首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Dictyostelium cells are genetically haploid and therefore easily analyzed for mutant phenotypes. In the past, many tools and molecular markers have been developed for a quantitative and qualitative analysis of the endocytic pathway in these amoebae. This review outlines parallels and discrepancies between mutants in Dictyostelium, the corresponding mammalian cells and the symptoms of human patients affected by lysosomal and trafficking defects. Situations where knowledge from Dictyostelium may potentially help understand human disease and vice versa are also addressed.  相似文献   

3.
Tight junction: a co-ordinator of cell signalling and membrane trafficking   总被引:16,自引:0,他引:16  
Increasing evidence indicates that the tight junction plays a role in membrane transport. Various signalling and trafficking molecules localize to the sites of cell-cell junctions in epithelial cells, including Rab proteins, a family of small GTPases that regulate different steps of vesicular transport along the endocytic and exocytic pathways. We have recently shown that Rab13 controls protein kinase A activity, demonstrating a clear biochemical and functional link between Rab13 and protein kinase A signalling during tight junction assembly in epithelial cells. The present article focuses on how protein kinase A signalling and protein trafficking events could be integrated at tight junctions in epithelial cells.  相似文献   

4.
5.
6.
The effect of PAF on the plasma membrane polarity of polymorphonuclear leukocytes (PMNs) was investigated by measuring the steady-state fluorescence emission spectra of 2-dimethylamino(6-1auroyl) naphthalene (Laurdan), which is known to be incorporated at the hydrophobic-hydrophilic interface of the bilayer, displaying spectral sensitivity to the polarity of its surrounding. Laurdan shows a marked steady-state emission blue-shift in non-polar solvents, with respect to polar solvents. Our results demonstrate that PAF (10(-7) M) induces a blue shift of the fluorescence emission spectra of Laurdan. These changes are blocked in the presence of the PAF antagonist, L-659,989. Our data indicate that the interaction between PAF and PMNs is accompanied by a decrease in polarity in the hydrophobic-hydrophilic interface of the plasma membrane.  相似文献   

7.
The compartmental organization of eukaryotic cells has fascinated cell biologists for several decades. Detailed morphological, genetic, and biochemical studies have unraveled astonishingly complex molecular machineries involved in establishing and maintaining organelle identity and cell polarization. Many of the transport steps in the secretory and endocytic pathways are subject to manifold regulatory mechanisms, which in turn are interconnected with a plethora of signaling pathways. It therefore does not seem surprising that the cell biology of intracellular protein and lipid transport continues to thrive. The topics covered at the recent meeting on "Protein Transport in the Secretory Pathway" reflect the enormous complexity of how compartmentalization in eukaryotic cells is achieved.  相似文献   

8.
Molluscan shells, including those of Gastropoda, are formed by accretionary growth at the mantle edge. The mantle is a thin membrane of skirt-like shape, which extends minutely beyond the aperture, and its edge adds a shell increment to the aperture margin so that each increment copies a configuration of the mantle edge at that time. Thus, regulation of shell morphogeny is almost equivalent to the factors which control the mantle form at the moment of shell growth. Form of the mantle skirt is considered to be kept in a state of balance between the force of its internal stress and forces acting on it such as fluid pressure or muscle contraction. The expansion behavior of the mantle skirt has been numerically analyzed by using an elastic model (DMS-tube), which represents the fundamental structure of the mantle tissue as a double membrane structure with internal springs (DMS). Four characteristic expansion patterns of the DMS-tube have been detected: (1) general outward expansion; (2) developing a ridge-like fold on an initial longitudinal protrusion of the tube edge; (3) drastic shift of the expanded state from a uniformly curved to an elliptical shape in outline, owing to the existence of a fixed boundary condition on the tube wall; and (4) constricted protrusion on the open region of the shell wall surrounding the DMS-tube. These results have the potential for answering the following questions relating to the morphogenesis of gastropod shells. How does the mantle skirt usually make contact with the inner surface of the shell wall so as to ensure continuous accretion of shell materials to the aperture margin? What is the cause of spiral ridges? Why do open coiling or minimally overlapping shells have generally circular apertures, while shells with apertures overlapped by whorls have non-uniformly curved apertural lips? What is the cause of long closed spines and why do they always appear on spiral ridges?  相似文献   

9.
A further function of cytochrome c (cyt c), beyond respiration, is realized outside mitochondria in the apoptotic program. In the early events of apoptosis, the interaction of cyt c with a mitochondrion-specific phospholipid, cardiolipin (CL), brings about a conformational transition of the protein and acquirement of peroxidase activity. The hallmark of cyt c with peroxidase activity is its partial unfolding accompanied by loosening of the Fe sixth axial bond and an enhanced access of the heme catalytic site to small molecules like H2O2. To investigate the peroxidase activity of non-native cyt c, different forms of the protein were analyzed with the aim to correlate their structural features with the acquired enzymatic activity and apoptogenic properties (wt cyt c/CL complex and two single cyt c variants, H26Y and Y67H, free and bound to CL). The results suggest that cyt c may respond to different environments by changing its fold thus favouring the exertion of different biological functions in different pathophysiological cell conditions. Transitions among different conformations are regulated by endogenous molecules such as ATP and may be affected by synthetic molecules such as minocycline, thus suggesting a mechanism explaining its use as therapeutic agent impacting on disease-associated oxidative and apoptotic mechanisms.  相似文献   

10.
11.
12.
The G protein-coupled olfactory receptor (OR) superfamily plays a critical role in recognizing a broad range of odorants. Each OR appears to recognize odorants based on similarities in molecular structures such that mOR-EG, a mouse OR, binds eugenol, vanillin, and some other structurally related odorants. Only a few ORs, however, have been characterized functionally due to the difficulties in expressing ORs in heterologous cells. In this report, we demonstrate roles of the N- and C-terminal domains as key elements in the functional expression and signal transducing activity of an OR. Disruption of the N-terminal glycosylation site of the mOR-EG completely impaired its membrane trafficking to the cell surface. Functional expression of the mOR-EG was greatly enhanced by addition of extra N-terminal glycosylation sequences. Addition of a C-terminal epitope-tag or C-terminal truncation significantly reduced the odorant-response activity, although the receptors were properly targeted to the plasma membrane. Analysis of a series of truncated ORs revealed a region in the C-terminus that was crucial for the receptor activity. Replacement of the C-terminal portion of the mOR-EG with that of rhodopsin disrupted the coupling to G(alphas) but not to G(alpha15), demonstrating that the C-terminus is involved in regulating G protein specificity. These results suggest that glycosylation of the N-terminal portion is critical for OR expression and membrane trafficking, while the C-terminal portion plays a role in defining proper conformation, which, in turn, specifies the G protein selectivity of the OR. This information helps clarify the mechanisms that regulate membrane trafficking and G protein interaction of the OR superfamily.  相似文献   

13.
Activin is a member of the transforming growth factor-beta superfamily which comprises a growing list of multifunctional proteins that function as modulators of cell proliferation, differentiation, hormone secretion and neuronal survival. This study examined the neuroprotective effect of both Activin A and B in serum withdrawal and oxidative stress apoptotic cellular models and investigated the expression of pro- and anti-apoptotic proteins, which may account for the mechanism of Activin-induced neuroprotection. Here, we report that recombinant Activin A and B are neuroprotective against serum deprivation- and toxin- [either the parkinsonism-inducing neurotoxin, 6-hydroxydopamine (6-OHDA) or the peroxynitrite donor, 3-(4-morpholinyl) sydnonimine hydrochloride (SIN-1)] induced neuronal death in human SH-SY5Y neuroblastoma cells. Furthermore, we demonstrate for the first time that transient transfection with Activin betaA or betaB significantly protect SH-SY5Y and rat pheochromocytoma PC12 cells against serum withdrawal-induced apoptosis. This survival effect is mediated by the Bcl-2 family members and involves inhibition of caspase-3 activation; reduction of cleaved poly-ADP ribose polymerase and phosphorylated H2A.X protein levels and elevation of tyrosine hydroxylase expression. These results indicate that both Activin-A and -B share the potential to induce neuroprotective activity and thus may have positive impact on aging and neurodegenerative diseases to retard the accelerated rate of neuronal degeneration.  相似文献   

14.
As described for a long time, carcinoma-derived Caco-2 cells form a polarized epithelium in culture, whereas HT29-D4 cells are nonpolarized and undifferentiated but can form a polarized monolayer when cultured in a galactose-supplemented medium. Using NF-kappaB translocation and IL-8 and ICAM-1 gene activation as an index, we have studied the relationship between the differentiation state and the cell response to cytokines. We found that differentiated Caco-2 and HT29-D4 cells were responsive to both cytokines TNFalpha- and IL-1beta-mediated activation of NF-kappaB but that undifferentiated HT29-D4 cells were unresponsive to IL-1beta. However, the expression of endogenous ICAM-1 and IL-8 genes was upregulated by these cytokines in either cell lines differentiated or not. Upregulation of ICAM-1 gene occurred when IL-1beta or TNFalpha was added to the basal, but not apical surface of the differentiated epithelia. Finally, it appeared that in polarized HT29-D4 cells, the IL-1beta-induced translocation of NF-kappaB was connected to PKCdelta translocation.  相似文献   

15.
The endocytic and exocytic/secretory pathways are two major intracellular membrane trafficking routes that regulate numerous cellular functions in a variety of cell types. Osteoblasts and osteoclasts, two major bone cells responsible for bone remodeling and homeostasis, are no exceptions. During the past few years, emerging evidence has pinpointed a critical role for endocytic and secretory pathways in osteoblast and osteoclast differentiation and function. The endosomal membrane provides a platform to integrate bone tropic signals of hormones and growth factors in osteoblasts. In osteoclasts, endocytosis, followed by transcytosis, of degraded bone matrix promotes bone resorption. Secretory pathways, especially lysosome secretion, not only participate in bone matrix deposition by osteoblasts and degradation of mineralized bone matrix by osteoclasts; they may also be involved in the coupling of bone resorption and bone formation during bone remodeling. More importantly, mutations in genes encoding regulatory factors within the endocytic and secretory pathways have been identified as causes for bone diseases. Identification of the molecular mechanisms of these genes in bone cells may provide new therapeutic targets for skeletal disorders.  相似文献   

16.
The interest in the working and functionality of the human gut microbiome has increased drastically over the years. Though the existence of gut microbes has long been speculated for long over the last few decades, a lot of research has sprung up in studying and understanding the role of gut microbes in the human digestive tract. The microbes present in the gut are highly instrumental in maintaining the metabolism in the body. Further research is going on in this field to understand how gut microbes can be employed as potential sources of novel therapeutics; moreover, probiotics have also elucidated their significant place in this direction. As regards the clinical perspective, microbes can be engineered to afford defence mechanisms while interacting with foreign pathogenic bodies. More investigations in this field may assist us to evaluate and understand how these cells communicate with human cells and promote immune interactions. Here we elaborate on the possible implication of human gut microbiota into the immune system as well as explore the probiotics in the various human ailments. Comprehensive information on the human gut microbiome at the same platform may contribute effectively to our understanding of the human microbiome and possible mechanisms of associated human diseases.  相似文献   

17.
The distribution and nature of sialoglycoconjugates on the surface of cells of a pancreatic carcinoma and their behavior when interacting with the sialic acid-specific lectin, limulin (LPA; from Limulus polyphemus hemolymph) were compared to those of normal pancreatic acinar cells. Fluorescence microscopy of frozen sections, using rhodaminated LPA (Rh-LPA), revealed protease-resistant binding sites evenly distributed over the cell surface of neoplastic cells, contrasting with the asymmetric distribution of sialoglycoconjugates on normal acinar cells. An asymmetric staining pattern, resembling that of normal acinar cells, was occasionally observed in tumor cells that had regained their structural polarity when in contact with the basement membranes of blood vessels. Cytochemistry, using horseradish peroxidase-conjugated LPA (HRP-LPA), showed that the binding of limulin to neoplastic cells was less intense than that to any plasmalemmal domain of normal acinar cells. In tumor cells, local intensification of LPA binding was systematically observed on plasmalemmal regions adjacent to zymogen granules. Fixed dissociated cells, both tumor and normal, treated with Rh-LPA, retained the fluorescence distribution of Rh-LPA observed in situ. Nonfixed neoplastic cells showed lectin-induced patching of limulin binding sites and were more susceptible to agglutination by LPA than normal acinar cells.  相似文献   

18.
The first known sutural inversion in ammonoids occurred in the adolescent stage of a late Cretaceous Glyptonoceras subcompressum (Forbes). Inversion has affected all folioles and lobules which are convex adapically instead of adorally, but not the tie-points from which they are 'suspended' and which shape the principal saddle and lobes. The ventral median saddle is also normal due to its proximity to the siphuncle. The partially inverted sutures are also strongly approximated. This suggests that, in this instance, body advance was mainly by muscular pull against a negative pressure differential of cameral liquid to 'ambient' body pressure across the septal mantle, owing to insufficient liquid in the newly forming chamber. Conversely, a slightly positive pressure differential is inferred for normal ammonitic septum formation. In spite of reversal, the length of folioles and lobules remains constant, indicating the existence of a 'permanent' sinuous attachment band resembling the posterior aponeurosis of Nautilus , with tie-points for primary wall attachment.  相似文献   

19.
Ferlins are a family of multiple C2 domain proteins with emerging roles in vesicle fusion and membrane trafficking. Ferlin mutations are associated with muscular dystrophy (dysferlin) and deafness (otoferlin) in humans, and infertility in Caenorhabditis elegans (Fer-1) and Drosophila (misfire), demonstrating their importance for normal cellular functioning. Ferlins show ancient origins in eukaryotic evolution and are detected in all eukaryotic kingdoms, including unicellular eukaryotes and apicomplexian protists, suggesting origins in a common ancestor predating eukaryotic evolutionary branching. The characteristic feature of the ferlin family is their multiple tandem cytosolic C2 domains (five to seven C2 domains), the most of any protein family, and an extremely rare feature amongst eukaryotic proteins. Ferlins also bear a unique nested DysF domain and small conserved 60-70 residue ferlin-specific sequences (Fer domains). Ferlins segregate into two subtypes based on the presence (type I ferlin) or absence (type II ferlin) of the DysF and FerA domains. Ferlins have diverse tissue-specific and developmental expression patterns, with ferlin animal models united by pathologies arising from defects in vesicle fusion. Consistent with their proposed role in vesicle trafficking, ferlin interaction partners include cytoskeletal motors, other vesicle-associated trafficking proteins and transmembrane receptors or channels. Herein we summarize the research history of the ferlins, an intriguing family of structurally conserved proteins with a preserved ancestral function as regulators of vesicle fusion and receptor trafficking.  相似文献   

20.
When microsomes from hypocotyls of Cucurbita pepo L. or coleoptiles of Zea mays L. were centrifuged on dextran-sucrose gradients a heterogeneity of auxin-accumulating vesicles was observed. Vesicles from the top part of the gradient showed saturable, specific accumulation of indole-3-acetic acid with only a small stimulation by phytotropins, and with very few binding sites for 1-N-naphthylphthalamic acid. In the vesicles from the lower part of the gradient, net accumulation of indole-3-acetic acid could be strongly increased by addition of phytotropins; binding of 1-N-naphthylphthalamic acid was high in this region. After two-phase partitioning, both kinds of vesicles were found in the upper-phase membrane fraction considered to be purified plasma membrane. The hypothesis is discussed that vesicles can be separated from the apical and basal parts of the cell's plasmalemma.Abbreviations CCO cytochrome-c oxidase - CCR KCN-insensitive NADH-dependent cytochrome-c reductase - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - IDPase inosine 5-diphosphatase - ION3 ionophore mixture of carbonylcyanide-3-chlorophenylhydrazone, nigericin and valinomycin - 1-NAA 1-naphthaleneacetic acid - NPA 1-N-naphthylphthalamic acid - PBA 2-(1-pyrenoyl)benzoic acid - UDPG uridine diphosphoglucose  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号