首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Genetic structure among disjunct population groups of Pultenaea pauciflora was assessed to determine the evolutionary history of this species as a basis for conservation management strategies. Analysis of individuals from all extant populations using 1737 amplified length polymorphism markers revealed two highly divergent genetic entities with strong geographical structuring. Populations located at Narrogin and Brookton clustered together in Bayesian assignment analysis with every individual optimally placed in a single cluster with complete membership. Genetic differentiation between populations in these two areas was very low. Populations at Boddington were highly divergent from those located at Narrogin and Brookton. All individuals from Boddington populations were optimally placed into a second cluster with complete membership. Populations located at Boddington maintain lower levels of allelic diversity, yet greater levels of mean heterozygosity than populations located at Narrogin and Brookton. The degree of genetic differentiation and different patterns of genetic diversity strongly suggest historical divergence and separate evolutionary influences on the two lineages that occur in different ecological habitat. These Evolutionary Significant Units are likely to represent two cryptic sister taxa in the extant populations currently recognized as P. pauciflora, and the reassessment of taxonomic and conservation status of both lineages is required. © 2013 State of Western Australia. Biological Journal of the Linnean Society © 2013 The Linnean Society of London  相似文献   

2.
The freshwater phreatoicidean isopod Mesamphisopus capensis has been regarded as the most widespread of the four Mesamphisopus species occurring in the Western Cape, South Africa. To determine whether this species was monotypic across its distribution over two mountainous regions, separated by a low-lying coastal plain remnant, genetic differentiation among populations from 11 localities was studied through allozyme electrophoresis of 12 loci and sequencing of a 338-bp 12S rRNA mtDNA fragment from representative individuals. Populations of the two regions were separated by a mean identity value of 0.477. Fixed allele differences at two loci distinguished these regions. Estimates of θ indicated substantial differentiation among populations across the entire sample, as well as within each of the regions. Topologies derived through parsimony and neighbour joining supported the monophyly of the two regions. On the basis of these topologies, allele frequencies and an allozyme dendrogram, five groups were identified. Discriminant function analyses, performed on body and pereopod variables independently, revealed these groups to be well differentiated with a high rate of correct a posteriori reclassification. Using genetic distance criteria these five distinct forms may be considered to be putative species. From a conservation perspective, the two regions can be seen to represent two evolutionarily significant units, while the five groups should be regarded as management units.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 81 , 235–253.  相似文献   

3.
1. North‐eastern Spain is a hot spot for the introduction of alien fish species, and its native fish fauna is one of the most endangered worldwide. We used an extensive data set from 2002 to 2003 and historical information from the area to characterize fish diversity and establish conservation priorities in river catchments. 2. Diversity indices were used to characterize fish diversity at the basin scale. An index of conservation status was applied for each species, which considers the occurrence, abundance and endemicity of each taxon. We used indirect ordination methods to test the relationship among basin features and to identify those variables most correlated with each other. To identify physical, biotic and environmental characteristics that seem to make a basin particularly susceptible to invasion, we performed a step‐wise multiple regression to examine the relationship between the number of native, translocated and introduced fish species (including the original native species richness of each basin), and landscape variables. 3. Over a period of approximately 50 years, the mean range size of native fish species has decreased by 60%. The greatest decline occurred in Gasterosteus gymnurus, Anguilla anguilla and Salaria fluviatilis, for which species over 75% of the original distribution area has been lost. The species with the highest conservation index were Gasterosteus gymnurus and Salaria fluviatilis. 4. Basin area and the catchment type explained 70% of variation in native species richness, whereas the number of dams and basin area accounted for more than 80% of variation in the number of introduced species. 5. The original native species richness and the number of introduced species at basin scale were not related, and thus there was no evidence of “biotic resistance” to invasion. The restoration of natural hydrologic processes and the development of specific management tools to protect native species, such as the prioritization of areas for fish conservation and the eradication of local populations of exotic species, are required to restore native fish fauna in these catchments.  相似文献   

4.
濒危植物鹅掌楸(Liriodendron chinense)目前仅零散分布于我国亚热带及越南北部地区, 残存居群生境片断化较为严重。研究濒危植物片断化居群的遗传多样性及小尺度空间遗传结构(spatial genetic structure)有助于了解物种的生态进化过程以及制定相关的保育策略。本研究采用13对微卫星引物, 对鹅掌楸的1个片断化居群进行了遗传多样性及空间遗传结构的研究, 旨在揭示生境片断化条件下鹅掌楸的遗传多样性及基因流状况。研究结果表明: 鹅掌楸烂木山居群内不同生境斑块及不同年龄阶段植株的遗传多样性水平差异不显著(P>0.05), 居群内存在寨内和山林2个遗传分化明显的亚居群。烂木山居群个体在200 m以内呈现显著的空间遗传结构, 而2个亚居群内的个体仅在20 m的距离范围内存在微弱或不显著的空间遗传结构。鹅掌楸的空间遗传结构强度较低(Sp = 0.0090), 且寨内亚居群的空间遗传结构强度(Sp = 0.0067)要高于山林亚居群(Sp = 0.0053)。鹅掌楸以异交为主, 种子较轻且具翅, 借助风力传播, 在一定程度上降低了空间遗传结构的强度。此外, 居群内个体密度及生境特征也对鹅掌楸的空间遗传结构产生了一定影响。该居群出现显著的杂合子缺失, 近交系数(FIS)为0.099 (P < 0.01), 表明生境片断化的遗传效应正逐渐显现。因此, 对鹅掌楸的就地保护应注意维护与强化生境的连续性, 促进基因交流。迁地保护时, 取样距离应不小于20 m, 以涵盖足够多的遗传变异。  相似文献   

5.
Analysis of genetic variation can provide insights into ecological and evolutionary diversification which, for commercially harvested species, can also be relevant to the implementation of spatial management strategies and sustainability. In comparison with other marine biodiversity hot spots, there has been less genetic research on the fauna of the southwest Indian Ocean (SWIO). This is epitomized by the lack of information for lethrinid fish, which support socioeconomically important fisheries in the region. This study combines comparative phylogeographic and population genetic analyses with ecological niche modeling to investigate historical and contemporary population dynamics of two species of emperor fish (Lethrinus mahsena and Lethrinus harak) across the SWIO. Both species shared similarly shallow phylogeographic patterns and modeled historical (LGM) habitat occupancies. For both species, allele frequency and kinship analyses of microsatellite variation revealed highly significant structure with no clear geographical pattern and nonrandom genetic relatedness among individuals within samples. The genetic patterns for both species indicate recurrent processes within the region that prevent genetic mixing, at least on timescales of interest to fishery managers, and the potential roles of recruitment variability and population isolation are discussed in light of biological and environmental information. This consistency in both historical and recurrent population processes indicates that the use of model species may be valuable in management initiatives with finite resources to predict population structure, at least in cases wherein biogeographic and ecological differences between taxa are minimized. Paradoxically, mtDNA sequencing and microsatellite analysis of samples from the Seychelles revealed a potential cryptic species occurring in sympatry with, and seemingly morphologically identical to, L. mahsena. BLAST results point to the likely misidentification of species and incongruence between voucher specimens, DNA barcodes, and taxonomy within the group, which highlights the utility and necessity of genetic approaches to characterize baseline biodiversity in the region before such model‐based methods are employed.  相似文献   

6.
Aim To investigate the historical distribution of the Cerrado across Quaternary climatic fluctuations and to generate historical stability maps to test: (1) whether the ‘historical climate’ stability hypothesis explains squamate reptile richness in the Cerrado; and (2) the hypothesis of Pleistocene connections between savannas located north and south of Amazonia. Location The Cerrado, a savanna biome and a global biodiversity hotspot distributed mainly in central Brazil. Methods We generated occurrence datasets from 1000 presence points randomly selected from the entire distribution of the Cerrado, as determined by two spatial definitions. We modelled the potential Cerrado distribution by implementing a maximum‐entropy machine‐learning algorithm across four time projections: current, mid‐Holocene (6 ka), Last Glacial Maximum (LGM, 21 ka) and Last Interglacial (LIG, 120 ka). We generated historical stability maps (refugial areas) by overlapping presence/absence projections of all scenarios, and checked consistencies with qualitative comparisons with available fossil pollen records. We built a spatially explicit simultaneous autoregressive model to explore the relationship between current climate, climatic stability, and squamate species richness. Results Models predicted the LGM and LIG as the periods of narrowest and widest Cerrado distributions, respectively, and were largely corroborated by palynological evidence. We found evidence for two savanna corridors (eastern coastal during the LIG, and Andean during the LGM) and predicted a large refugial area in the north‐eastern Cerrado (Serra Geral de Goiás refugium). Variables related to climatic stability predicted squamate richness better than present climatic variables did. Main conclusions Our results indicate that Bolivian savannas should be included within the Cerrado range and that the Cerrado’s biogeographical counterparts are not Chaco and Caatinga but rather the disjunct savannas of the Guyana shield plateaus. Climatic stability is a good predictor of Cerrado squamate richness, and our stability maps could be used in future studies to test diversity patterns and genetic signatures of different taxonomic groups and as a higher‐order landscape biodiversity surrogate for conservation planning.  相似文献   

7.
Californian vernal pools, a patchy, island-like habitat, are endangered as a result of habitat destruction. Conservation of the remaining vernal pool habitat is essential for the persistence of several endangered species. We present the first study examining DNA-level genetic diversity within and among populations of a vernal pool plant species. We investigated genetic variation across eight populations of the US federally endangered vernal pool endemic Lasthenia conjugens (Asteraceae) using intersimple sequence repeat (ISSR) markers. Genetic diversity within the species was high (Nei's gene diversity estimate was 0.37), with moderate differentiation among populations (Bayesian F ST analog of 0.124). Using an amova analysis, we found that the majority of the genetic variation (84%) was distributed within populations. There is a significant relationship between geographical distance and pairwise genetic differentiation as measured by the Bayesian estimate θB. The alternative hypotheses of historic geological processes within the Central Valley and contemporary gene flow are discussed as explanations of the data. Because of the vulnerability of the populations, we calculated a probability of loss for rare alleles (fragments) in the populations. Calculations show that sampling only one of the eight populations for ex-situ conservation or restoration will capture approximately 54% of the sampled rare fragments. We believe that one of the sampled populations has become extinct since it was sampled. When removing this population from the above-mentioned calculations, sampling one population will capture only 41.3% of the sampled rare fragments. We recommend sampling strategies for future conservation and restoration efforts of L. conjugens.  相似文献   

8.
AIMS: This study was designed to compare levels of genetic variation and its partitioning in three related species of Antirrhinum, A. subbaeticum, A. pertegasii and A. pulverulentum, and to check the hypothesis that species with small total population size have lower levels of genetic variability than those with bigger ones. This information should contribute to the development of conservation strategies of rare endemic species of Antirrhinum. METHODS: One hundred and seventy-seven plants were screened for variability at 14 allozyme loci by means of horizontal starch gel. Parameters of genetic diversity, and its partitioning, were calculated. An indirect estimate of gene flow was based on the equation: Nm = (1 - GST)/4GST. KEY RESULTS: Genetic variabilities in A. subbaeticum and A. pertegasii were found to be the lowest known for the genus, the within-population genetic diversity being correlated with population size in both species. The distribution of genetic diversity is strikingly different among species, with 85 % of the total variation distributed among populations in A. subbaeticum, 6 % in A. pertegasii and 23 % in A. pulverulentum. Estimated levels of gene flow were negligible for A. subbaeticum (0.04), high for A. pertegasii (3.92), and substantial for A. pulverulentum (0.83). Genetic and geographic distances were negatively correlated in A. pertegasii, whereas no significant correlation was found in the other two species. CONCLUSIONS: Levels of total genetic diversity agree with the hypothesis that species with small total population size have lower levels of genetic variability than those with bigger ones. Strategies for the conservation of the species are recommended, such as preservation of natural populations and avoidance of possible causes of threat, as well as ex situ preservation of seeds, reinforcement of small populations of A. subbaeticum with plants or seeds from the same population, and avoidance of translocations among populations.  相似文献   

9.
Genetic markers are widely used to define and manage populations of threatened species based on the notion that populations with unique lineages of mtDNA and well‐differentiated nuclear marker frequencies should be treated separately. However, a danger of this approach is that genetic uniqueness might be emphasized at the cost of genetic diversity, which is essential for adaptation and is potentially boosted by mixing geographically separate populations. Here, we re‐explore the issue of defining management units, focussing on a detailed study of Galaxiella pusilla, a small freshwater fish of national conservation significance in Australia. Using a combination of microsatellite and mitochondrial markers, 51 populations across the species range were surveyed for genetic structure and diversity. We found an inverse relationship between genetic differentiation and genetic diversity, highlighting a long‐term risk of deliberate isolation of G. pusilla populations based on protection of unique lineages. Instead, we adopt a method for identifying genetic management units that takes into consideration both uniqueness and genetic variation. This produced a management framework to guide future translocation and re‐introduction efforts for G. pusilla, which contrasted to the framework based on a more traditional approach that may overlook important genetic variation in populations.  相似文献   

10.
Catfishes of the family Pangasiidae are an important group that contributes significantly to the fisheries of the Mekong River basin. In recent times the populations of several catfish species have declined, thought to be due to overfishing and habitat changes brought about by anthropogenic influences. The Mekong giant catfish Pangasianodon gigas Chevey, 1913 is listed as Critically Endangered on the IUCN Red List. In the present study, we assessed the level of genetic diversity of nine catfish species using sequences of the large subunit of mitochondrial DNA (16S rRNA). Approximately 570 base pairs (bp) were sequenced from 672 individuals of nine species. In all species studied, haplotype diversity and nucleotide diversity ranged from 0.118±0.101 to 0.667±0.141 and from 0.0002±0.0003 to 0.0016±0.0013, respectively. Four haplotypes were detected among 16 samples from natural populations of the critically endangered Mekong giant catfish. The results, in spite of the limited sample size for some species investigated, indicated that the level of genetic variation observed in wild populations of the Mekong giant catfish (haplotype diversity=0.350±0.148, nucleotide diversity=0.0009±0.0008) is commensurate with that of some other related species. This finding indicates that (1) wild populations of the Mekong giant catfish might be more robust than currently thought or (2) present wild populations of this species carry a genetic signature of the historically larger population(s). Findings from this study also have important implications for conservation of the Mekong giant catfish, especially in designing and implementing artificial breeding programme for restocking purposes.  相似文献   

11.
We used mitochondrial gene sequences to reconstruct phylogenetic relationships among subspecies of the bushmaster, Lachesis muta. These large vipers are widely distributed in lowland tropical forests in Central and South America, where three of four allopatric subspecies are separated by montane barriers. Our phylogeny indicates that the four subspecies belong to two clades, the Central American and South American lineages. We use published molecular studies of other taxa to estimate a 'reptilian mtDNA rate' and thus temporal boundaries for major lineage divergences in Lachesis. We estimate that the Central and South American forms diverged 18-6 Mya, perhaps due to the uplifting of the Andes, whereas the two Central American subspecies may have diverged 11-4 Mya with the uprising of the Cordillera de Talamanca that separates them today. South American bushmasters from the Amazon Basin and the Atlantic Forest are not strongly differentiated, perhaps due to episodic gene flow during the Pleistocene, when suitable habitat for this species was at times more continuous. Our results agree with previous evidence that genetic divergence among some neotropical vertebrates pre-dated Pleistocene forest fragmentation cycles and the appearance of the Panamanian Isthmus. Based on morphological, behavioral, and molecular evidence, we recognize three species of Lachesis. In addition to L. muta, the widespread South American form, the Central American forms are treated as distinct species (L. meknocephak and L. stenophrys), each deserving of special conservation status due to restricted distribution and habitat destruction.  相似文献   

12.
Omphalogramma souliei Franch. Is an endangered perennial herb only distributed in alpine areas of SW China. ISSR markers were applied to determine the genetic variation and genetic structure of 60 individuals of three populations of O. Souliei in NW Yunnan, China. The genetic diversity at the species level is low with P= 42.5% (percentage of polymorphic bands) and Hsp=0.1762 (total genetic diversity). However, a high level of genetic differentiation among populations was detected based on different measures (Nei's genetic diversity analysis: Gst=0.6038; AMOVA analysis: Fst=0.6797). Low level of genetic diversity within populations and significant genetic differentiation among populations might be due to the mixed mating system in which xenog-amy predominated and autogamy played an assistant role in O. Souliei. The genetic drift due to small population size and limited current gene flow also resulted in significant genetic differentiation. The assessment of genetic variation and differentiation of the endangered species provides important information for conservation on a genetic basis. Conservation strategies for this rare endemic species are proposed.  相似文献   

13.
Omphalogramma souliei Franch. is an endangered perennial herb only distributed in alpine areas of SW China. ISSR markers were applied to determine the genetic variation and genetic structure of 60 individuals of three populations of O. souliei in NW Yunnan, China. The genetic diversity at the species level is low with P=42.5% (percentage of polymorphic bands) and Hsp=0.1762 (total genetic diversity). However, a high level of genetic differentiation among populations was detected based on different measures (Nei's genetic diversity analysis: Gst=0.6038; AMOVA analysis: Fst=0.6797). Low level of genetic diversity within populations and significant genetic differentiation among populations might be due to the mixed mating system in which xenogamy predominated and autogamy played an assistant role in O. souliei. The genetic drift due to small population size and limited current gene flow also resulted in significant genetic differentiation. The assessment of genetic variation and differentiation of the endangered species provides important information for conservation on a genetic basis. Conservation strategies for this rare endemic species are proposed.  相似文献   

14.
In order to provide guidelines for conservationand management of the severely declining LakeSaimaa (eastern Finland) European grayling(Thymallus thymallus, Salmonidae), weinvestigated the microgeographic geneticstructure of three populations from the watersystem using 17 microsatellite loci andmitochondrial DNA polymerase chainreaction-restriction fragment lengthpolymorphism analysis. Microsatellites revealedlow levels of intrapopulation genetic diversityand substantial divergence between populationssampled from spawning sites separated by aslittle as 55 kilometers. Mitochondrial analysisindicated the occurrence of two compositehaplotypes within Lake Saimaa. The nucleotidesubstitution estimates between the haplotypessuggested their separation to markedly predatethe late Pleistocene period. The populationsexhibited marked frequency differences for thetwo mitochondrial haplotypes, reinforcing theview of limited interpopulation gene flowwithin Lake Saimaa. An individual basedmicrosatellite Neighbor-Joining dendrogramdemonstrated clustering of all the specimensaccording to their sampling origin. Individualassignment tests revealed 100% assignmentsuccess of individuals into their population oforigin and 100% exclusion (p <0.05) from all alternative referencepopulations. These findings exemplify that T. thymallus populations may be genetically highly structured over small geographical scales and provide a good starting point for the development of appropriate conservation strategies for Lake Saimaa grayling.  相似文献   

15.
Borderea chouardii is a relictual and dioecious, strictly sexually reproducing, long-living geophyte of the Dioscoreaceae family. Previous biological and demographic studies have indicated the existence of a uniformly distributed panmictic population of this taxon at the southernmost Spanish pre-Pyrenean mountain ranges where it occurs in rather inaccessible crevices of a single limestone cliff. However, individuals of B. chouardii are spatially subdivided into two subpopulations located, respectively, on the upper and lower parts of the cliff, and vertically separated 150 m. Because of its extreme rarity, B. chouardii was the first Iberian taxon to have a specific conservation plan and has been included in several red lists under the category of critically endangered (CR). However, no previous attempts have been conducted to analyse the fine scale evolutionary mechanisms involved in its present microspatial distribution. Genetic diversity and population structure have been investigated through the analysis of neutral hypervariable markers such as simple sequence repeats (SSRs) and randomly amplified polymorphic DNAs (RAPDs) to unravel the impact of life history traits in the differentiation of the two subpopulations. Both types of molecular markers were unequivocal in distinguishing two genetically distinct groups of individuals corresponding to their spatial separation. However, SSRs detected a higher level of subpopulation differentiation (F(ST) = 0.35, R(ST) = 0.32) than RAPDs (F(ST) = 0.21). SSR data indicated significant deviation from random dispersal of genes and genotypes between the two groups, suggesting that mating occurs mainly among individuals within subpopulations, thus, favouring the divergence between the two groups. This microevolutionary differentiation scenario might have been caused by a coupled effect of past genetic drift and reproductive isolation, as a result of strong glacial age bottlenecks and inefficient dispersal system of pollen and seeds, respectively. The identification of such genetic structure in this narrow endemic prompts a modification of the management strategies of its single extant population.  相似文献   

16.
Lithophyllum species in the Mediterranean Sea function as algal bioconstructors, contributing to the formation of biogenic habitats such as coralligenous concretions. In such habitats, thalli of Lithophyllum, consisting of crusts or lamellae with entire or lobed margins, have been variously referred to as either one species, L. stictiforme, or two species, L. stictiforme and L. cabiochiae, in the recent literature. We investigated species diversity and phylogenetic relationships in these algae by sequencing three markers (psbA and rbcL genes, cox2,3 spacer), in conjunction with methods for algorithmic delimitation of species (ABGD and GMYC). Mediterranean subtidal Lithophyllum belong to a well‐supported lineage, hereby called the L. stictiforme complex, which also includes two species described from the Atlantic, L. lobatum and L. searlesii. Our results indicate that the L. stictiforme complex consists of at least 13 species. Among the Mediterranean species, some are widely distributed and span most of the western and central Mediterranean, whereas others appear to be restricted to specific localities. These patterns are interpreted as possibly resulting from allopatric speciation events that took place during the Messinian Salinity Crisis and subsequent glacial periods. A partial rbcL sequence from the lectotype of L. stictiforme unambiguously indicates that this name applies to the most common subtidal Lithophyllum in the central Mediterranean. We agree with recent treatments that considered L. cabiochiae and L. stictiforme conspecific. The diversity of Lithophyllum in Mediterranean coralligenous habitats has been substantially underestimated, and future work on these and other Mediterranean corallines should use identifications based on DNA sequences.  相似文献   

17.
Aims Developing plant conservation strategies requires knowledge of ecological and genetic processes underlying population dynamics. We aimed to quantify morphological and genetic differentiation among remnant populations of the iconic coco‐de‐mer palm Lodoicea maldivica. We hypothesized that limited gene flow among widely spaced populations would result in high genetic variation and large phenotypic differences among populations. Location Islands of Praslin and Curieuse (CU), Seychelles, Indian Ocean. Methods We conducted an extensive population survey and recorded morphological parameters for 447 Lodoicea in the main populations at Vallée de Mai (VM) and Fond Ferdinand (FF) on Praslin, and on CU. We collected leaf material from 180 trees in these populations for DNA genotyping using amplified fragment length polymorphisms. Results A total of 16,766 Lodoicea trees were recorded in the three populations (72.6% of Lodoicea on both islands). Lodoicea trees at VM and FF showed similar morphology, but differed in most parameters from those at CU, which were shorter, grew more slowly and produced fewer seeds. Mean overall genetic diversity was 0.337, and percentage of polymorphic loci was 91.1. Genetic diversity of the CU population was lower than that at VM and FF. There was weak genetic differentiation between CU and Praslin populations, but 99% of all genetic diversity was within populations. Main conclusions Trees on CU differed in growth and morphology from those of the two Praslin populations. These phenotypic differences, however, were not mirrored in the genetic structure of the populations. All populations were relatively genetically diverse with remarkably little differentiation among populations. This suggests that the capacity of Lodoicea to dominate across a range of habitats may be because of high phenotypic plasticity. High genetic connectivity may be maintained through long‐distance wind pollination. Given the uncertainty about the extent of underlying adaptive variation, we recommend that restoration projects avoid transferring seeds between island populations.  相似文献   

18.
Patterns of genetic diversity within and among populations of Calliandra calothyrsus, an important multipurpose tree species, were examined using isozyme analysis. C. calothyrsus is a widespread species distributed throughout Central America and southern Mexico, across a variety of environments. Morphologically and ecologically distinct populations can be identified within this range, but they are currently considered to represent a single species. C. calothyrsus has been introduced to many parts of the tropics, where it is cultivated as a source of fuelwood, animal fodder, green manure, and shade by rural communities. Some of these introductions are known to have originated from Guatemala, but very little is known about the genetic diversity of either the native or naturalized populations. Isozyme electrophoresis of 23 loci across 17 populations of C. calothyrsus indicated that the majority of genetic diversity was partitioned between populations (FST = 0.802) and that within-population heterozygosity was low (mean Ho = 0.057). Naturalized populations had lower than expected heterozygosities and were most similar to material from Santa Maria de Jesus, a natural population in southern Guatemala. Four distinct groups of populations were identified on the basis of Nei's genetic distances and Population Aggregation Analysis (PAA), and correlate with the morphological and ecological differences that can be observed within the species. The results are discussed in relation to species delimitation and conservation.  相似文献   

19.
Inaccurate systematics confound our ability to determine evolutionary processes that have led to the diversification of many taxa. The North American freshwater mussel tribe Lampsilini is one of the better-studied groups in Unionidae, however, many supraspecific relationships between lampsiline genera remain unresolved. Two genera previously hypothesized to be non-monophyletic that have been largely overlooked are Leptodea and Potamilus. We set out to resolve supraspecific relationships in Lampsilini and test the monophyly of Leptodea and Potamilus by integrating molecular, morphological, and life history data. Our molecular matrix consisted of four loci: cytochrome c oxidase subunit 1 (CO1), NADH dehydrogenase subunit 1 (ND1), internal transcribed spacer 1 (ITS1), and 28S ribosomal RNA. Secondly, we performed both traditional and Fourier shape morphometric analyses to evaluate morphological differences and finally, we compared our results with available life history data. Molecular data supported the paraphyly of both Leptodea and Potamilus, but nodal support was insufficient to make any conclusions regarding generic-level assignments at this time. In contrast, inference from our integrative taxonomic assessment depicts significant support for the recognition of a new species, Potamilus streckersoni sp. nov., the Brazos Heelsplitter. Our data show clear separation of three taxonomic entities in the P. ohiensis species complex: P. amphichaenus, P. ohiensis, and P. streckersoni sp. nov.; all molecularly, geographically, and morphologically diagnosable. Our findings have profound implications for unionid taxonomy and will aid stakeholders in establishing effective conservation and management strategies.http://www.zoobank.org/urn:lsid:zoobank.org:pub:502647C0-418B-4CC4-85A8-BD89FC3F674F  相似文献   

20.
Molecular studies have been instrumental for refining species boundaries in the coral genus Pocillopora and revealing hidden species diversity within the extensively studied global species Pocillopora damicornis. Here we formally revise the taxonomic status of species closely related to and within the P. damicornis species complex, taking into account both genetic evidence and new data on morphometrics, including fine‐scale corallite and coenosteum structure. We found that mitochondrial molecular phylogenies are congruent with groups based on gross‐morphology, therefore reflecting species‐level differentiation. However, high levels of gross morphological plasticity and shared morphological characteristics mask clear separation for some groups. Fine‐scale morphological variation, particularly the shape and type of columella, was useful for differentiating between clades and provides an excellent signature of the evolutionary relationships among genetic lineages. As introgressive hybridization and incomplete lineage sorting complicate the delineation of species within the genus on the basis of a single species concept, the Unified Species Concept may represent a suitable approach in revising Pocillopora taxonomy. Eight species are herein described (P. damicornis, P. acuta, P. aliciae, P. verrucosa, P. meandrina, P. eydouxi, P. cf. brevicornis), including a novel taxon – P ocillopora bairdi sp. nov. (Schmidt‐Roach, this study). Citation synonyms and type materials are presented. © 2014 The Linnean Society of London  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号