments to determine how recent foraging experience by bumble bees affects their flight distances to subsequent flowers. A single visit to a flower as sufficient to affect the flight distance to the next flower. However, longer sequences of two or three visits had an additional effect on the subsequent flight distance of individual foragers. This suggests that bumble bees can integrate information from at least three flowers for making a subsequent foraging decision. The existence of memory for floral characteristics at least at this scale may have significance for floral selection in natural environments.  相似文献   

8.
1. Genetic polymorphisms of flowering plants can influence pollinator foraging but it is not known whether heritable foraging polymorphisms of pollinators influence their pollination efficacies. Honey bees Apis mellifera L. visit cranberry flowers for nectar but rarely for pollen when alternative preferred flowers grow nearby. 2. Cranberry flowers visited once by pollen‐foraging honey bees received four‐fold more stigmatic pollen than flowers visited by mere nectar‐foragers (excluding nectar thieves). Manual greenhouse pollinations with fixed numbers of pollen tetrads (0, 2, 4, 8, 16, 32) achieved maximal fruit set with just eight pollen tetrads. Pollen‐foraging honey bees yielded a calculated 63% more berries than equal numbers of non‐thieving nectar‐foragers, even though both classes of forager made stigmatic contact. 3. Colonies headed by queens of a pollen‐hoarding genotype fielded significantly more pollen‐foraging trips than standard commercial genotypes, as did hives fitted with permanently engaged pollen traps or colonies containing more larvae. Pollen‐hoarding colonies together brought back twice as many cranberry pollen loads as control colonies, which was marginally significant despite marked daily variation in the proportion of collected pollen that was cranberry. 4. Caloric supplementation of matched, paired colonies failed to enhance pollen foraging despite the meagre nectar yields of individual cranberry flowers. 5. Heritable behavioural polymorphisms of the honey bee, such as pollen‐hoarding, can enhance fruit and seed set by a floral host (e.g. cranberry), but only if more preferred pollen hosts are absent or rare. Otherwise, honey bees' broad polylecty, flight range, and daily idiosyncrasies in floral fidelity will obscure specific pollen‐foraging differences at a given floral host, even among paired colonies in a seemingly uniform agricultural setting.  相似文献   

9.
Over 22,000 species of biotically pollinated flowering plants, including some major agricultural crops, depend primarily on bees capable of floral sonication for pollination services. The ability to sonicate (“buzz”) flowers is widespread in bees but not ubiquitous. Despite the prevalence of this pollinator behavior and its importance to natural and agricultural systems, the evolutionary history of floral sonication in bees has not been previously studied. Here, we reconstruct the evolutionary history of floral sonication in bees by generating a time‐calibrated phylogeny and reconstructing ancestral states for this pollen extraction behavior. We also test the hypothesis that the ability to sonicate flowers and thereby efficiently access pollen from a diverse assemblage of plant species, led to increased diversification among sonicating bee taxa. We find that floral sonication evolved on average 45 times within bees, possibly first during the Early Cretaceous (100–145 million years ago) in the common ancestor of bees. We find that sonicating lineages are significantly more species rich than nonsonicating sister lineages when comparing sister clades, but a probabilistic structured rate permutation on phylogenies approach failed to support the hypothesis that floral sonication is a key driver of bee diversification. This study provides the evolutionary framework needed to further study how floral sonication by bees may have facilitated the spread and common evolution of angiosperm species with poricidal floral morphology.  相似文献   

10.
Summary Two bumblebee species, Bombus bifarius and B. flavifrons, forage randomly with respect to direction when gathering pollen on Potentilla gracilis. Bees avoid revisiting flowers by being able to differentiate recently visited from unvisited flowers. This recognition occurs while bees are flying over open flowers and appears to be a response to the amount of available pollen within flowers. Random foraging with respect to direction is the optimal strategy when the probability of flower revisitation is low. Bumblebees appear to be moving preferentially between nearest neighbors, again as predicted by foraging theory. This behavior causes the establishment of pollen patches in the P. gracilis population. Unlike other pollinators studied in similar situations, bumblebees on P. gracilis do not forage utilizing an area-restricted searching behavior. Because floral reward quality can be assessed at low cost by bees foraging on P. gracilis, their tendency to move to nearby flowers even after encountering a poor quality blossom apparently yields a higher rate of net energy intake than does area-restricted searching. The data indicate that bumblebees exhibit great plasticity in foraging behavior and that they are able to forage efficiently under a wide range of environmental conditions.  相似文献   

11.
We assessed the combined effects of varying the relative density and the relative floral morphological complexity of plant species on the behaviour of their bumblebee pollinators. Three species of bumblebee (Bombus pascuorum, B. terrestris and B. hortorum) were observed foraging on experimental arrays consisting of pair-wise combinations of four plant species: Borago officinalis, Phacelia tanacetifolia (both with simple flowers), Antirrhinum majus and Linaria vulgaris (both with complex flowers). Plant arrangements consisted of either two simple-flower species, a simple with a complex species or two complex species. The number of plants in each array was constant, while the frequency of each species was manipulated so that it was either rare, equal or common compared with its competitor. Contrary to predictions, rare plants were actually at an advantage in terms of the number of bees attracted per plant. However, rare plants were at a disadvantage in terms of pollen wastage because foragers more often went to a flower of another species after visiting a rare plant. The behaviour of bees on each plant species was further affected by plant floral complexity and the identity of the other species in the array. The three bumblebee species were markedly different in their foraging behaviour and in their responses to varying floral density and complexity. Each species preferred particular flower species. The results are discussed with reference to resource partitioning among bumblebee species. Received: 29 July 1998 / Accepted: 5 October 1998  相似文献   

12.
Over 50 genera of bees release pollen from flower anthers using thoracic vibrations,a phenomenon known as buzz-pollination.The efficiency of this process is directly affected by the mechanical properties of the buzzes,namely the duration,amplitude,and frequency.Nonetheless,although the effects of the former two properties are well described,the role of buzz frequency on pollen release remains unclear.Furthermore,nearly all of the existing studies describing vibrational properties of natural buzz-pollination are limited to bumblebees(Bombus)and carpenter bees(Xvlocopa)constraining our current understanding of this behavior and its evolution.Therefore,we attempted to minimize this shortcoming by testing whether flower anthers exhibit optimal frequency for pollen release and whether bees tune their buzzes to match these(optimal)frequencies.If true,certain frequencies will trigger more pollen release and lighter bees will reach buzz frequencies closer to this optimum to compensate their smaller buzz amplitudes.Two strategies were used to test these hypotheses:(i)the use of(artificial)vibrational playbacks in a broad range of buzz frequencies and amplitudes to assess pollen release by tomato plants(Solarium Ivcopersicum L.)and(ii)the recording of natural buzzes of Neotropical bees visiting tomato plants during pollination.The playback experiment indicates that although buzz frequency does affect pollen release,no optimal frequency exists for that.In addition,the recorded results of natural buzz-pollination reveal that buzz frequencies vary with bee genera and are not correlated with body size.Therefore,neither bees nor plants are tuned to optimal pollen release frequencies.Bee frequency of buzz-pollination is a likely consequence of the insect flight machinery adapted to reach higher accelerations,while flower plant response to buzz-pollination is the likely result of its pollen granular properties.  相似文献   

13.
Cane JH 《Oecologia》2011,167(1):107-116
Pollinators, even floral generalists (=polyleges), typically specialize during individual foraging bouts, infrequently switching between floral hosts. Such transient floral constancy restricts pollen flow, and thereby gene flow, to conspecific flowers in mixed plant communities. Where incipient flowering species meet, however, weak cross-fertility and often similar floral traits can yield mixed reproductive outcomes among pollinator-dependent species. In these cases, floral constancy by polyleges sometimes serves as an ethological mating barrier. More often, their foraging infidelities instead facilitate host introgression and hybridization. Many other bee species are oligolectic (taxonomic specialists for pollen). Oligoleges could be more discriminating connoisseurs than polyleges when foraging among their limited set of related floral hosts. If true, greater foraging constancy might ensue, contributing to positive assortative mating and disruptive selection, thereby facilitating speciation among their interfertile floral hosts. To test this Connoisseur Hypothesis, nesting females of two species of oligolectic Osmia bees were presented with randomized mixed arrays of flowers of two sympatric species of their pollen host, Balsamorhiza, a genus known for hybridization. In a closely spaced grid, the females of both species preferred the larger flowered B. macrophylla, evidence for discrimination. However, both species’ females showed no floral constancy whatsoever during their individual foraging bouts, switching randomly between species proportional to their floral preference. In a wider spaced array in which the bouquets reflected natural plant spacing, foraging oligolectic bees often transferred pollen surrogates (fluorescent powders) both between conspecific flowers (geitonogamy and xenogamy) and between the two Balsamorhiza species. The Connoisseur Hypothesis was therefore rejected. Foraging infidelity by these oligolectic Osmia bees will contribute to introgression and hybridization where interfertile species of Balsamorhiza meet and flower together. A literature review reveals that other plant genera whose species hybridize also attract numerous oligolectic bees, providing independent opportunities to test the generality of this conclusion.  相似文献   

14.
Cover Caption     
《Insect Science》2020,27(1):NA-NA
Tomato flowers are pollinated by bees that vibrate their thorax for pollen collecting, behavior known as buzz‐pollination. The phenomenon is common and a specimen of the Neotropical stingless bee Melipona quadrifasciata is here depicted visiting a tomato flower for pollen collecting. While testing whether flower anthers exhibit optimal frequency for pollen release and whether flower bees tune their buzzes to match these frequencies, we recognized that neither bees nor plants are tuned to optimal pollen release frequencies (see pages 133–142). Photo provided José Lino‐Neto.  相似文献   

15.
Pollinator foraging patterns and the dynamics of pollen transport influence the quality and diversity of flowering plant mating opportunities. For species pollinated by grooming pollinators, such as bees, the amount of pollen carried between a donor flower and potential recipient flowers depends on how grooming influences pollen transfer. To investigate the relationship between grooming and pollen‐mediated gene dispersal, we studied bumblebee (Bombus fervidus) foraging behavior and resulting gene dispersal in linear arrays of Mimulus ringens. Each of the 14 plants in an array had a unique multilocus genotype, facilitating unambiguous assignment of paternity to 1050 progeny. Each plant was trimmed to a single flower so that pollinator movements could be linked directly to resulting gene dispersal patterns. Pollen‐mediated gene dispersal was very limited. More than 95% of the seeds sired by a donor flower were distributed over the first three recipient flowers in the visitation sequence. However, seeds were occasionally sired on flowers visited later in the pollinator's floral visitation sequence. Intensive grooming immediately following pollen removal from a donor flower significantly increased the decay rate of the donor flower's gene dispersal curve. These results suggest that the frequency and relative intensity of grooming can have significant effects on patterns of pollen‐mediated gene dispersal from individual pollen donors.  相似文献   

16.
The ability to learn an association between floral characteristics such as its odor, color and shape and a reward such as nectar is key to honeybee foraging success. Here, we tested if also pollen could function as a reward for associative learning in honeybees. We found that large proportions of bees with and without field experience showed an unconditioned response, the extension of the proboscis, after touching their antennae with bee-collected pollen. Furthermore, bees readily learn to associate an odor with pollen in a classical conditioning assay. We suggest that pollen might play an important role as a reward for free-flying bees. Received 12 February 2008; revised 17 June 2008; accepted 15 July 2008. C. Grüter, A. Arenas: Both authors contributed equally to this work.  相似文献   

17.
The foraging behavior of bees is a complex phenomenon that depends on numerous physical features of flowers. Of particular importance are accessibility of floral rewards, floral proportions, symmetry and orientation. The flowers of Roepera are characterized by the presence of staminal scales (SS), which play an important role in nectar protection. We studied two species of Roepera with different symmetry and flower orientation, which are mainly visited by honeybees (Apis mellifera). We aimed to show how the foraging behavior of honey bees is affected by the function of SS, floral symmetry and orientation. The foraging behavior was documented by video photography. Handling time, access to nectar, percentage of pollen/nectar foraging, percentage of pollen contact and pollen deposition site on the honey bee's body were assessed. The morphometric features of the honey bees and flowers were analyzed. We found that the SS restricted pollinator access to nectar. Our results indicated consistency of visitation patterns in zygomorphic, laterally oriented flowers of R. fuscata versus random patterns in actinomorphic, diversely oriented flowers of R. leptopetala. The relative proportions of SS and proboscis length appear to be crucial for the success of pollinators. The directionality of the honey bees' movement, together with the different positioning of reproductive organs, plays an important role in the accuracy of pollen transfer and pollination efficiency.  相似文献   

18.
  • The tropical Melastomataceae are characterized by poricidal anthers which constitute a floral filter selecting for buzz‐pollinating bees. Stamens are often dimorphic, sometimes with discernible feeding and pollinating functions. Rhynchanthera grandiflora produces nectarless flowers with four short stamens and one long stamen; all anthers feature a narrow elongation with an upwards facing pore.
  • We tested pollen transfer by diverse foraging bees and viability of pollen from both stamen types. The impact of anther morphology on pollen release direction and scattering angle was studied to determine the plant's reproductive strategy.
  • Medium‐sized to large bees sonicated flowers in a specific position, and the probability of pollen transfer correlated with bee size even among these legitimate visitors. Small bees acted as pollen thieves or robbers. Anther rostrum and pore morphology serve to direct and focus the pollen jet released by floral sonication towards the pollinator's body. Resulting from the ventral and dorsal positioning of the short and long stamens, respectively, the pollinator's body was widely covered with pollen. This improves the plant's chances of outcrossing, irrespective of which bee body part contacts the stigma. Consequently, R. grandiflora is also able to employ bee species of various sizes as pollen vectors.
  • The strategy of spreading pollen all over the pollinator's body is rather cost‐intensive but counterbalanced by ensuring that most of the released pollen is in fact transferred to the bee. Thus, flowers of R. grandiflora illustrate how specialized morphology may serve to improve pollination by a functional group of pollinators.
  相似文献   

19.
Both male and female solitary bees visit flowers for rewards. Sex related differences in foraging efficiency may also affect their probability to act as pollinators. In some major genera of solitary bees, males can be identified from a distance enabling a comparative foraging-behavior study. We have simultaneously examined nectar foraging of males and females of three bee species on five plant species in northern Israel. Males and females harvested equal nectar amounts but males spent less time in each flower increasing their foraging efficiency at this scale. The overall average visit frequencies of females and males was 27.2 and 21.6 visits per flower per minute respectively. Females flew shorter distances increasing their visit frequency, relative foraging efficiency and their probability to pollinate. The proportion of conspecific pollen was higher on females, indicating higher floral constancy and pollination probability. The longer flights of males increase their probability to cross-pollinate. Our results indicate that female solitary bees are more efficient foragers; females seem also to be more efficient pollinators but males contribute more to long-distance pollen flow.  相似文献   

20.
Although Rhododendron spp. anthers have apical pores and should be expected to be buzz pollinated, bees do not normally sonicate them to release pollen. Stamens were examined to determine their pollen release mechanism; the filaments were shown to have natural vibration modes that cause pollen to be forcibly ejected by vibration, providing the pollen is mature. The first natural vibration mode of the stamens was found to generate centrifugal force sufficient to throw the pollen toward the apical pore and out of the anther, so that it adheres to the anther tip and hangs in the bee's path to the nectaries. These vibrations may be triggered by bees brushing past the long stamens when foraging for nectar, so that the flowers retain their pollen until insect vectors begin foraging on them. The low frequency vibration modes of the viscin threads, which hold the pollen together, may contribute towards the pollen ejection by low frequency stamen vibration. Vibration transmission of dehiscent anthers containing pollen was good from 50 Hz to 850 Hz, suggesting that sonication should be an efficient method of pollen collection, although this rarely occurs. Vibratory ejection occurs at a constant energy level, rather than the constant force levels found in previous research on Actinidia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号