首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1,N(6)-Ethanoadenine (EA) is an exocyclic adduct formed from DNA reaction with the antitumor agent, 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). To understand the role of this adduct in the mechanism of mutagenicity or carcinogenicity by BCNU, an oligonucleotide with a site-specific EA was synthesized using phosphoramidite chemistry. We now report the in vitro miscoding properties of EA in translesion DNA synthesis catalyzed by mammalian DNA polymerases (pols) alpha, beta, eta and iota. These data were also compared with those obtained for the structurally related exocyclic adduct, 1,N(6)-ethenoadenine (epsilonA). Using a primer extension assay, both pols alpha and beta were primarily blocked by EA or epsilonA with very minor extension. Pol eta, a member of the Y family of polymerases, was capable of catalyzing a significant amount of bypass across both adducts. Pol eta incorporated all four nucleotides opposite EA and epsilonA, but with differential preferences and mainly in an error-prone manner. Human pol iota, a paralog of human pol eta, was blocked by both adducts with a very small amount of synthesis past epsilonA. It incorporated C and, to a much lesser extent, T, opposite either adduct. In addition, the presence of an A adduct, e.g. epsilonA, could affect the specificity of pol iota toward the template T immediately 3' to the adduct. In conclusion, the four polymerases assayed on templates containing an EA or epsilonA showed differential bypass capacity and nucleotide incorporation specificity, with the two adducts not completely identical in influencing these properties. Although there was a measurable extent of error-free nucleotide incorporation, all these polymerases primarily misincorporated opposite EA, indicating that the adduct, similar to epsilonA, is a miscoding lesion.  相似文献   

2.
The effectiveness of in vitro primer elongation reactions catalyzed by human bypass DNA polymerases kappa (hDinB1), pol eta (hRad30A), pol iota (hRad30B), and yeast pol zeta (Rev3 and Rev7) in site-specifically modified template oligonucleotide strands were studied in vitro. The templates contained single bulky lesions derived from the trans-addition of the mutagenic (+)- or (-)-enantiomers of r7,t8-dihydroxy-t9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (a metabolite of the environmental carcinogen benzo[a]pyrene), to the exocyclic amino groups of guanine or adenine in oligonucleotide templates 33, or more, bases long. In "running start" primer extension reactions, pol kappa effectively bypassed both the stereoisomeric (+)- and (-)-trans-guanine adducts but not the analogous adenine adducts. In sharp contrast, pol eta, which exhibits considerable sequence homology with pol kappa (both belong to the group of Y family polymerases), is partially blocked by the guanine adducts and the (-)-trans-adenine adduct, although the stereoisomeric (+)-trans-adenine adduct is more successfully bypassed. Neither pol iota nor pol zeta, either alone or in combination, were effective in trans-lesion synthesis past the same adducts. In all cases, the fidelity of insertion is dependent on adduct stereochemistry and structure. Generally, error-free nucleotide insertion opposite the lesions tends to depend more on adduct stereochemistry than error-prone insertion. None of the polymerases tested are a universal bypass polymerase for the stereoisomeric bulky polycyclic aromatic hydrocarbon-DNA adducts derived from anti-BPDE.  相似文献   

3.
Hang B  Downing G  Guliaev AB  Singer B 《Biochemistry》2002,41(7):2158-2165
Glycidaldehyde is an industrial chemical which has been shown to be genotoxic in in vitro experiments and carcinogenic in rodent studies. It is a bifunctional alkylating agent capable of reacting with DNA to form exocyclic hydroxymethyl-substituted ethenobases. In this work, 8-(hydroxymethyl)-3,N4-etheno-2'-deoxycytidine (8-HM-epsilondC), a potential nucleoside derivative of glycidaldehyde, was synthesized using phosphoramidite chemistry and site-specifically incorporated into a defined 25-mer oligodeoxynucleotide. The 8-HM-epsilonC adduct is structurally related to 3,N4-ethenocytosine (epsilonC), a product of reaction with vinyl chloride or through lipid peroxidation. In Escherichia coli, epsilonC has been shown previously to be a primary substrate for the mismatch uracil-DNA glycosylase (Mug). In this study, we report that the same glycosylase also acts on 8-HM-epsilonC in an oligonucleotide duplex. The enzyme binds to the 8-HM-epsilonC-oligonucleotide to a similar extent as the epsilonC-oligonucleotide. The Mug excision activity toward 8-HM-epsilonC is approximately 2.5-fold lower than that toward the epsilonC substrate. Both activities can be stimulated up to approximately 2-fold higher by the addition of E. coli endonuclease IV. These two adducts, when mispaired with normal bases, were all excised from DNA by Mug with similar efficiencies. Structural studies using molecular simulations showed similar adjustment and hydrogen bonding pattern for both 8-HM-epsilonC*G and epsilonC*G pairs in oligomer duplexes. We believe that these findings may have biological and structural implications in defining the role of 8-HM-epsilonC in glycosylase recognition/repair.  相似文献   

4.
Hormone replacement therapy (HRT) increases the risk of developing breast, ovarian, and endometrial cancers. Equilin and equilenin are the major components of the widely prescribed drug used for HRT. 4-Hydroxyequilenin (4-OHEN), a major metabolite of equilin and equilenin, promotes 4-OHEN-modified dC, dA, and dG DNA adducts. These DNA adducts were detected in breast tumor and adjacent normal tissues of several patients receiving HRT. We have recently found that the 4-OHEN-dC DNA adduct is a highly miscoding lesion generating C --> T transitions and C --> G transversions. To explore the mutagenic potential of another major 4-OHEN-dA adduct, site-specifically modified oligodeoxynucleotides containing a single diastereoisomer of 4-OHEN-dA (Pk-1, Pk-2, and Pk-3) were prepared by a postsynthetic method and used as DNA templates for primer extension reactions catalyzed by human DNA polymerase (pol) eta and kappa that are highly expressed in the reproductive organs. Primer extension catalyzed by pol eta or pol kappa occurred rapidly on the unmodified template to form fully extended products. With the major 4-OHEN-dA-modified templates (Pk-2 and Pk-3), primer extension was retarded prior to the lesion and opposite the lesion; a fraction of the primers was extended past the lesion. Steady-state kinetic studies with pol eta and pol kappa indicated that dTMP, the correct base, was preferentially incorporated opposite the 4-OHEN-dA lesion. In addition, pol eta and pol kappa bypassed the lesion by incorporating dAMP and dCMP, respectively, opposite the lesion and extended past the lesion. The relative bypass frequency past the 4-OHEN-dA lesion with pol eta was at least 2 orders of magnitude higher than that observed with pol kappa. The bypass frequency past Pk-2 was more efficient than that past Pk-3. Thus, 4-OHEN-dA is a miscoding lesion generating A --> T transversions and A --> G transitions. The miscoding frequency and specificity of 4-OHEN-dA varied depending on the stereoisomer of the 4-OHEN-dA adduct and DNA polymerase used.  相似文献   

5.
Treatment with estrogen increases the risk of breast, ovary, and endometrial cancers in women. DNA damage induced by estrogen is thought to be involved in estrogen carcinogenesis. In fact, Y-family human DNA polymerases (pol) eta and kappa, which are highly expressed in the reproductive organs, miscode model estrogen-derived DNA adducts during DNA synthesis. Since the estrogen-DNA adducts are a mixture of 6alpha- and 6beta-diastereoisomers of dG-N(2)-6-estrogen or dA-N(6)-6-estrogen, the stereochemistry of each isomeric adduct on translesion synthesis catalyzed by DNA pols has not been investigated. We have recently established a phosphoramidite chemical procedure to insert 6alpha- or 6beta-isomeric N(2)-(estradiol-6-yl)-2'-deoxyguanosine (dG-N(2)-6-E(2)) into oligodeoxynucleotides. Using such site-specific modified oligomer as a template, the specificity and frequency of miscoding by dG-N(2)-6alpha-E(2) or dG-N(2)-6beta-E(2) were explored using pol eta and a truncated form of pol kappa (pol kappaDeltaC). Translesion synthesis catalyzed by pol eta bypassed both the 6alpha- and 6beta-isomers of dG-N(2)-6-E(2), with a weak blockage at the adduct site, while translesion synthesis catalyzed by pol kappaDeltaC readily bypassed both isomeric adducts. Quantitative analysis of base substitutions and deletions occurring at the adduct site showed that pol kappaDeltaC was more efficient than pol eta by incorporating dCMP opposite both 6alpha- and 6beta-isomeric dG-N(2)-6-E(2) adducts. The miscoding events occurred more frequently with pol eta, but not with pol kappaDeltaC. Pol eta promoted incorporation of dAMP and dTMP at both the 6alpha- and 6beta-isomeric adducts, generating G --> T transversions and G --> A transitions. One- and two-base deletions were also formed. The 6alpha-isomeric adduct promoted slightly lower frequency of dCMP incorporation and higher frequency of dTMP incorporation and one-base deletions, compared with the 6beta-isomeric adduct. These observations were supported by steady-state kinetic studies. Taken together, the miscoding property of the 6alpha-isomeric dG-N(2)-6-E(2) is likely to be similar to that of the 6beta-isomeric adduct.  相似文献   

6.
Yasui M  Suzuki N  Laxmi YR  Shibutani S 《Biochemistry》2006,45(39):12167-12174
The long-term treatment of tamoxifen (TAM), widely used for adjuvant chemotherapy and chemoprevention for breast cancer, increases a risk of developing endometrial cancer. A high frequency of K-ras mutations has been observed in the endometrium of women treated with TAM. Human DNA polymerase (pol) eta and pol kappa are highly expressed in the reproductive organs and are associated with translesion synthesis past bulky DNA adducts. To explore the miscoding properties of alpha-(N2-deoxyguanosinyl)tamoxifen (dG-N2-TAM), a major TAM-DNA adduct, site-specifically modified oligodeoxynucleotides containing a single diastereoisomer of trans or cis forms of dG-N2-TAM were prepared by phosphoramidite chemical procedure and used as templates. The primer extension reaction catalyzed by pol kappa deltaC, a truncated form of pol kappa, extended more efficiently past the adduct than that of pol eta by incorporating dCMP, a correct base, opposite the adduct. With pol eta, all diastereoisomers of dG-N2-TAM promoted small amounts of direct incorporation of dAMP and deletions. With pol kappa deltaC, dG-N2-TAM promoted small amounts of dTMP and/or dAMP incorporations and deletions. The miscoding properties varied depending on the diastereoisomer of dG-N2-TAM adducts and the DNA pol used. Steady-state kinetic studies were also performed using either the nonspecific sequence or the K-ras gene sequence containing a single dG-N2-TAM at the second base of codon 12. With pol eta, the bypass frequency past the dA x dG-N2-TAM pair positioned in the K-ras sequence was only 2.3 times lower than that for the dC x dG-N2-TAM pair, indicating that dG-N2-TAM in the K-ras sequence has higher miscoding potential than that in the nonspecific sequence. However, with pol kappa deltaC, the bypass frequency past the dC x dG-N2-TAM pair was higher than that of the dT x dG-N2-TAM pair in both sequences. The properties of pol eta and pol kappa are consistent with the mutagenic events attributed to TAM-DNA adducts.  相似文献   

7.
Estrogen replacement therapy (ERT), composed of equilenin, is associated with increased risk of breast, ovarian, and endometrial cancers. Several diastereoisomers of unique dC and dA DNA adducts were derived from 4-hydroxyequilenin (4-OHEN), a metabolite of equilenin, and have been detected in women receiving ERT. To explore the miscoding property of 4-OHEN-dC adduct, site-specifically modified oligodeoxynucleotides (Pk-1, Pk-2, Pk-3, and Pk-4) containing a single diastereoisomer of 4-OHEN-dC were prepared by a postsynthetic method. Among them, major 4-OHEN-dC-modified oligodeoxynucleotides (Pk-3 and Pk-4) were used to prepare the templates for primer extension reactions catalyzed by DNA polymerase (pol) alpha, pol eta, and pol kappa. Primer extension was retarded one base prior to the lesion and opposite the lesion; stronger blockage was observed with pol alpha, while with human pol eta or pol kappa, a fraction of the primers was extended past the lesion. Steady-state kinetic studies showed that both pol kappa and pol eta inserted dCMP and dAMP opposite the 4-OHEN-dC and extended past the lesion. Never or less-frequently, dGMP, the correct base, was inserted opposite the lesion. The relative bypass frequency past the 4-OHEN-dC lesion with pol eta was at least 3 orders of magnitude higher than that for pol kappa, as observed for primer extension reactions. The bypass frequency past the dA.4-OHEN-dC adduct in Pk-4 was 2 orders of magnitude more efficient than that past the adduct in Pk-3. Thus, 4-OHEN-dC is a highly miscoding lesion capable of generating C --> T transitions and C --> G transversions. The miscoding frequency and specificity of 4-OHEN-dC were strikingly influenced by the adduct stereochemistry and DNA polymerase used.  相似文献   

8.
8-Nitro-2'-deoxyguanosine (8-NO(2)-dG) DNA adducts are induced by the reactive nitrogen species and may be associated with the development of cancer in inflammatory tissues. To explore the miscoding potential of 8-NO(2)-dG adduct, an oligodeoxynucleotide containing a single 8-NO(2)-dG adduct was prepared by photochemical synthesis and used as a template in primer extension reactions catalyzed by mammalian DNA polymerases (pol). Primer extension reactions catalyzed by pol alpha or beta were strongly retarded at the 8-NO(2)-dG lesion; a fraction of primers was extended past the lesion by incorporating preferentially dCMP, the correct base, opposite the lesion, accompanied by lesser amounts of dAMP and dGMP incorporation. In contrast, primer extension reactions catalyzed by pol eta or a truncated form of pol kappa (pol kappaDeltaC) readily extended past the 8-NO(2)-dG lesion. Pol eta and kappaDeltaC showed more broad miscoding spectra; direct incorporations of dCMP and dAMP were observed, along with lesser amounts of dGMP and dTMP incorporations and deletions. The miscoding frequencies induced by pol eta and kappaDeltaC were at least 8 times higher than that of pol alpha or beta. Miscoding frequency and specificity of 8-NO(2)-dG varied depending on the DNA polymerases used. These observations were supported by steady-state kinetic studies. 8-NO(2)-dG adduct may play an important role in initiating inflammation driven carcinogenesis.  相似文献   

9.
The carcinogen 2-acetylaminofluorene is metabolically activated in cells and reacts with DNA to form N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-C8-AAF), N-(deoxyguanosin-8-yl)-2-aminofluorene (dG-C8-AF), and 3-(deoxyguanosin-N(2)()-yl)-2-acetylaminofluorene (dG-N(2)-AAF) DNA adducts. The dG-N(2)-AAF adduct is the least abundant of the three isomers, but it persists in the tissues of animals treated with this carcinogen. The miscoding and mutagenic properties of dG-C8-AAF and dG-C8-AF have been established; these adducts are readily excised by DNA repair enzymes engaged in nucleotide excision repair. In the present study, oligodeoxynucleotides modified site-specifically with dG-N(2)-AAF were used as DNA templates in primer extension reactions catalyzed by mammalian DNA polymerases. Reactions catalyzed by pol alpha were strongly blocked at a position one base before dG-N(2)-AAF and also opposite this lesion. In contrast, during translesion synthesis catalyzed by pol eta or pol kappa nucleotides were incorporated opposite the lesion. Both pol eta and pol kappa incorporated dCMP, the correct base, opposite dG-N(2)-AAF. In reactions catalyzed by pol eta, small amounts of dAMP misincorporation and one-base deletions were detected at the lesion site. With pol kappa, significant dTMP misincorporation was observed opposite the lesion. Steady-state kinetic analysis confirmed the results obtained from primer extension studies. Single-stranded shuttle vectors containing (5)(')TCCTCCTCXCCTCTC (X = dG-N(2)-AAF, dG-C8-AAF, or dG) were used to establish the frequency and specificity of dG-N(2)-AAF-induced mutations in simian kidney (COS-7) cells. Both lesions promote G --> T transversions overall, with dG-N(2)-AAF being less mutagenic than dG-C8-AAF (3.4% vs 12.5%). We conclude from this study that dG-N(2)-AAF, by virtue of its persistence in tissues, contributes significantly to the mutational spectra observed in AAF-induced mutagenesis and that pol eta, but not pol kappa, may play a role in this process.  相似文献   

10.
Several recently discovered human DNA polymerases are associated with translesion synthesis past DNA adducts. These include human DNA polymerase kappa (pol kappa), a homologue of Escherichia coli pol IV, which enhances the frequency of spontaneous mutation. Using a truncated form of pol kappa (pol kappa Delta C), translesion synthesis past dG-(+)- or dG-(-)-anti-N(2)-BPDE (7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene) adducts was explored. Site-specifically-modified oligodeoxynucleotides containing a single stereoisomeric dG-N(2)-BPDE lesion were used as DNA templates for primer extension reactions catalyzed by pol kappa Delta C. Primer extension was retarded one base prior to the dG-N(2)-BPDE lesion; when incubated for longer times or with higher concentration of enzyme, full primer extension was observed. Quantitative analysis of fully extended products showed preferential incorporation of dCMP, the correct base, opposite all four stereoisomeric dG-N(2)-BPDE lesions. (+)-trans-dG-N(2)-BPDE, a major BPDE-DNA adduct, promoted small amounts of dTMP, dAMP, and dGMP misincorporation opposite the lesion (total 2.7% of the starting primers) and deletions (1.1%). Although (+)-cis-dG-N(2)-BPDE was most effective in blocking translesion synthesis, its miscoding properties were similar to other dG-N(2)-BPDE isomers. Steady-state kinetic data indicate that dCMP is efficiently inserted opposite all dG-N(2)-BPDE adducts and extended past these lesions. The relative frequency of translesion synthesis (F(ins) x F(ext)) of dC.dG-N(2)-BPDE pairs was 2-6 orders of magnitude higher than that of other mismatched pairs. Pol kappa may play an important role in translesion synthesis by incorporating preferentially the correct base opposite dG-N(2)-BPDE. Its relatively low contribution to mutagenicity suggests that other newly discovered DNA polymerase(s) may be involved in mutagenic events attributed to dG-N(2)-BPDE adducts in human cells.  相似文献   

11.
Heterocyclic arylamines are highly mutagenic and cause tumors in animal models. The mutagenicity is attributed to the C8- and N2-G adducts, the latter of which accumulates due to slower repair. The C8- and N 2-G adducts derived from 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) were placed at the G1 and G3 sites of the NarI sequence, in which the G3 site is an established hot spot for frameshift mutation with the model arylamine derivative 2-acetylaminofluorene but G1 is not. Human DNA polymerase (pol) eta extended primers beyond template G-IQ adducts better than did pol kappa and much better than pol iota or delta. In 1-base incorporation studies, pol eta inserted C and A, pol iota inserted T, and pol kappa inserted G. Steady-state kinetic parameters were measured for these dNTPs opposite the C8- and N 2-IQ adducts at both sites, being most favorable for pol eta. Mass spectrometry of pol eta extension products revealed a single major product in each of four cases; with the G1 and G3 C8-IQ adducts, incorporation was largely error-free. With the G3 N 2-IQ adduct, a -2 deletion occurred at the site of the adduct. With the G1 N 2-IQ adduct, the product was error-free at the site opposite the base and then stalled. Thus, the pol eta products yielded frame-shifts with the N 2 but not the C8 IQ adducts. We show a role for pol eta and the complexity of different chemical adducts of IQ, DNA position, and DNA polymerases.  相似文献   

12.
alpha-OH-PdG, an acrolein-derived deoxyguanosine adduct, inhibits DNA synthesis and miscodes significantly in human cells. To probe the cellular mechanism underlying the error-free and error-prone translesion DNA syntheses, in vitro primer extension experiments using purified DNA polymerases and site-specific alpha-OH-PdG were conducted. The results suggest the involvement of pol eta in the cellular error-prone translesion synthesis. Experiments with xeroderma pigmentosum variant cells, which lack pol eta, confirmed this hypothesis. The in vitro results also suggested the involvement of pol iota and/or REV1 in inserting correct dCMP opposite alpha-OH-PdG during error-free synthesis. However, none of translesion-specialized DNA polymerases catalyzed significant extension from a dC terminus when paired opposite alpha-OH-PdG. Thus, our results indicate the following. (i) Multiple DNA polymerases are involved in the bypass of alpha-OH-PdG in human cells. (ii) The accurate and inaccurate syntheses are catalyzed by different polymerases. (iii) A modification of the current eukaryotic bypass model is necessary to account for the accurate bypass synthesis in human cells.  相似文献   

13.
DNA polymerases beta (pol beta ) and eta (pol eta ) are the only two eukaryotic polymerases known to efficiently bypass cisplatin and oxaliplatin adducts in vitro. Frameshift errors are an important aspect of mutagenesis. We have compared the types of frameshifts that occur during translesion synthesis past cisplatin and oxaliplatin adducts in vitro by pol beta and pol eta on a template containing multiple runs of nucleotides flanking a single platinum-GG adduct. Translesion synthesis past platinum adducts by pol beta resulted in approximately 50% replication products containing single-base deletions. For both adducts the majority of -1 frameshifts occurred in a TTT sequence 3-5 bp upstream of the DNA lesion. For pol eta, all of the bypass products for both cisplatin and oxaliplatin adducts contained -1 frameshifts in the upstream TTT sequence and most of the products of replication on oxaliplatin-damaged templates had multiple replication errors, both frameshifts and misinsertions. In addition, on platinated templates both polymerases generated replication products 4-8 bp shorter than the full-length products. The majority of short cisplatin-induced products contained an internal deletion which included the adduct. In contrast, the majority of oxaliplatin-induced short products contained a 3' terminal deletion. The implications of these in vitro results for in vivo mutagenesis are discussed.  相似文献   

14.
DNA polymerases beta and eta are among the few eukaryotic polymerases known to efficiently bypass cisplatin and oxaliplatin adducts in vitro. Our laboratory has previously established that both polymerases misincorporated dTTP with high frequency across from cisplatin- and oxaliplatin-GG adducts. This decrease in polymerase fidelity on platinum-damaged DNA could lead to in vivo mutations, if this base substitution were efficiently elongated. In this study, we performed a steady-state kinetic analysis of the steps required for fixation of dTTP misinsertion during translesion synthesis past cisplatin- and oxaliplatin-GG adducts by pol beta and pol eta. The efficiency of translesion synthesis by pol eta past Pt-GG adducts was very similar to that observed for this polymerase when the template contains thymine-thymine dimers. This finding suggested that pol eta could play a role in translesion synthesis past platinum-GG adducts in vivo. On the other hand, translesion synthesis past platinum-GG adducts by pol beta was much less efficient. Translesion synthesis by pol eta is likely to be predominantly error-free, since the probability of correct insertion and extension by pol eta was 1000-2000-fold greater than the probability of incorrect insertion and extension. Our results also indicated that for pol eta the frequency of misincorporation is the same across from the 3'G and the 5'G of the platinum-GG adducts for both cisplatin and oxaliplatin adducts. On the other hand, pol beta is more likely to misinsert at the 3'G of the adducts and misinsertion occurs at higher frequency for oxaliplatin-GG than for cisplatin-GG adducts.  相似文献   

15.
Platinum anticancer agents form bulky DNA adducts which are thought to exert their cytotoxic effect by blocking DNA replication. Translesion synthesis, one of the pathways of postreplication repair, is thought to account for some resistance to DNA damage and much of the mutagenicity of bulky DNA adducts in dividing cells. Oxaliplatin has been shown to be effective in cisplatin-resistant cell lines and less mutagenic than cisplatin in the Ames assay. We have shown that the eukaryotic DNA polymerases yeast pol zeta, human pol beta, and human pol gamma bypass oxaliplatin-GG adducts more efficiently than cisplatin-GG adducts. Human pol eta, a product of the XPV gene, has been shown to catalyze efficient translesion synthesis past cis, syn-cyclobutane pyrimidine dimers. In the present study we compared translesion synthesis past different Pt-GG adducts by human pol eta. Our data show that, similar to other eukaryotic DNA polymerases, pol eta bypasses oxaliplatin-GG adducts more efficiently than cisplatin-GG adducts. However, pol eta-catalyzed translesion replication past Pt-DNA adducts was more efficient and less accurate than that seen for previously tested polymerases. We show that the efficiency and fidelity of translesion replication past Pt-DNA adducts appear to be determined by both the structure of the adduct and the DNA polymerase active site.  相似文献   

16.
Newly discovered human DNA polymerase (pol) eta and kappa are highly expressed in the reproductive organs, such as testis, ovary, and uterus, where steroid hormones are produced. Because treatment with estrogen increases the risk of developing breast, ovary, and endometrial cancers, miscoding events occurring at model estrogen-derived DNA adducts were explored using pol eta and a truncated form of human pol kappa (pol kappaDeltaC). These enzymes bypassed N(2)-[3-methoxyestra-1,3,5(10)-trien-6-yl]-2'-deoxyguanosine (dG-N(2)-3MeE) and N(6)-[3-methoxyestra-1,3,5(10)-trien-6-yl]-2'-deoxyadenosine (dA-N(6)-3MeE), which were embedded in site-specifically modified oligodeoxynucleotide templates. Quantitative analysis of base substitutions and deletions occurring at the lesion site showed that pol kappaDeltaC was more efficient at incorporating dCMP opposite the dG-N(2)-3MeE lesion than pol eta. Surprisingly, the frequency of translesion synthesis beyond the dC*dG-N(2)-3MeE pair was 13% of the normal dC*dG pair and was 4 and 6 orders of magnitude higher than that of dC*(+)-trans-dG-N(2)-benzo[a]pyrene and dC*dG-C8-acetylaminofluorene pairs, respectively, suggesting that dG-N(2)-3MeE is a natural substrate for pol kappa. In contrast, the bypass frequency beyond the dT*dA-N(6)-3MeE pair was 7 orders of magnitude less than that for the normal dT*dA pair. dA-N(6)-3MeE is a more miscoding lesion than dG-N(2)-3MeE. Pol eta promoted incorporation of dAMP and dCMP at the dA-N(6)-3MeE lesion, while with pol kappaDeltaC, deletions were more frequently observed, along with incorporation of dAMP and dCMP opposite the lesion. These observations were also supported by steady-state kinetic studies. When taken together, the properties of pol eta and kappa are consistent with the mutagenic events attributed to estrogen-derived DNA adducts.  相似文献   

17.
DNA polymerase mu (pol mu) is a member of the pol X family of DNA polymerases, and it shares a number of characteristics of both DNA polymerase beta (pol beta) and terminal deoxynucleotidyl transferase (TdT). Because pol beta has been shown to perform translesion DNA synthesis past cisplatin (CP)- and oxaliplatin (OX)-GG adducts, we determined the ability of pol mu to bypass these lesions. Pol mu bypassed CP and OX adducts with an efficiency of 14-35% compared to chain elongation on undamaged DNA, which is second only to pol eta in terms of bypass efficiency. The relative ability of pol mu to bypass CP and OX adducts was dependent on both template structure and sequence context. Since pol mu has been shown to be more efficient on gapped DNA templates than on primed single-stranded DNA templates, we determined the ability of pol mu to bypass Pt-DNA adducts on both primed single-stranded and gapped templates. The bypass of Pt-DNA adducts by pol mu was highly error-prone on all templates, resulting in 2, 3, and 4 nt deletions. We postulate that bypass of Pt-DNA adducts by pol mu may involve looping out the Pt-GG adduct to allow chain elongation downstream of the adduct. This reaction appears to be facilitated by the presence of a downstream "acceptor" and a gap large enough to provide undamaged template DNA for elongation past the adduct, although gapped DNA is clearly not required for bypass.  相似文献   

18.
The N2 position of guanine (G) is one of the major sites for DNA modification by various carcinogens. Eight oligonucleotides with varying adduct bulk at guanine N2 were analyzed for catalytic efficiency and fidelity with human DNA polymerase (pol) eta, which is involved in translesion synthesis (TLS). Pol eta effectively bypassed N2-methyl(Me)G, N2-ethyl(Et)G, N2-isobutyl(Ib)G, N2-benzyl(Bz)G, and N2-CH2(2-naphthyl)G but was severely blocked at N2-CH2(9-anthracenyl)G (N2-AnthG) and N2-CH2(6-benzo[a]pyrenyl)G (N2-BPG). Steady-state kinetic analysis showed proportional decreases of kcat/Km in dCTP insertion opposite N2-AnthG and N2-BPG (73 and 320-fold) and also kcat/Km in next-base extension from a C paired with each adduct (15 and 51-fold relative to G). Frequencies of dATP misinsertion and extension beyond mispairs were also proportionally increased (70 and 450-fold; 12 and 44-fold) with N2-AnthG and N2-BPG, indicating the effect of adduct bulk on blocking and misincorporation in TLS by pol eta. N2-AnthG and N2-BPG also greatly decreased the pre-steady-state kinetic burst rate (25 and 125-fold) compared to unmodified G. N2-AnthG decreased dCTP binding affinity (2.6-fold) and increased DNA substrate binding affinity. These results and the small kinetic thio effects (S(p)-dCTPalphaS) suggest that the early steps, possibly conformational change, are interfered with by the bulky adducts. In contrast, human pol delta bypassed adducts effectively up to N2-EtG but was strongly blocked by N2-IbG and larger adducts. We conclude that TLS DNA polymerases may be required for the efficient bypass of pol delta-blocking N2-G adducts bulkier than N2-EtG in human cells, and the bulk size can be a major factor for efficient and error-free bypass at these adducts by TLS DNA polymerases.  相似文献   

19.
1,N(6)-Ethenodeoxyadenosine, a DNA adduct generated by exogenous and endogenous sources, severely blocks DNA synthesis and induces miscoding events in human cells. To probe the mechanism for in vivo translesion DNA synthesis across this adduct, in vitro primer extension studies were conducted using newly identified human DNA polymerases (pol) eta and kappa, which have been shown to catalyze translesion DNA synthesis past several DNA lesions. Steady-state kinetic analyses and analysis of translesion products have revealed that the synthesis is >100-fold more efficient with pol eta than with pol kappa and that both error-free and error-prone syntheses are observed with these enzymes. The miscoding events include both base substitution and frameshift mutations. These results suggest that both polymerases, particularly pol eta, may contribute to the translesion DNA synthesis events observed for 1,N(6)-ethenodeoxyadenosine in human cells.  相似文献   

20.
Cellular DNA is damaged by nitric oxide (NO), a multifunctional bioregulator and an environmental pollutant that has been implicated in diseases associated with cancer and chronic inflammation. 2'-Deoxyxanthosine (dX) is a major NO-derived DNA lesion. To explore the mutagenic potential of dX, a 38-mer oligodeoxynucleotide ((5')CATGCTGATGAATTCCTTCXCTTCTTTCCTCTCCCTTT) modified site-specifically with dX at the X position was prepared post-synthetically and used as a DNA template in primer extension reactions catalyzed by calf thymus DNA polymerase (pol) alpha and human DNA pol beta, eta, and kappa. Primer extension reactions catalyzed by pol alpha or beta in the presence of four dNTPs were retarded at the dX lesion while pol eta and kappa readily bypassed the lesion. The fully extended products were analyzed to quantify the miscoding specificity and frequency of dX using two-phase polyacrylamide gel electrophoresis (PAGE). With pol alpha, eta and kappa, incorrect dTMP was preferentially incorporated opposite the lesion, along with lesser amounts of dCMP, the correct base. When pol beta was used, direct incorporation of correct dCMP was primarily observed, accompanied by small amounts of misincorporation of dTMP, dAMP and dGMP. Steady-state kinetic analyses supported the results obtained from the two-phase PAGE assay. dX is a miscoding lesion capable of preferentially generating G-->A mutations. The miscoding frequency varied depending on DNA polymerase used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号