共查询到20条相似文献,搜索用时 0 毫秒
1.
Kim E. Steiner V. B. Whitehead 《Evolution; international journal of organic evolution》1991,45(6):1493-1501
We examined foreleg length and body size variation in two species of oil-collecting bees (Rediviva; Melittidae) in southern Africa. Oil-collecting bees harvest oil from host flowers by rubbing their forelegs against oil-secreting trichomes. Significant differences in foreleg length occur among populations of both species. Rediviva “pallidula” populations vary significantly in mean foreleg length (11.34 ± 0.42 mm to 12.67 ± 0.36 mm), but not in body length (10.59 ± 0.74 to 10.80 ± 0.64), and foreleg length and body size are not significantly correlated. Instead, foreleg variation appears to be a function of host plant spur length. Ninety-two percent of the variance in foreleg length of R. “pallidula” is explained by mean Diascia spur length. Rediviva rufocincta populations vary significantly in mean foreleg length (10.12 ± 0.70 mm to 12.34 ± 0.68 mm) and in body length (9.03 ± 0.26 mm to 10.56 ± 0.24 mm). Foreleg length scales allometrically with body size in this species as 90.5% of the variance in foreleg length can be explained as a function of body length. Body size appears to be constrained by the morphology of the oil-secreting host plant. Both bees collect floral oil with specially modified setae on the tarsi of their forelegs. The length of the disti- + mediotarsus (refered to here as “tarsus”) in relation to the entire foreleg is shorter in R. rufocincta and does not increase as rapidly with increasing foreleg length as for R. “pallidula.” These differences in variation can be attributed to differences in position of oil within the flowers of the respective host plants. Rediviva “pallidula” collects oil from Diascia species that have the oil deeply situated in narrow floral spurs of varying length, while R. rufocincta collects oil from the broadly saccate flowers of Bowkeria verticillata and B. citrina. 相似文献
2.
Background and Aims
Studies of local floral adaptation in response to geographically divergent pollinators are essential for understanding floral evolution. This study investigated local pollinator adaptation and variation in floral traits in the rewarding orchid Gymnadenia odoratissima, which spans a large altitudinal gradient and thus may depend on different pollinator guilds along this gradient.Methods
Pollinator communities were assessed and reciprocal transfer experiments were performed between lowland and mountain populations. Differences in floral traits were characterized by measuring floral morphology traits, scent composition, colour and nectar sugar content in lowland and mountain populations.Key Results
The composition of pollinator communities differed considerably between lowland and mountain populations; flies were only found as pollinators in mountain populations. The reciprocal transfer experiments showed that when lowland plants were transferred to mountain habitats, their reproductive success did not change significantly. However, when mountain plants were moved to the lowlands, their reproductive success decreased significantly. Transfers between populations of the same altitude did not lead to significant changes in reproductive success, disproving the potential for population-specific adaptations. Flower size of lowland plants was greater than for mountain flowers. Lowland plants also had significantly higher relative amounts of aromatic floral volatiles, while the mountain plants had higher relative amounts of other floral volatiles. The floral colour of mountain flowers was significantly lighter compared with the lowland flowers.Conclusions
Local pollinator adaptation through pollinator attraction was shown in the mountain populations, possibly due to adaptation to pollinating flies. The mountain plants were also observed to receive pollination from a greater diversity of pollinators than the lowland plants. The different floral phenotypes of the altitudinal regions are likely to be the consequence of adaptations to local pollinator guilds. 相似文献3.
特化传粉系统通常被认为是一种高效的植物与传粉者互作的关系, 但即使是高度特化的花朵也经常接受非传粉者的访问。当前的特化传粉系统研究主要关注于植物与特定传粉者的相互作用, 往往忽视了其他访花者的潜在影响。海芋(Alocasia odora)与芋果蝇属(Colocasiomyia)物种是典型的高度特化传粉互惠关系, 但海芋花序仍存在许多其他的访花者类群, 它们对传粉过程的影响尚不清楚。通过访花者筛除实验, 本研究证实了海芋的授粉过程必须有海芋果蝇(C. alocasia)或异海芋果蝇(C. xenalocasiae)的参与。除此以外, 海芋花序上还观察到包括露尾甲科、蜜蜂科、隐翅虫科和跗线螨科等类群的访花者, 共计10种。繁育系统实验表明, 海芋的自交不亲和性是由空间和时间上的雌雄分离造成的。因此, 尽管其他访花者未直接对海芋结实率做出贡献, 但它们对花粉和雄花不育区分泌物报酬的取食行为仍可能整体上减少了有效花粉资源, 并与传粉者竞争报酬资源, 进而间接影响有效传粉者的传粉行为。本研究为特化传粉理论提供了新视角, 未来研究应更全面考虑访花者的整体作用。 相似文献
4.
Pollination syndromes are defined as suites of floral traits evolved in response to selection imposed by a particular group of pollinators (e.g., butterflies, hummingbirds, bats). Although numerous studies demonstrated their occurrence in plants pollinated by radically different pollinators, it is less known whether it is possible to identify them within species pollinated by one functional pollinator group. In such a framework, we expect floral traits to evolve also in response to pollinator subgroups (e.g., species, genera) within that unique functional group. On this, specialised pollination systems represent appropriate case studies to test such expectations. Calceolaria is a highly diversified plant genus pollinated by oil‐collecting bees in genera Centris and Chalepogenus. Variation in floral traits in Calceolaria has recently been suggested to reflect adaptations to pollinator types. However, to date no study has explicitly tested that observation. In this paper, we quantitatively test that hypothesis by evaluating the presence of pollination syndromes within the specialised pollination system formed by several Calceolaria and their insect pollinators. To do so, we use multivariate approaches and explore the structural matching between the morphology of 10 Calceolaria taxa and that of their principal pollinators. Our results identify morphological matching between floral traits related to access to the reward and insect traits involved in oil collection, confirming the presence of pollinator syndromes in Calceolaria. From a general perspective, our findings indicate that the pollination syndrome concept can be also extended to the intra‐pollinator group level. 相似文献
5.
Alison J. Parker Neal M. Williams James D. Thomson 《Evolution; international journal of organic evolution》2018,72(1):202-210
Geographical variation in pollinators visiting a plant can produce plant populations adapted to local pollinator environments. We documented two markedly different pollinator climates for the spring ephemeral wildflower Claytonia virginica: in more northern populations, the pollen‐specialist bee Andrena erigeniae dominated, but in more southern populations, A. erigeniae visited rarely and the bee‐fly Bombylius major dominated. Plants in the northern populations experienced faster pollen depletion than plants in southern populations. We also measured divergent pollen‐related plant traits; plants in northern populations produced relatively more pollen per flower and anther dehiscence was more staggered than plants in southern populations. These plant traits might function to increase pollen dispersal via the different pollen vectors. 相似文献
6.
KURT M. NEUBIG WILLIAM MARK WHITTEN NORRIS H. WILLIAMS FLS MARIO A. BLANCO LORENA ENDARA JOHN GORDON BURLEIGH KATIA SILVERA JOHN C. CUSHMAN MARK W. CHASE FLS 《Botanical journal of the Linnean Society. Linnean Society of London》2012,168(2):117-146
Phylogenetic relationships within the orchid subtribe Oncidiinae sensu Chase were inferred using maximum likelihood analyses of single and multilocus DNA sequence data sets. Analyses included both nuclear ribosomal internal transcribed spacer DNA and plastid regions (matK exon, trnH‐psbA intergenic spacer and two portions of ycf1 exon) for 736 individuals representing approximately 590 species plus seven outgroup taxa. Based on the well resolved and highly supported results, we recognize 61 genera in Oncidiinae. Mimicry of oil‐secreting Malpighiaceae and other floral syndromes evolved in parallel across the subtribe, and many clades exhibit extensive variation in pollination‐related traits. Because previous classifications heavily emphasized these floral features, many genera recognized were not monophyletic. Our classification based on monophyly will facilitate focused monographs and clarifies the evolution of morphological and biochemical traits of interest within this highly diverse subtribe. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 168 , 117–146. 相似文献
7.
Background and Aims
Most Neotropical species of Malpighiaceae produce floral fatty oils in calyx glands to attract pollinating oil-collecting bees, which depend on this resource for reproduction. This specialized type of pollination system tends to be lost in members of the family that occur outside the geographic distribution (e.g. Africa) of Neotropical oil-collecting bees. This study focused on the pollination ecology, chemical ecology and reproductive biology of an oil flower species, Pterandra pyroidea (Malpighiaceae) from the Brazilian Cerrado. Populations of this species consist of plants with oil-secreting (glandular) flowers, plants with non-oil-secreting flowers (eglandular) or a mix of both plant types. This study specifically aims to clarify the role of eglandular morphs in this species.Methods
Data on pollinators were recorded by in situ observations. Breeding system experiments were conducted by isolating inflorescences and by enzymatic reactions. Floral resources, pollen and floral oils offered by this species were analysed by staining and a combination of various spectroscopic methods.Key Results
Eglandular flowers of P. pyroidea do not act as mimics of their oil-producing conspecifics to attract pollinators. Instead, both oil-producing and oil-free flowers depend on pollen-collecting bees for reproduction, and their main pollinators are bumble-bees. Floral oils produced by glandular flowers are less complex than those described in closely related genera.Conclusions
Eglandular flowers represent a shift in the pollination system in which oil is being lost and pollen is becoming the main reward of P. pyroidea flowers. Pollination shifts of this kind have hitherto not been demonstrated empirically within Neotropical Malpighiaceae and this species exhibits an unusual transition from a specialized towards a generalized pollination system in an area considered the hotspot of oil-collecting bee diversity in the Neotropics. Transitions of this type provide an opportunity to study ongoing evolutionary mechanisms that promote the persistence of species previously involved in specialized mutualistic relationships. 相似文献8.
Specialization of some plants on seed‐eating pollinators is intriguing, especially when co‐pollinators exclusively feeding on nectar are also present. We examined the stability of the morphological specialization of Trollius europaeus (L.) globeflowers with respect to Chiastocheta (Pokorny) flies by artificially opening the flowers. In the montane and subalpine environments studied, other visitors contributed 2% and 28% of all the visits, respectively, and visited open flowers nearly eight times more often than closed flowers, but in both environments their contribution to pollination did not compensate for Chiastocheta aversion against open phenotypes. Net seed set (female success) was slightly higher (+4%) and pollen export (male success) was much higher (+85%) for closed than open flowers. Selection in favour of the closed phenotype was even more intense in patches where open phenotypes were most common, precluding the evolution of open flowers in the study populations. 相似文献
9.
10.
Lucia R. Weinman Trent Ress Joel Gardner Rachael Winfree 《American journal of botany》2023,110(6):e16178
Premise
Bees provision most of the pollen removed from anthers to their larvae and transport only a small proportion to stigmas, which can negatively affect plant fitness. Though most bee species collect pollen from multiple plant species, we know little about how the efficiency of bees' pollen transport varies among host plant species or how it relates to other aspects of generalist bee foraging behavior that benefit plant fitness, such as specialization on individual foraging bouts.Methods
We compared the pollen collected and transported by three bee species for 46 co-occurring plant species. Specifically, we compared the relative abundance of pollen taxa in the individual bees' scopae, structures where bees store pollen to provision larvae, with the relative abundance of pollen taxa on the rest of bees' bodies, which is more likely to be transferred to stigmas.Results
Bees carried five times more pollen grains in their scopae than elsewhere on their bodies. Within foraging bouts, bees were relatively specialized in their pollen collection, but transported proportionally less pollen for the host plants on which they specialized. Across foraging bouts, two bee species transported proportionally less pollen for some of their host plants than for others, though differences didn't consistently follow the same trend as at the foraging bout scale.Conclusions
Our results suggest that foraging-bout specialization, which is known to reduce heterospecific pollen transfer, also results in less-efficient pollen transport. Thus, bee foragers that visit predominantly one plant species may have contrasting effects on that plant's fitness.11.
Steven D. Johnson; 《Biotropica》2024,56(1):162-169
The evolution of extremely long (>10 cm) floral tubes in angiosperms is closely linked with adaptation for pollination by long-proboscid hawkmoths. In most cases, pollen is placed on the head or body of these moths, selecting for floral tubes that match or slightly exceed their proboscis length as this ensures contact with reproductive parts of the flower. However, in the case of Chamaepentas nobilis (Rubiaceae), anthers are inserted inside the c. 12-cm floral tubes and coat the proboscis of visiting hawkmoths with sticky pollen, meaning that insects with proboscides longer than the floral tube can be effective pollinators, despite trait mismatching. Direct observations and camera trapping on granite outcrops in central Zambia showed that C. nobilis was visited both by Agrius convolvuli (proboscis length c. 13 cm) and Xanthopan morganii (proboscis length c. 17 cm), which are the only moth species in Africa that can access the small amounts of dilute nectar at the base of the floral tube. Pollen on the proboscides of captured hawkmoths was confirmed to originate from C. nobilis. Key floral advertising traits of C. nobilis include early evening anthesis, the highly reflective white limbus, and the evening production of scent dominated by oxygenated aromatic and terpenoid compounds known to elicit antennal responses of A. convolvuli. This study shows that that A. convolvuli and X. morganii share floral resources and jointly pollinate C. nobilis, despite their proboscides differing in length and being mismatched with the corolla tube length. 相似文献
12.
E. R. Pansarin I. Alves‐dos‐Santos L. M. Pansarin 《Plant biology (Stuttgart, Germany)》2017,19(2):147-155
- The incredible pollination mechanisms displayed by orchid flowers has inspired biologists over the centuries. Based on the intriguing flower structures, the relationship among orchid species and their pollinators has been frequently regarded as very specialised.
- Given that visits on flowers pollinated by oil‐collecting bees are regularly rare, and in Oncidiinae the flowers frequently attractexclusively species that act as effective pollinators, the comparative reproductive biology and pollinator specificity of two sympatric Gomesa (G. varicosa and G. montana; Oncidiinae) were analysedbased on records of floral morphology, production of floral rewards, pollinators and pollination mechanisms. Furthermore, experimental pollinations were carried out in order to examine the breeding systems.
- The results have show that in the studied population, both Gomesa are visited by several bee species, but these orchids present a specific pollination system.Pollinaria are deposited on the head of Centridini (G. varicosa and G. montana) and Epicharitini (G. varicosa) bees when landed on the central callus of the labellumto collect lipoidal substances produced by glandular elaiophores on lateral lobes of the labellum. Both species are dependent on a biotic pollen vector to set fruits. Gomesamontana is completely self‐incompatible, while G. varicosa is partially self‐compatible.
- Our results indicate that although the occurrence of self‐sterile species seems to be common in Oncidiinae, in partially self‐incompatible species, as is the case of G. varicosa, self‐compatibility has been considered as an important factor favouring reproductive assurance in populations with low visitation frequencies, despite occurrence of inbreeding depression.
13.
Background and Aims
The underlying evolutionary processes of pollinator-driven floral diversification are still poorly understood. According to the Grant–Stebbins model speciation begins with adaptive local differentiation in the response to spatial heterogeneity in pollinators. Although this crucial process links the micro- and macroevolution of floral adaptation, it has received little attention. In this study geographical phenotypic variation was investigated in Patagonian Calceolaria polyrhiza and its pollinators, two oil-collecting bee species that differ in body size and geographical distribution.Methods
Patterns of phenotypic variation were examined together with their relationships with pollinators and abiotic factors. Six floral and seven vegetative traits were measured in 45 populations distributed across the entire species range. Climatic and edaphic parameters were determined for 25 selected sites, 2–16 bees per site of the most frequent pollinator species were captured, and a critical flower–bee mechanical fitting trait involved in effective pollination was measured. Geographical patterns of phenotypic and environmental variation were examined using uni- and multivariate analyses. Decoupled geographical variation between corolla area and floral traits related to the mechanical fit of pollinators was explored using a Mantel test.Key Results
The body length of pollinators and the floral traits related to mechanical fit were strongly correlated with each other. Geographical variation of the mechanical-fit-related traits was decoupled from variation in corolla size; the latter had a geographical pattern consistent with that of the vegetative traits and was mainly affected by climatic gradients.Conclusions
The results are consistent with pollinators playing a key role in shaping floral phenotype at a geographical scale and promoting the differentiation of two floral ecotypes. The relationship between the critical floral-fit-related trait and bee length remained significant even in models that included various environmental variables and an allometric predictor (corolla area). The abiotic environment also has an important role, mainly affecting floral size. Decoupled geographical variation between floral mechanical-fit-related traits and floral size would represent a strategy to maintain plant–pollinator phenotypic matching in this environmentally heterogeneous area. 相似文献14.
According to the concept of pollination syndromes, floral traits reflect specialisation to a particular pollinator or set of pollinators. However, the reproductive biology of endemic, and often specialised, plants may require increased attention as climate change accelerates worldwide. Species of Roscoea endemic to the Himalayan region have striking orchid-like flowers with long corolla tubes, suggesting pollination by long-tongued insects. Until now, the reproductive biology of species of Roscoea has been poorly documented. We investigated the floral biology, breeding system and pollination ecology of R. cautleoides and R. humeana, from Hengduan Mountains, a global biodiversity hotspot in southwest China. We also tested whether floral longevity increases pollination success. Pollination experiments showed that the two species were self-compatible and depended on insects for fruit production. Over several flowering seasons we did not observe any potential pollinators with long tongues that matched the corolla tube visiting flowers in centres of distribution. The principal pollinators observed were pollen-collecting generalist bees, with low visitation frequencies. In general, members of the ginger family are characterised by short-lived (usually 1 day) flowers, but flowers of R. cautleoides and R. humeana last 8 and 6 days, respectively. Removing stigmas decreased fruit set in both study populations. Our results suggest that the original pollinators may have been long-tongued insects that are now absent from the Chinese Himalayas because habitats have responded to climate change. However, long-lived and self-compatible flowers, coupled with the presence of generalist pollinators, are traits that have allowed these gingers to reproduce and continue to persist in the alpine habitats. 相似文献
15.
16.
Andreas Jürgens Gregor Aas Stefan Dötterl 《Botanical journal of the Linnean Society. Linnean Society of London》2014,175(4):624-640
Floral scent, often a complex mixture of several volatile organic compounds (VOCs), has generally been interpreted as an adaptation to attract pollinators. However, not many studies have analysed which VOCs are functionally relevant for the reproductive success of a plant. Here, we show that, in Salix caprea (Salicaceae), temporal changes in floral scent emission during the day and night attract two different types of flower visitor: bees during the day and moths during the evening and night. We analysed the contribution of the two flower visitor groups to the reproductive success of the plant. The differences in scent emitted during the peak activity times of flower visitors (day versus night) were quantified and the response of 13 diurnal/nocturnal pollinator taxa to the floral scents was tested using gas chromatographic and electroantennographic techniques. Many of the c. 40 identified scent compounds were physiologically active, and bees and moths responded to nearly identical sets of compounds, although the response strengths differed. In bioassays, bees preferred the most abundant 1,4‐dimethoxybenzene over lilac aldehyde, a compound with increased emission at night, whereas moths preferred lilac aldehyde over 1,4‐dimethoxybenzene. Pollination by wind plus nocturnal pollinators (mainly moths) or by wind alone contributed less to seed set than pollination by wind plus diurnal pollinators (mainly bees). This suggests that the emission of scent during the night and attracting moths have no significant effect on reproductive success. It is possible that the emission of lilac aldehydes and other compounds at night is s result of phylogenetic constraints. Future studies should investigate whether moths may produce a marginal fitness gain in some years and/or some populations. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 624–640. 相似文献
17.
David A. Moeller Ryan D. Briscoe Runquist Annika M. Moe Monica A. Geber Carol Goodwillie Pierre‐Olivier Cheptou Christopher G. Eckert Elizabeth Elle Mark O. Johnston Susan Kalisz Richard H. Ree Risa D. Sargent Mario Vallejo‐Marin Alice A. Winn 《Ecology letters》2017,20(3):375-384
Latitudinal gradients in biotic interactions have been suggested as causes of global patterns of biodiversity and phenotypic variation. Plant biologists have long speculated that outcrossing mating systems are more common at low than high latitudes owing to a greater predictability of plant–pollinator interactions in the tropics; however, these ideas have not previously been tested. Here, we present the first global biogeographic analysis of plant mating systems based on 624 published studies from 492 taxa. We found a weak decline in outcrossing rate towards higher latitudes and among some biomes, but no biogeographic patterns in the frequency of self‐incompatibility. Incorporating life history and growth form into biogeographic analyses reduced or eliminated the importance of latitude and biome in predicting outcrossing or self‐incompatibility. Our results suggest that biogeographic patterns in mating system are more likely a reflection of the frequency of life forms across latitudes rather than the strength of plant–pollinator interactions. 相似文献
18.
W.‐C. Gong G. Chen N. J. Vereecken B. L. Dunn Y.‐P. Ma W.‐B. Sun 《Plant biology (Stuttgart, Germany)》2015,17(1):245-255
Traditionally, plant–pollinator interactions have been interpreted as pollination syndrome. However, the validity of pollination syndrome has been widely doubted in modern studies of pollination ecology. The pollination ecology of five Asian Buddleja species, B. asiatica, B. crispa, B. forrestii, B. macrostachya and B. myriantha, in the Sino‐Himalayan region in Asia, flowering in different local seasons, with scented inflorescences were investigated during 2011 and 2012. These five species exhibited diverse floral traits, with narrow and long corolla tubes and concealed nectar. According to their floral morphology, larger bees and Lepidoptera were expected to be the major pollinators. However, field observations showed that only larger bees (honeybee/bumblebee) were the primary pollinators, ranging from 77.95% to 97.90% of total visits. In this study, floral scents of each species were also analysed using coupled gas chromatography and mass spectrometry (GC‐MS). Although the five Buddleja species emitted differentiated floral scent compositions, our results showed that floral scents of the five species are dominated by substances that can serve as attractive signals to bees, including species‐specific scent compounds and principal compounds with larger relative amounts. This suggests that floral scent compositions are closely associated with the principal pollinator assemblages in these five species. Therefore, we conclude that floral scent compositions rather than floral morphology traits should be used to interpret plant–pollinator interactions in these Asian Buddleja species. 相似文献
19.
Background and AimsOrnamental flowering plant species are often used in managed greenspaces to attract and support pollinator populations. In natural systems, selection by pollinators is hypothesized to result in convergent multimodal floral phenotypes that are more attractive to specific pollinator taxa. In contrast, ornamental cultivars are bred via artificial selection by humans, and exhibit diverse and distinct phenotypes. Despite their prevalence in managed habitats, the influence of cultivar phenotypic variation on plant attractiveness to pollinator taxa is not well resolved.MethodsWe used a combination of field and behavioural assays to evaluate how variation in floral visual, chemical and nutritional traits impacted overall attractiveness and visitation by pollinator taxonomic groups and bee species to 25 cultivars of five herbaceous perennial ornamental plant genera.Key resultsDespite significant phenotypic variation, cultivars tended to attract a broad range of pollinator species. Nonetheless, at the level of insect order (bee, fly, butterfly, beetle), attraction was generally modulated by traits consistent with the pollination syndrome hypothesis. At the level of bee species, the relative influence of traits on visitation varied across plant genera, with some floral phenotypes leading to a broadening of the visitor community, and others leading to exclusion of visitation by certain bee species.ConclusionsOur results demonstrate how pollinator choice is mediated by complex multimodal floral signals. Importantly, the traits that had the greatest and most consistent effect on regulating pollinator attraction were those that are commonly selected for in cultivar development. Though variation among cultivars in floral traits may limit the pollinator community by excluding certain species, it may also encourage interactions with generalist taxa to support pollinator diversity in managed landscapes. 相似文献
20.
B. Anderson A. Pauw W. W. Cole S. C. H. Barrett 《Journal of evolutionary biology》2016,29(8):1631-1642
Mating patterns and natural selection play important roles in determining whether genetic polymorphisms are maintained or lost. Here, we document an atypical population of Lapeirousia anceps (Iridaceae) with a bimodal distribution of floral‐tube length and investigate the reproductive mechanisms associated with this pattern of variation. Flowers were visited exclusively by the long‐proboscid fly Moegistorhynchus longirostris (Nemestrinidae), which exhibited a unimodal distribution of proboscis length and displayed a preference for long‐tubed phenotypes. Despite being visited by a single pollinator species, allozyme markers revealed significant genetic differentiation between open‐pollinated progeny of long‐ and short‐tubed phenotypes suggesting mating barriers between them. We obtained direct evidence for mating barriers between the floral‐tube phenotypes through observations of pollinator foraging, controlled hand pollinations and measurements of pollen competition and seed set. Intermediate tube‐length phenotypes produced fewer seeds in the field than either long‐ or short‐tubed phenotypes. Although floral‐tube length bimodality may not be a stable state over long timescales, reproductive barriers to mating and low ‘hybrid’ fitness have the potential to contribute to the maintenance of this state in the short term. 相似文献