首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inga species present brush‐type flower morphology allowing them to be visited by distinct groups of pollinators. Nectar features in relation to the main pollinators have seldom been studied in this genus. To test the hypothesis of floral adaptation to both diurnal and nocturnal pollinators, we studied the pollination ecology of Inga sessilis, with emphasis on the nectar secretion patterns, effects of sequential removals on nectar production, sugar composition and the role of diurnal and nocturnal pollinators in its reproductive success. Inga sessilis is self‐incompatible and pollinated by hummingbirds, hawkmoths and bats. Fruit set under natural conditions is very low despite the fact that most stigmas receive polyads with sufficient pollen to fertilise all ovules in a flower. Nectar secretion starts in the bud stage and flowers continually secreting nectar for a period of 8 h. Flowers actively reabsorbed the nectar a few hours before senescence. Sugar production increased after nectar removal, especially when flowers were drained during the night. Nectar sugar composition changed over flower life span, from sucrose‐dominant (just after flower opening, when hummingbirds were the main visitors) to hexose‐rich (throughout the night, when bats and hawkmoths were the main visitors). Diurnal pollinators contributed less than nocturnal ones to fruit production, but the former were more constant and reliable visitors through time. Our results indicate I. sessilis has floral adaptations, beyond the morphology, that encompass both diurnal and nocturnal pollinator requirements, suggesting a complementary and mixed pollination system.  相似文献   

2.
Inga species are characterised by generalist or mixed pollination system. However, this feature does not enhance reproductive rates in species with very low fruit set under natural conditions. Some ecological and genetic factors are associated with this feature, and to test the effect of massive visits on pollination success in Inga subnuda subsp. luschnathiana, we studied the efficacy of polyads deposited on stigmas of flowers isolated from visitors and polyads exposed to visitors. The proportion of polyads fixed in stigmas decreased after exposure to visitors (24 h) in comparison to stigmas isolated from visitors (hummingbirds, bees, wasps, hawkmoths and bats), and fruit set was very low. Furthermore, nectar production, sugar composition and other floral biology traits were evaluated. Increased nectar production, sugar availability and sucrose dominance during the night indicates adaptation to nocturnal visitors and supports their role as main pollinators; although the brush‐flower morphology, time of anthesis, nectar dynamics and chemical composition also allow daytime visitors. Thus the species is an important resource for a diverse group of floral visitors. We conclude that excess visits (diurnal and nocturnal) are responsible for the decrease in fixed polyads in stigmas of I. subnuda subsp. luschnathiana flowers, thus contributing, with others factors, to its low fruit set. Therefore, the generalist pollination system does not result in reproductive advantages because the low fruit set in natural conditions could be the result of a negative effect of visitors/pollinators.  相似文献   

3.
Flowers that are pollinated both during the day and at night could exhibit two different groups of pollinators and produce two different sets of attractants and rewards. We explored the patterns of emission of flower scents and production of nectar in the cactus Echinopsis chiloensis ssp. chiloensis, in relation to the patterns of activity of its diurnal and nocturnal pollinators. We measured frequency of flower visitors, analyzed floral scents, measured nectar production and sugar concentration, and performed pollination exclusion experiments. Bees were the main visitors at daytime and hawkmoths at nighttime. Diurnal scents were dominated by several compounds that can attract a wide range of pollinators, whereas nocturnal scents were less diverse and were dominated by (E)-nerolidol, a compound eliciting antennal responses in hawkmoths. Nectar volume and sugar concentration at night were similar to those recorded in hawkmoth-pollinated flowers. Daytime nectar volume was higher than those commonly found in bee-pollinated flowers, but similar to those found in flowers pollinated by several pollinators. Daytime sugar concentration was similar to those recorded in bee-pollinated flowers. Flowers of E. chiloensis ssp. chiloensis seem morphologically adapted to hawkmoth pollination, but diurnal and nocturnal pollinators contribute to similar extents to reproductive success. Additionally, diurnal and nocturnal pollinators showed a synergic effect on the product of fruit set and seed set. The results are discussed in terms of the linkage between floral traits and perception abilities and requirements of pollinators.  相似文献   

4.
The aim of this study was to analyse the reproductive biology of Echinopsis terscheckii, a species endemic to northwest Argentina that has nocturnal flowers. We expected that this species had a generalised pollination system, with moths and diurnal visitors as the primary pollinators. To test this, we studied the floral biology, breeding system and floral visitors of this species and the effectiveness of nocturnal and diurnal visitors. Floral biology was defined based on floral morphology, floral cycle and nectar production of the flowers. The breeding system and relative contributions of diurnal and nocturnal visitors to fruit and seed set were analysed through field experiments. E.?terscheckii flowers opened at sunset and closed the following day. The peak of nectar production occurred at midnight. Flowers were determined to be self-incompatible. Moths, bees and birds were identified as floral visitors. Moths were the most frequent visitors at night, whereas bees were the most frequent visitors during the day. Fruit production by diurnal pollinators was less than that by nocturnal pollinators; among all floral visitors, moths were the most effective pollinators. We have demonstrated for the first time that moths are the primary pollinators of columnar cacti of the genus Echinopsis. Our results suggest that moths might be important pollinators of columnar cactus species with nocturnal flowers in the extra-tropical deserts of South America.  相似文献   

5.
We investigated the reproductive biology, including the floral biology, pollination biology, breeding system and reproductive success, of Pachira aquatica, a native and dominant tropical tree of fresh water wetlands, throughout the coastal plain of the Gulf of Mexico. The flowers present nocturnal anthesis, copious nectar production and sugar concentration (range 18–23%) suitable for nocturnal visitors such as bats and sphingid moths. The main nocturnal visitors were bats and sphingid moths while bees were the main diurnal visitors. There were no differences in legitimate visitation rates among bats, moths and honey bees. Bats and honey bees fed mainly on pollen while moths fed on nectar, suggesting resource partitioning. Eight species of bats carried pollen but Leptonycteris yerbabuenae is probably the most effective pollinator due to its higher pollen loads. The sphingid moths Manduca rustica, Cocytius duponchel and Eumorpha satellitia were recorded visiting flowers. Hand pollination experiments indicated a predominant outcrossing breeding system. Open pollination experiments resulted in a null fruit set, indicating pollen limitation; however, mean reproductive success, according to a seasonal census, was 17 ± 3%; these contrasting results could be explained by the seasonal availability of pollinators. We conclude that P. aquatica is an outcrossing species with a pollination system originally specialized for bats and sphingid moths, which could be driven to a multimodal pollination system due to the introduction of honey bees to tropical America.  相似文献   

6.
Luis Navarro 《Biotropica》1999,31(4):618-625
The floral syndrome of Macleania bullataYeo (Ericaceae) reflects its adaptation to hummingbird pollination. Its flowers, however, are subject to high levels of nectar robbing. I examined the floral visitor assemblage of M. bullata in a tropical montane wet forest in southwestern Colombia, focusing on the behavior of the visitors. I also tested for the presence of nocturnal pollination and the effects of nectar removal on new nectar production. The principal floral visitors were the nectar robbing hummingbirds Ocreatus underwoodii (19.1% of visits) and Chlorostilbon mellisugus (18.9%). Only two species of long–billed hummingbirds visited the flowers of M. bullata as “legitimate” pollinators: Coeligena torquata (14.7% of visits) and Doryfera ludoviciae (14.3%). The remaining visits constituted nectar robbing by bees, butterflies, and other species of hummingbirds. Nocturnal pollination took place, although fruit set levels were 2.4 times higher when only diurnal pollination was allowed as opposed to exclusively nocturnal pollination. Nectar robbers removed floral nectar without pollinating the flower. Treatments of experimental nectar removal were carried out to examine if flowers synthesize more nectar after nectar removal. Nectar removal increased the total volume of nectar produced by each flower without affecting sugar concentration. Thus, nectar robbing can impose a high cost to the plants by forcing them to replace lost nectar.  相似文献   

7.
Stenocereus quevedonis (‘pitire’) is a columnar cactus endemic to central Mexico, grown for its edible fruit. Phenology, pollination biology and behaviour of flower visitors of this species were compared in six conserved and disturbed sites, hypothesising that: (i) pitire pollination is self‐incompatible, requiring animal vectors; (ii) higher incidence of radiation on plants in cleared forest may lead to a higher number of flowers per pitire plant and longer blooming season, and disturbing and differential spatial availability of flower resources may determine differential attraction of pollinators to conserved and disturbed areas; (iii) if pitire pollination system is specialised, reproductive success would decrease with pollinator scarcity, or other species may substitute for main pollinators. In all sites, pitire reproduction started in January, flowering peak occurring in April, anthesis duration was 15 h and predominantly nocturnal (9 h), pollen was released at 23:00 h, nectar was produced throughout anthesis, and breeding system was self‐incompatible. Flower production per plant was similar in disturbed and conserved sites, but flower availability was higher (because of higher tree density) and longer in disturbed sites. Pollination is nocturnal, the most frequent legitimate pollinator being the bat Leptonycteris yerbabuenae; diurnal pollination is rare but possible, carried out by bee species. Fruit and seed set in control and nocturnal pollination treatments at disturbed sites were higher than in conserved sites. Frequency of L. yerbabuenae visits was similar among site types, but more visits of complementary nocturnal and diurnal pollinators were recorded in disturbed sites, which could explain differences in reproductive success.  相似文献   

8.
The hypothesis of this study was that in the Galápagos Islands, fruit and seed set via nocturnal pollination would exceed that of diurnal pollination due to greater insect activity at night typical of hot, arid regions. Cordia lutea, a heterostylous member of the Galápagos flora, was submitted to pollination experiments, visitor observations, nectar sampling, pollen transfer studies, pollen-ovule ratio studies, and pollen measurements. Flowers set fruit and seed via open pollination, autonomous autogamy, facilitated autogamy, facilitated cross-pollination, diurnal pollination, and nocturnal pollination. There was a significant difference in fruit set between flowers experiencing legitimate cross-pollinations (pin × thrum) and those experiencing all other pollination treatments except facilitated autogamy. There was no significant difference in seed set among any of the treatments, but there was a trend toward greater seed set for flowers experiencing open-pollination, legitimate cross-pollination, and nocturnal pollination. There was no significant difference in fruit set or seed set between flowers experiencing diurnal pollination and nocturnal pollination, although there was a trend toward greater seed set resulting from nocturnal pollination. Carpenter bees were the most effective diurnal pollinators, whereas moths were the most effective nocturnal pollinators. Of the two, moths are more efficient at transporting pollen from plant to plant. Results indicate that an overall low productivity of this species is due to pollen limitation exacerbated by nectar robbing. Cordia lutea exhibits a mixed mating system, producing a relatively low level of fruits through a combination of self- and cross-pollination, facilitated by the relatively few insects that are available.  相似文献   

9.
Petrocoptis montsicciana (Caryophyllaceae) is a threatened pre‐Pyrenean endemic that grows exclusively on caves and walls of limestone. We studied its pollination ecology by monitoring phenology and by evaluating pollen and nectar production, pollinator activity (frequency and behaviour of visitors), quantity and quality of pollination services, pollen/ovule ratio, and seed set in response to insect exclusion and self‐compatibility tests. We also analysed the effect of population size on reproductive mechanisms by comparing a large and a small population. Flowers of P. montsicciana produced nectar and were visited by Hymenoptera (79.7%), Diptera (11.5%), and Lepidoptera (8.8%). The most frequent pollinators (60.6% of total visits) were long‐tongued bees of the genus Anthophora. Both populations had a similar range of pollinators. We found a correlation between the number of visited flowers and the number of open flowers per census; 88.7% of pollen grains deposited on the stigmas were conspecific and the main competitor was another chasmophyte plant, Antirrhinum molle. Bagged flowers set seeds but significantly less so than hand‐self‐pollinated and control flowers. Thus, although self‐compatible and self‐pollinated, entomophilous pollination of P. montsicciana is required in order to explain c. 10–40% of total seed set, in accordance with P/O ratio estimations. Bagged flowers from the small population set significantly more seeds than the large one. Visitation rates were lower in the small population, but, unexpectedly, showed higher stigmatic pollen loads and similar or higher seed set. These results suggest an increase of spontaneous selfing rates in the small population, probably favoured by a smaller flower size, which can not only assure reproductive success when pollinators are scarce, but also provide additional potential to adapt to climatic changes. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society, 2002, 76 , 79–90.  相似文献   

10.
Abstract: Isertia laevis (Rubiaceae) possesses flowers with traits typical for the pollination syndrome of sphingophily. Diurnal flower observation showed that nine different hummingbirds (Trochilidae) and one flower piercer (Coerebidae) were frequent visitors. Their activity on the flowers peaked in the morning hours. Very low nectar volumes were found in the morning (8.00 h) in unbagged flowers. Nectar volumes, however, reached their peaks (27 μl) at night (2.00 h) in bagged, as well as in unbagged flowers. At night few individuals of sphingids were observed. Pollination experiments showed that flowers presented to nocturnal pollinators from 18.00 h to 6.00 h had low fruit set (14 %) but high seed set (59 %). Flowers accessible from 6.00 h to 18.00 h for diurnal flower visitors showed high fruit set of 63 % but low seed set of 14 %. This suggests that pollination of individual flowers is less effective during daytime. Regarding relative reproductive success, i.e., efficiency of pollination defined as fruit set x seed set, both diurnal and nocturnal pollinators, however, are equally successful. We conclude that frequently occurring, but not very effective pollinators contribute substantially to seed production, when the expected pollinators are scarce.  相似文献   

11.
Ipomoea habeliana is an endemic, night‐flowering member of the Galápagos flora. Pollination experiments, flower‐visitor observations, nectar sampling, pollen transfer, and pollen to ovule ratio and pollen size studies were included in this project. The large, white flowers of this species set fruit via open pollination (55%), autonomous autogamy (51%), facilitated autogamy (91%), cross‐pollination (80%), diurnal open pollination (60%) and nocturnal open pollination (60%). Fruit set is pollen‐limited. Ants, beetles, crickets and hawk moths regularly visit the flowers. Ants are the most frequent visitors, but hawk moths are the only effective pollinators. Nectar is available throughout the night, but is most abundant early in the evening when hawk moth visits are most frequent. Experiments with fluorescent dust demonstrate intra‐ and inter‐plant pollen movement by hawk moths. Although this species is adapted for hawk moth pollination, it readily sets fruit via autonomous autogamy when no visits are made. Thus, it is concluded that it is facultatively xenogamous. Additional support for this conclusion is provided by the pollen to ovule ratio of 1407 and by the fact that the plants grow in a region that has few or no faithful pollinators. Conservation efforts for I. habeliana should include hand pollinations, which could significantly increase seed set. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160 , 11–20.  相似文献   

12.
The majority of flowering plants, including many rare and threatened species, are pollinated by animals, but little is known of pollination and breeding systems of many endangered species. Polemonium caeruleum (Polemoniaceae) is a red‐listed species and is regarded as dichogamous, self‐compatible and bee pollinated. However, some studies show that it is visited by a vast assemblage of anthophilous insects from many taxonomic orders and that breeding systems vary greatly between closely related taxa of this genus. Over a period of 3 years we investigated breeding system, dichogamy, nectar secretion and composition, insect visitations and pollen loads in flowers of P. caeruleum in north‐eastern Poland to determine whether the reproductive biology of the plant explains its rarity. Contrary to published data, our study plants were self‐incompatible and showed a high degree of outcrossing. Our experimental work confirmed the occurrence of protandry in this species, revealed that nectar is sucrose‐dominant and proline‐rich and, for the first time for Polemoniaceae, that nectar secretion and nectar sugar concentration in flowers of P. caeruleum is female‐biased. Although flowers were visited by at least 39 species of insects from five taxonomic orders, overall the plant exhibited many characters associated with bee pollination, and analysis of insect performance showed that bumblebees and honeybees are the key pollinators; occasionally hoverflies and butterflies may also be involved. We conclude that, in terms of pollination system, P. caeruleum demonstrates high apparent generalization, but low realized generalization, and is a functional specialist, as most pollinators belong to a single functional group (guild). Its conservation status, at least in our study population, cannot be explained in terms of the biological properties of its breeding or pollination systems; rather, the present decline of the species is caused by habitat loss. However, if this process and bumblebee decline in Europe continue, P. caeruleum populations may diminish in numbers and density and, owing to the self‐incompatibility of the species, quickly become severely pollen‐limited, thereby accelerating further local extinctions. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 92–107.  相似文献   

13.

Background and Aims

The genus Gesneria diversified in the Greater Antilles giving rise to various floral designs corresponding to different pollination syndromes. The goal of this study was to characterize the pollination and breeding systems of five Puerto Rican Gesneria species.

Methods

The study was conducted in Arecibo and El Yunke National Forest, Puerto Rico, between 2003 and 2007. Floral visitors were documented by human observers and video cameras. Floral longevity and nectar production were recorded for the five study species. Tests for self-compatibility and autonomous selfing were conducted through hand-pollination and bagging experiments.

Key Results

Floral phenology and nectar production schedules agree with nocturnal (in bell-shaped flowered G. pedunculosa and G. viridiflora subsp. sintenisii) or diurnal pollination syndromes (in tubular-flowered G. citrina, G. cuneifolia and G. reticulata). Nectar concentration is consistently low (8–13 %) across species. Gesneria citrina and G. cuneifolia are exclusively pollinated by hummingbirds, while Gesneria reticulata relies mostly on autonomous self-pollination, despite having classic ornithophilous flowers. A variety of floral visitors was recorded for the two species with bell-shaped flowers; however, not all visitors have the ability to transfer pollen. Bats are the primary pollinators of G. pedunculosa, with bananaquits probably acting as secondary pollinators. For G. viridiflora subsp. sintenisii, both bats and hummingbirds contact the flower''s reproductive organs, thus, this species is considered to be a generalist despite its nocturnal floral syndrome. All species are self-compatible but only tubular-flowered Gesneria are capable of autonomous self-pollination.

Conclusions

The visitation patterns described in this study fit the predicted hummingbird and bat pollination syndromes and support both specialization and generalization of pollination systems in Puerto Rican Gesneria. Specialization is associated with low pollinator visitation, particularly by hummingbirds, which may explain the occurrence of autonomous selfing mechanisms in tubular-flowered species.Key words: Autonomous selfing, bat pollination, breeding systems, Gesneria, hummingbird pollination, Puerto Rico  相似文献   

14.
Background and AimsPlant individuals within a population differ in their phenology and interactions with pollinators. However, it is still unknown how individual differences affect the reproductive success of plants that have functionally specialized pollination systems. Here, we evaluated whether plant individual specialization in phenology (temporal specialization) and in pollination (pollinator specialization) affect the reproductive success of the crepuscular-bee-pollinated plant Trembleya laniflora (Melastomataceae).MethodsWe quantified flowering activity (amplitude, duration and overlap), plant–pollinator interactions (number of flowers visited by pollinators) and reproductive success (fruit set) of T. laniflora individuals from three distinct locations in rupestrian grasslands of southeastern Brazil. We estimated the degree of individual temporal specialization in flowering phenology and of individual specialization in plant–pollinator interactions, and tested their relationship with plant reproductive success.Key Results Trembleya laniflora presented overlapping flowering, a temporal generalization and specialized pollinator interactions. Flowering overlap among individuals and populations was higher than expected by chance but did not affect the individual interactions with pollinators and nor their reproductive success. In contrast, higher individual generalization in the interactions with pollinators was related to higher individual reproductive success.ConclusionsOur findings suggest that individual generalization in plant–pollinator interaction reduces the potential costs of specialization at the species level, ensuring reproductive success. Altogether, our results highlight the complexity of specialization/generalization of plant–pollinator interactions at distinct levels of organization, from individuals to populations, to species.  相似文献   

15.
The nectar resource environment across which nectarivores forage may be patchy and variable. To understand the sources and consequences of such a variation, nectar production was investigated in Calliandra longipedicellata . Nectar was measured once a month throughout a 3-mo winter season in two successive years at three sites. We also conducted diurnal and nocturnal field observations to describe visitation rates of floral visitors, and a pollinator exclusion experiment to evaluate diurnal and nocturnal pollination at the three sites. In all populations, nectar secretion was primarily nocturnal, although flowers produced some nectar during the day. Sugar production per flower varied significantly at both the seasonal and population levels, although nectar production rates and a well-defined afternoon to morning production pattern were consistent across months, populations, and years. Average nectar production rates were high compared to other Calliandra species, and to most hummingbird- or hawkmoth-pollinated plants in the region. Flowers were regularly visited by hawkmoths, bats, hummingbirds and various diurnal insects, and all populations had similar rates of visitation. Nocturnal insects had the highest overall visitation rates (three times as high as those by diurnal insects). Fruit production varied among pollination treatments and populations, and significant differences were found in fruit production when flowers exposed to both diurnal and nocturnal visitation were compared to flowers exposed only to diurnal visitation. Our results and the bright-red staminal filaments of C. longipedicellata indicate lack of specialization for particular pollinators.  相似文献   

16.
The mistletoe Psittacanthus robustus was studied as a model to link flower phenology and nectar secretion strategy to pollinator behaviour and the reproductive consequences for the plant. The bright‐coloured flowers presented diurnal anthesis, opened asynchronously throughout the rainy season and produced copious dilute nectar as the main reward for pollinators. Most nectar was secreted just after flower opening, with little sugar replenishment after experimental removals. During the second day of anthesis in bagged flowers, the flowers quickly reabsorbed the offered nectar. Low values of nectar standing crop recorded in open flowers can be linked with high visitation rates by bird pollinators. Eight hummingbirds and two passerines were observed as potential pollinators. The most frequent flower visitors were the hummingbirds Eupetomena macroura and Colibri serrirostris, which actively defended flowering mistletoes. The spatial separation between anthers, stigma and nectar chamber promotes pollen deposition on flapping wings of hovering hummingbirds that usually probe many flowers per visit. Seed set did not differ between hand‐, self‐ and cross‐pollinated flowers, but these treatments set significantly more seeds than flowers naturally exposed to flower visitors. We suggest that the limitation observed in the reproductive success of this plant is not related to pollinator scarcity, but probably to the extreme frequency of visitation by territorial hummingbirds. We conclude that the costs and benefits of plant reproduction depend on the interaction strength between flowers and pollinators, and the assessment of nectar secretion dynamics, pollinator behaviour and plant breeding system allows clarification of the complexity of such associations.  相似文献   

17.
The considerable floral diversity present in the cactus family has often been associated with the specificity of its pollinators. However, many cactus pollination systems are generalized as their flowers are pollinated by a wide spectrum of animals. For example, cactus species with white flowers, nocturnal anthesis and extended floral cycles would present generalized pollination systems in which both nocturnal and diurnal visitors could be effective pollinators. In this article, we tested this hypothesis by studying the pollination biology of Echinopsis schickendantzii, an Andean cactus with sphingophilous flowers. In addition, we evaluated whether the cactus’s pollination system is complementary or redundant regarding the relative contributions of nocturnal and diurnal pollinators. Specifically, we studied the floral cycle, the reproductive system and the pollination effectiveness of floral visitors. The flowers of E. schickendantzii are self-incompatible; they opened at crepuscule and have an extended floral cycle. Moths were frequent visitors at night, whereas bees were frequent visitors during the day; both were effective pollinators of the cactus. Our results indicated that the flowers of this species present phenotypic, functional and ecological generalization, and their fruit set is determined by the contributions of both pollinator functional groups, i.e., they have complementary pollination systems. These results support the hypothesis that cacti in the extra-tropical deserts of South America have generalized pollination systems.  相似文献   

18.
Currently, pollination is seen as involving more generalist interactions than specialized ones. Supporting this trend, some nocturnal distylous flowers may also receive floral visitors during the day, and since the latter contribute to fruit set, the pollination system is mixed and less specialized. Common among the Rubiaceae, distyly has been regarded as a reproductive strategy which requires a precise and specialized pollination system, and in this important tropical family, environmental disturbance and pollination failure have been used to explain anomalies in distylous features. Faramea cyanea Müll. Arg. is a common tree species in forest formations in the increasingly threatened Cerrado biome, the Neotropical savannas in Central Brazil. We evaluated the floral morphology, pollination biology and breeding system of a population of F. cyanea. Despite their moth pollination features, flowers were visited by diurnal (bees) as well as nocturnal (moths) pollinators. Experimental results showed that both pollinator groups contributed equally to pollen flow and legitimate pollination. The population presented distyly, isoplethy and heteromorphic self-incompatibility. Although F. cyanea did not present exact reciprocal herkogamy between floral morphs, pollination and reproductive success were not impaired. Floral features, which allowed pollination by complementary groups of pollinators, may explain the absence of anomalies in the isoplethy and distylous features in the studied population, anomalies which have been observed in other sympatric distylous Rubiaceae.  相似文献   

19.
Generalized pollination systems may be favored in early spring flowering plants, as during this period pollinator activity is unpredictable. Many previous studies have concentrated on the importance of diurnal visitors in pollination, and consequently, information on the contribution of nocturnal visitors to pollination in early spring is limited. This study was conducted to evaluate the relative importance of diurnal and nocturnal pollinators in the early spring flowering dioecious shrub Stachyurus praecox (Stachyuraceae), in two temperate forests in central Japan. Visitors to the female and male flowers were observed during day and night, and their relative contributions to seed set were compared. The pollinator observations revealed that the diurnal and nocturnal insects visited both male and female flowers, and that the main flower visitors were diurnal small bees and flies as well as nocturnal settling moths. The diurnal and nocturnal flower visitors also acted as pollinators, as the pollen grains of S. praecox were attached to the insects collected from the female flowers. Pollination experiments demonstrated that the contributions of diurnal pollinators to the seed set were higher than those of the nocturnal pollinators. The results of this study indicate that S. praecox has a generalized pollination system, comprising both diurnal insects and nocturnal settling moths. Although the roles of diurnal insects are more important in the pollination of S. praecox, nocturnal settling moths may have a complementary role in early spring.  相似文献   

20.
  • The discrepancy between observed flower visitors and those predicted based on floral phenotype has often cast doubt on the pollination syndrome concept. Here we show that this paradox may be alleviated by gaining better knowledge of the contributions of different flower visitors to pollination and the effects of floral traits that cannot be readily perceived by humans in Adenophora triphylla var. japonica. The blue, bell‐shaped and pendant flowers of Atriphylla appear to fit a bee pollination syndrome. In contrast to this expectation, recent studies show that these flowers are frequented by nocturnal moths.
  • We compared the flower visitor fauna, their visitation frequency and their relative contributions to seed set between day and night in two field populations of A. triphylla in Japan. We also determined the floral traits associated with temporal changes in the visitor assemblage, i.e. the timing of anthesis, the timing of changes in the sexual phase and the diel pattern of nectar production.
  • While Atriphylla flowers were visited by both diurnal and nocturnal insects, the results from pollination experiments demonstrate that their primary pollinators are nocturnal settling‐moths. Moreover, the flowers opened just after sunset, changed from staminate to pistillate phase in successive evenings and produced nectar only during the night, which all conform to the activity of nocturnal/crepuscular moths.
  • Our study illustrates that the tradition of stereotyping the pollinators of a flower based on its appearance can be misleading and that it should be improved with empirical evidence of pollination performance and sufficient trait matching.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号