首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
J. Neurochem. (2012) 122, 1145-1154. ABSTRACT: Cooling temperatures may modify action potential firing properties to alter sensory modalities. Herein, we investigated how cooling temperatures modify action potential firing properties in two groups of rat dorsal root ganglion (DRG) neurons, tetrodotoxin-sensitive (TTXs) Na(+) channel-expressing neurons and tetrodotoxin-resistant (TTXr) Na(+) channel-expressing neurons. We found that multiple action potential firing in response to membrane depolarization was suppressed in TTXs neurons but maintained or facilitated in TTXr neurons at cooling temperatures. We showed that cooling temperatures strongly inhibited A-type K(+) currents (IA) and TTXs Na(+) channels but had fewer inhibitory effects on TTXr Na(+) channels and non-inactivating K(+) currents (IK). We demonstrated that the sensitivity of A-type K(+) channels and voltage-gated Na(+) channels to cooling temperatures and their interplay determine somatosensory neuron excitability at cooling temperatures. Our results provide a putative mechanism by which cooling temperatures modify different sensory modalities including pain.  相似文献   

2.
3.
The 5-hydroxytryptamine 3 (5-HT(3)) receptor is a pentameric ligand-gated ion channel with potential molecular isoforms arising from different subunit combinations and/or different post-translational modifications of the individual subunits. Since N-glycosylation of the 5-HT3A subunit impacts cell surface trafficking, the presence of N-glycosylation of the human (h) 5-HT3B subunit and the influence upon cell membrane expression was investigated. Following transient expression of the h5-HT3B subunit by human embryonic kidney cells (HEK293 cells) stably expressing the h5-HT3A subunit, the N-glycosylation inhibitor tunicamycin reduced the size of the predominant h5-HT3B-immunoreactive protein (~ 55 kDa reduced to ~ 40 kDa). Disruption of each consensus N-glycosylation sequences in the h5-HT3B subunit (N31S, N75S, N117S, N147S and N182S) resulted in a reduced molecular weight (by ~ 2-4 kDa) of each mutant when expressed by HEK293 cells stably expressing the h5-HT3A subunit. Immunocytochemical studies demonstrated that disruption of each of the N-glycosylation sequences (individually or combined) reduced the expression of the mutant h5-HT3B subunit protein in the cell membrane when co-expressed with the h5-HT3A subunit. The present study has identified utilised N-glycosylation sites of the h5-HT3B subunit and demonstrated that they promote subunit expression in the cell membrane; a prerequisite for 5-HT(3) receptor function.  相似文献   

4.
Hainantoxin‐IV (HNTX‐IV), isolated from the venom of the spider Ornithoctonus hainana, is a specific antagonist of tetrodotoxin‐sensitive (TTX‐S) voltage‐gated sodium channels in rat dorsal root ganglion (DRG) cells. It adopts an inhibitor cystine knot motif, and structural analysis revealed a positively charged patch consisting of Arg26, Lys27, His28, Arg29 and Lys32 distributed on its molecular surface. Our previous study demonstrated that Lys27 and Arg29 but not Arg26 were critical residues for HNTX‐IV binding to TTX‐S sodium channels. In the present study, we examined the roles of His28 and Lys32 in the interaction of HNTX‐IV with its target. Two mutants, HNTX‐IV‐H28D and HNTX‐IV‐K32A, were generated by solid‐phase chemical synthesis and purified by reverse‐phase HPLC after refolding and oxidation, yielding two compounds of high purity with monoisotopic masses of 3962.66 and 3927.70 Da, respectively, as determined by MALDI‐TOF mass spectrometry. This indicated the presence of six cysteine residues forming three disulfide bonds. Moreover, circular dichroism spectroscopy analysis demonstrated that the substitution of His28 or Lys32 did not affect the overall structure of HNTX‐IV. The inhibitory activity of HNTX‐IV‐H28D and HNTX‐IV‐K32A against TTX‐S sodium channels in rat DRG cells was analyzed by whole‐cell patch‐clamp technique. The IC50 values for the mutants were 0.57 and 5.80 μM (17‐fold and 170‐fold lower than the activity of the native toxin), indicating that His28 and Lys32 may be important for the inhibitory activity of HNTX‐IV. Taken together, our results suggest that the positively charged patch might be the binding site for the interaction of HNTX‐IV with TTX‐S sodium channels. These findings might contribute to the elucidation of the structure and function relationship of HNTX‐IV. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
Acid-sensing ion channels (ASIC) are ligand-gated cation channels that are highly expressed in peripheral sensory and central neurons. ASIC are transiently activated by decreases in extracellular pH and are thought to play important roles in sensory perception, neuronal transmission, and excitability, and in the pathology of neurological conditions, such as brain ischemia. We demonstrate here that the heavy metals Ni(2+) and Cd(2+) dose-dependently inhibit ASIC currents in hippocampus CA1 neurons and in Chinese hamster ovary (CHO) cells heterologously expressing these channels. The effects of both Ni(2+) and Cd(2+) were voltage-independent, fast, and reversible. Neither metal affected activation and desensitization kinetics but rather decreased pH-sensitivity. Moreover, distinct ASIC isoforms were differentially inhibited by Ni(2+) and Cd(2+). External application of 1 mM Ni(2+) rapidly inhibited homomeric ASIC1a and heteromeric ASIC1a/2a channels without affecting ASIC1b, 2a, and ASIC3 homomeric channels and ASIC1a/3 and 2a/3 heteromeric channels. In contrast, external Cd(+) (1 mM) inhibited ASIC2a and ASIC3 homomeric channels and ASIC1a/2a, 1a/3, and 2a/3 heteromeric channels but not ASIC1a homomeric channels. The acid-sensing current in isolated rat hippocampus CA1 neurons, thought to be carried primarily by ASIC1a and 1a/2a, was inhibited by 1 mM Ni(2+). The current study identifies ASIC as a novel target for the neurotoxic heavy metals Cd(2+) and Ni(2+).  相似文献   

6.
7.
New chiral mexiletine analogs were synthesized in their optically active forms and evaluated in vitro as use‐dependent blockers of skeletal muscle sodium channels. Tests carried out on sodium currents of single muscle fibers of Rana esculenta demonstrated that all of them exerted a higher use‐dependent block than mexiletine. The most potent analog, (S)‐3‐(2,6‐dimethylphenoxy)‐1‐phenylpropan‐1‐amine (S)‐( 5 ), was six‐fold more potent than (R)‐Mex in producing a tonic block. As observed with mexiletine, the newly synthesized compounds exhibit modest enantioselective behavior, that is more evident in 3‐(2,6‐dimethylphenoxy)butan‐1‐amine ( 3 ). Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Scolopendra subspinipes mutilans, also known as Chinese red‐headed centipede, is a venomous centipede from East Asia and Australasia. Venom from this animal has not been researched as thoroughly as venom from snakes, snails, scorpions, and spiders. In this study, we isolated and characterized SsmTx‐I, a novel neurotoxin from the venom of S. subspinipes mutilans. SsmTx‐I contains 36 residues with four cysteines forming two disulfide bonds. It had low sequence similarity (<10%) with other identified peptide toxins. By whole‐cell recording, SsmTx‐I significantly blocked voltage‐gated K+ channels in dorsal root ganglion neurons with an IC50 value of 200 nM, but it had no effect on voltage‐gated Na+ channels. Among the nine K+ channel subtypes expressed in human embryonic kidney 293 cells, SsmTx‐I selectively blocked the Kv2.1 current with an IC50 value of 41.7 nM, but it had little effect on currents mediated by other K+ channel subtypes. Blockage of Kv2.1 by SsmTx‐I was not associated with significant alteration of steady‐state activation, suggesting that SsmTx‐I might act as a simple inhibitor or channel blocker rather than a gating modifier. Our study reported a specific Kv2.1‐blocker from centipede venom and provided a basis for future investigations of SsmTx‐I, for example on structure–function relationships, mechanism of action, and pharmacological potential. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
10.
A novel conotoxin named lt6c, an O‐superfamily conotoxin, was identified from the cDNA library of venom duct of Conus litteratus. The full‐length cDNA contains an open reading frame encoding a predicted 22‐residue signal peptide, a 22‐residue proregion and a mature peptide of 28 amino acids. The signal peptide sequence of lt6c is highly conserved in O‐superfamily conotoxins and the mature peptide consists of six cysteines arranged in the pattern of C? C? CC? C? C that is defined the O‐superfamily of conotoxins. The mature peptide fused with thioredoxin, 6‐His tag, and a Factor Xa cleavage site was successfully expressed in Escherichia coli. About 12 mg lt6c was purified from 1L culture. Under whole‐cell patch‐clamp mode, lt6c inhibited sodium currents on adult rat dorsal root ganglion neurons. Therefore, lt6c is a novel O‐superfamily conotoxin that is able to block sodium channels. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
When analyzing time‐to‐event cohort data, two different ways of choosing a time scale have been discussed in the literature: time‐on‐study or age at onset of disease. One advantage of choosing the latter is interpretability of the hazard ratio as a function of age. To handle the analysis of age at onset in a principled manner, we present an analysis of the Cox Proportional Hazards model with time‐varying coefficient for left‐truncated and right‐censored data. In the analysis of Northern Manhattan Study (NOMAS) with age at onset of stroke as outcome, we demonstrate that well‐established risk factors may be important only around a certain age span and less established risk factors can have a strong effect in a certain age span.  相似文献   

12.
The human voltage‐gated proton channel (Hv1) is a membrane protein consisting of four transmembrane domains and intracellular amino‐ and carboxy‐termini. The protein is activated by membrane depolarization, similar to other voltage‐sensitive proteins. However, the Hv1 proton channel lacks a traditional ion pore. The human Hv1 proton channel has been implicated in mediating sperm capacitance, stroke, and most recently as a biomarker/mediator of cancer metastasis. Recently, the three‐dimensional structures for homologues of this voltage‐gated proton channel were reported. However, it is not clear what artificial environment is needed to facilitate the isolation and purification of the human Hv1 proton channel for structural study. In the present study, we generated a chimeric protein that placed an enhanced green fluorescent protein (EGFP) to the amino‐terminus of the human Hv1 proton channel (termed EGFP‐Hv1). The chimeric protein was expressed in a baculovirus expression system using Sf9 cells and subjected to detergent screening using fluorescence‐detection size‐exclusion chromatography. The EGFP‐Hv1 proton channel can be solubilized in the zwitterionic detergent Anzergent 3–12 and the nonionic n‐dodecyl‐β‐d ‐maltoside (DDM) with little protein aggregation and a prominent monomeric protein peak at 48 h postinfection. Furthermore, we demonstrate that the chimeric protein exhibits a monomeric protein peak, which is distinguishable from protein aggregates, at the final size‐exclusion chromatography purification step. Taken together, we can conclude that solubilization in DDM will provide a useable final product for further structural characterization of the full‐length human Hv1 proton channel.  相似文献   

13.
Interactions between voltage-gated calcium channels (Ca(V)s) and calmodulin (CaM) modulate Ca(V) function. In this study, we report the structure of a Ca(2+)/CaM Ca(V)1.2 C-terminal tail complex that contains two PreIQ helices bridged by two Ca(2+)/CaMs and two Ca(2+)/CaM-IQ domain complexes. Sedimentation equilibrium experiments establish that the complex has a 2:1 Ca(2+)/CaM:C-terminal tail stoichiometry and does not form higher order assemblies. Moreover, subunit-counting experiments demonstrate that in live cell membranes Ca(V)1.2s are monomers. Thus, contrary to previous proposals, the crystallographic dimer lacks physiological relevance. Isothermal titration calorimetry and biochemical experiments show that the two Ca(2+)/CaMs in the complex have different properties. Ca(2+)/CaM bound to the PreIQ C-region is labile, whereas Ca(2+)/CaM bound to the IQ domain is not. Furthermore, neither of lobes of apo-CaM interacts strongly with the PreIQ domain. Electrophysiological studies indicate that the PreIQ C-region has a role in calcium-dependent facilitation. Together, the data show that two Ca(2+)/CaMs can bind the Ca(V)1.2 tail simultaneously and indicate a functional role for Ca(2+)/CaM at the C-region site.  相似文献   

14.
The glyceraldehyde 3‐phosphate dehydrogenase (gapA) gene codes for a protein involved in the glycolytic pathway and is commonly used in Real‐Time RT‐PCR quantification studies as housekeeping gene. In this work we cloned and sequenced the full‐length gapA gene from Flavescence dorée phytoplasma (FDp). A ~35 kDa recombinant GapA protein was over‐expressed in Escherichia coli, purified and used as antigen to raise anti‐GapA rabbit polyclonal antibodies. The antiserum detected the GapA protein by western blot analysis of total protein extracts of FDp‐infected experimental host (Catharanthus roseus) and grapevine plants collected in the field. We also developed an FDp‐specific gapA Taqman Real‐Time RT‐PCR assay suitable for quantification overtime of gapA mRNA in infected plants.  相似文献   

15.
The 5‐HT3 receptor is a pentameric serotonin‐gated ion channel, which mediates rapid excitatory neurotransmission and is the target of a therapeutically important class of anti‐emetic drugs, such as granisetron. We report crystal structures of a binding protein engineered to recognize the agonist serotonin and the antagonist granisetron with affinities comparable to the 5‐HT3 receptor. In the serotonin‐bound structure, we observe hydrophilic interactions with loop E‐binding site residues, which might enable transitions to channel opening. In the granisetron‐bound structure, we observe a critical cation–π interaction between the indazole moiety of the ligand and a cationic centre in loop D, which is uniquely present in the 5‐HT3 receptor. We use a series of chemically tuned granisetron analogues to demonstrate the energetic contribution of this electrostatic interaction to high‐affinity ligand binding in the human 5‐HT3 receptor. Our study offers the first structural perspective on recognition of serotonin and antagonism by anti‐emetics in the 5‐HT3 receptor.  相似文献   

16.
GABAA receptors are pentameric ligand‐gated ion channels that mediate inhibitory fast synaptic transmission in the central nervous system. Consistent with recent pentameric ligand‐gated ion channels structures, sequence analysis predicts an α‐helix near the N‐terminus of each GABAA receptor subunit. Preceding each α‐helix are 8–36 additional residues, which we term the N‐terminal extension. In homomeric GABAC receptors and nicotinic acetylcholine receptors, the N‐terminal α‐helix is functionally essential. Here, we determined the role of the N‐terminal extension and putative α‐helix in heteromeric α1β2γ2 GABAA receptors. This role was most prominent in the α1 subunit, with deletion of the N‐terminal extension or further deletion of the putative α‐helix both dramatically reduced the number of functional receptors at the cell surface. Conversely, deletion of the β2 or γ2 N‐terminal extension had little effect on the number of functional cell surface receptors. Additional deletion of the putative α‐helix in the β2 or γ2 subunits did, however, decrease both functional cell surface receptors and incorporation of the γ2 subunit into mature receptors. In the β2 subunit only, α‐helix deletions affected GABA sensitivity and desensitization. Our findings demonstrate that N‐terminal extensions and α‐helices make key subunit‐specific contributions to assembly, consistent with both regions being involved in inter‐subunit interactions.

  相似文献   


17.
The nicotinic acetylcholine receptor (nAChR) β3 subunit is thought to serve an accessory role in nAChR subtypes expressed in dopaminergic regions implicated in drug dependence and reward. When β3 subunits are expressed in excess, they have a dominant-negative effect on function of selected nAChR subtypes. In this study, we show, in Xenopus oocytes expressing α2, α3 or α4 plus either β2 or β4 subunits, that in the presumed presence of similar amounts of each nAChR subunit, co-expression with wild-type β3 subunits generally (except for α3*-nAChR) lowers amplitudes of agonist-evoked, inward peak currents by 20-50% without having dramatic effects (≤ 2-fold) on agonist potencies. By contrast, co-expression with mutant β3(V9'S) subunits generally (except for α4β2*-nAChR) increases agonist potencies, consistent with an expected gain-of-function effect. This most dramatically demonstrates formation of complexes containing three kinds of subunit. Moreover, for oocytes expressing nAChR containing any α subunit plus β4 and β3(V9'S) subunits, there is spontaneous channel opening sensitive to blockade by the open channel blocker, atropine. Collectively, the results indicate that β3 subunits integrate into all of the studied receptor assemblies and suggest that natural co-expression with β3 subunits can influence levels of expression and agonist sensitivities of several nAChR subtypes.  相似文献   

18.
19.
Evaluating the classification accuracy of a candidate biomarker signaling the onset of disease or disease status is essential for medical decision making. A good biomarker would accurately identify the patients who are likely to progress or die at a particular time in the future or who are in urgent need for active treatments. To assess the performance of a candidate biomarker, the receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) are commonly used. In many cases, the standard simple random sampling (SRS) design used for biomarker validation studies is costly and inefficient. In order to improve the efficiency and reduce the cost of biomarker validation, marker‐dependent sampling (MDS) may be used. In a MDS design, the selection of patients to assess true survival time is dependent on the result of a biomarker assay. In this article, we introduce a nonparametric estimator for time‐dependent AUC under a MDS design. The consistency and the asymptotic normality of the proposed estimator is established. Simulation shows the unbiasedness of the proposed estimator and a significant efficiency gain of the MDS design over the SRS design.  相似文献   

20.
The tetrodotoxin‐resistant (TTX‐R) voltage‐gated sodium channel Nav1.8 is predominantly expressed in peripheral afferent neurons, but in case of neuronal injury an ectopic and detrimental expression of Nav1.8 occurs in neurons of the CNS. In CNS neurons, Nav1.2 and Nav1.6 channels accumulate at the axon initial segment, the site of the generation of the action potential, through a direct interaction with the scaffolding protein ankyrin G (ankG). This interaction is regulated by protein kinase CK2 phosphorylation. In this study, we quantitatively analyzed the interaction between Nav1.8 and ankG. GST pull‐down assay and surface plasmon resonance technology revealed that Nav1.8 strongly and constitutively interacts with ankG, in comparison to what observed for Nav1.2. An ion channel bearing the ankyrin‐binding motif of Nav1.8 displaced the endogenous Nav1 accumulation at the axon initial segment of hippocampal neurons. Finally, Nav1.8 and ankG co‐localized in skin nerves fibers. Altogether, these results indicate that Nav1.8 carries all the information required for its localization at ankG micro‐domains. The constitutive binding of Nav1.8 with ankG could contribute to the pathological aspects of illnesses where Nav1.8 is ectopically expressed in CNS neurons.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号