首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pakrasi PL  Jain AK 《Life sciences》2007,80(16):1503-1507
Cyclooxygenase (COX) plays an important role in prostaglandin (PG) synthesis and has two isoforms, COX1 and COX2. PGI synthase (PGIS) catalyzes the isomeization of PGH(2) to prostacyclin (PGI(2)). It is reported that COX2 derived PGI2(2) plays a critical role in blastocyst implantation and decidualization and PGI2 mediates its function via PPARdelta receptor. It is also known that cyclooxygenase derived prostaglandins play an important role in mouse blastocyst hatching in vitro. In this study we hypothesized that COX2 derived PGI2 plays an important role in preimplantation embryonic development by increasing the cell number. To examine this hypothesis, 8-cell stage mouse embryos were cultured in the presence of selective inhibitors of COX1 (SC560), COX2 (NS398) and PGIS (U51605) respectively. COX2 and PGIS inhibitor significantly reduced the blastocyst development and presence of PGI2 analogue along with these inhibitors restored the blastocyst development by increasing the total number of embryonic cells. Our immunohistochemical analysis showed that COX1 is expressed at 2-cell, 8-cell, compaction and blastocyst stage whereas COX2 expression starts from eight cell stage embryos. PGIS and PPARdelta expression starts at 2-cell stage of development. Our results suggest that PGI(2) may affect blastomeres number via the so called hypothesis of PPARdelta nuclear receptor in autocrine manner.  相似文献   

2.
3.
4.
To mimic the native conditions, the cyclooxygenase (COX)/prostaglandin I(2) synthase (PGIS) coupling reaction system was used to determine the coordination of PGIS with COX for the biosynthesis of prostacyclin (PGI(2)) using arachidonic acid (AA) as a substrate in a membrane-bound environment. The membrane-bound PGIS exhibited a faster isomerization of PGH(2) produced by COX to PGI(2) than the detergent-solubilized PGIS. To determine whether the N-terminal domain of PGIS responds to the facilitation of PGH(2) movement (presentation) from COX to the active site of PGIS, the first 20 residues of PGIS (Delta20-PGIS) were deleted and expressed in COS-7 cells. Delta20-PGIS retained membrane-bound properties and exhibited a slower substrate presentation property. Furthermore, a chimeric molecule (PGIS/TXAS(8-27)) with the replacement of the first 20 residues of PGIS by the corresponding membrane anchor region (residues 8-27) of thromboxane A(2) synthase was created to evaluate the mechanism influencing the biosynthesis of PGI(2) in coordination with COX. The chimera revealed a multiple fold delay in the PGH(2) presentation in low range concentrations of AA (0.3-3muM) at 30s reactions. However, the delay could be recovered by a longer incubation time in high range concentrations of AA (>10muM), but not in low range concentrations of AA. These results demonstrated that the N-terminal domain of PGIS plays a role in the facilitation of the substrate presentation to the PGIS active site in low concentrations of AA, which may be a physiological condition. The TXAS N-terminal domain could not replace the function of the corresponding domain of PGIS, indicating that the facilitation of the substrate presentation is specific.  相似文献   

5.
PGE(2) inhibits mature T cell proliferation and protects T cells from activation-induced cell death (AICD). We have previously demonstrated that human follicular dendritic cells (FDC) strongly express PGI synthase. In this study, the hypothesis that FDC have regulatory roles on germinal center T cells by controlling production of PGE(2) and PGI(2) was tested. Confocal microscopic analyses of human tonsil tissues revealed that FDC indeed expressed PGE synthase in addition to PGIS. To confirm these results, we studied the regulation mechanism of PG production in FDC, using an established human FDC-like cell line, HK. Specifically in response to TNF-alpha, TGF-beta, and LPS, protein expression of cyclooxygenase (COX)-2 and downstream PGE synthase was up-regulated with coordinate kinetics, whereas COX-1 and PGIS were constitutively expressed. The increase of these enzymes was reflected in actual production of PGE(2) and PGI(2). Interestingly, IL-4 almost completely abrogated the stimulatory activity of TNF-alpha, TGF-beta, and LPS in PG production. Furthermore, the up-regulation of PGE(2) and PGI(2) production was markedly down-regulated by indomethacin and a selective COX-2 inhibitor. PGI(2) analog and PGE(2) inhibited proliferation and AICD of T cells in dose- and time-dependent manners. Finally, coculture experiments revealed that HK cells indeed inhibit proliferation and AICD of T cells. Put together, these results show an unrecognized pathway of FDC and T cell interactions and differential mechanisms for PGE(2) and PGI(2) production, suggesting an important implication for development and use of anti-inflammatory drugs.  相似文献   

6.
Although histamine plays an essential role in inflammation, its influence on cyclooxygenases (COX) and prostanoid homeostasis is not well understood. In this study, we investigated the effects of histamine on the expression of COX-1 and COX-2 and determined their contribution to the production of PGE(2), prostacyclin (PGI(2)), and thromboxane A(2) in human coronary artery endothelial cells (HCAEC). Incubation of HCAEC monolayers with histamine resulted in marked increases in the expression of COX-2 and production of PGI(2) and PGE(2) with no significant change in the expression of COX-1. Histamine-induced increases in PGI(2) and PGE(2) production were due to increased expression and function of COX-2 because gene silencing by small interfering RNA or inhibition of the catalytic activity by a COX-2 inhibitor blocked prostanoid production. The effects of histamine on COX-2 expression and prostanoid production were mediated through H(1) receptors. In addition to the direct effect, histamine was found to amplify LPS-stimulated COX-2 expression and PGE(2) and PGI(2) production. In contrast, histamine did not stimulate thromboxane A(2) production in resting or LPS-activated HCAEC. Histamine-induced increases in the production of PGE(2) and PGI(2) were associated with increased expression of mRNA encoding PGE(2) and PGI(2) synthases. The physiological role of histamine on the regulation of COX-2 expression in the vasculature is indicated by the findings that the expression of COX-2 mRNA, but not COX-1 mRNA, was markedly reduced in the aortic tissues of histidine decarboxylase null mice. Thus, histamine plays an important role in the regulation of COX-2 expression and prostanoid homeostasis in vascular endothelium.  相似文献   

7.
Mesangial cells play an important role in glomerular function. They are an important source of cyclooxygenase (COX)-derived arachidonic acid metabolites, including prostaglandin E(2) and prostacyclin. Prostacyclin receptor (IP) mRNA was amplified from cultured mesangial cell total RNA by RT-PCR. While the prostaglandin E(2) receptor subtype EP(2) was not detected, EP(1,3,4) mRNA was amplified. Also, IP protein was noted in mesangial cells, proximal tubules, inner medullary collecting ducts, and the inner and outer medulla. But no protein was detected in whole cortex preparations. Prostacyclin analogues: cicaprost and iloprost, increased cAMP levels in mesangial cells. On the other hand, arginine-vasopressin and angiotensin II increased intracellular calcium in mesangial cells, but cicaprost, iloprost and prostaglandin E(2) had no effect. Moreover, a 50% inhibition of cicaprost- and iloprost-cAMP stimulation was observed upon mesangial cell exposure to 25 and 35 mM glucose for 5 days. But no change in IP mRNA was observed at any glucose concentration or time exposure. Although 25 mM glucose had no effect on COX-1 protein levels, COX-2 was increased up to 50%. In contrast, PGIS levels were reduced by 50%. Thus, we conclude that the prostacyclin/IP system is present in cultured rat mesangial cells, coupling to a cAMP stimulatory pathway. High glucose altered both enzymes in the PGI(2) synthesis pathway, increasing COX-2 but reducing PGIS. In addition, glucose diminished the cAMP response to prostacyclin analogues. Therefore, glucose attenuates the PGI(2)/IP system in cultured rat mesangial cells.  相似文献   

8.
Prostacyclin (PGI(2)) is a labile, lipid-derived metabolite of arachidonic acid synthesized through the sequential action of cyclo-oxygenase (COX) and prostacyclin synthase (PGIS). In addition to its well-characterized vasodilatory and thrombolytic effects, an increasing number of studies report an important role of PGI(2) in nociception in various animal species. In this study we investigated the regional distribution of PGIS in human brain by immunohistochemistry and in situ hybridization. PGIS-immunoreactive (ir) protein was localized to blood vessels throughout the brain. Neuronal cells and glial cells, such as microglia and oligodendrocytes, also showed intense labeling. The strongest expression of PGIS was seen in large principal neurons, such as pyramidal cells of the cortex, pyramidal cells of the hippocampus, and Purkinje cells of the cerebellum. Abundance of PGIS mRNA was observed in blood vessels and large neurons and correlated well with the immunohistochemical findings. The expression of PGIS in human brain was further demonstrated by immunoblotting and detection of 6-keto-PGF (1alpha), the stable degradation product of prostacyclin in human brain homogenate. These results demonstrate a widespread expression of PGIS in the central nervous system and suggest a potentially important role of prostacylin in modulating neuronal activity in human brain.  相似文献   

9.
The development of cyclooxygenase-2 (COX-2) selective inhibitors prompted studies aimed at treating chronic inflammatory diseases and cancer by using this new generation of drugs.Yet, several recent reports pointed out that long-term treatment of patients with COX-2 selective inhibitors (especially rofecoxib) caused severe cardiovascular complicances. The aim of this study was to ascertain whether, in addition to inhibiting COX-2, rofecoxib may also affect prostacyclin (PGI2) level by inhibiting PGI2 forming enzyme (prostacyclin synthase, PGIS). In order to evaluate if selective (celecoxib, rofecoxib) and non-selective (aspirin, naproxen) anti-inflammatory compounds could decrease PGI2 production in endothelial cells by inhibiting PGIS, we analyzed the effect of anti-inflammatory compounds on the enzyme activity by ELISA assay after addition of exogenous substrate, on PGIS protein levels by Western blotting and on its subcellular distribution by confocal microscopy. We also analyzed the effect of rofecoxib on PGIS activity in bovine aortic microsomal fractions enriched in PGIS. This study demonstrates an inhibitory effect of rofecoxib on PGIS activity in human umbilical vein endothelial (HUVE) cells and in PGIS-enriched bovine aortic microsomal fractions, which is not observed by using other anti-inflammatory compounds. The inhibitory effect of rofecoxib is associated neither to a decrease of PGIS protein levels nor to an impairment of the enzyme intracellular localization. The results of this study may explain the absence of a clear relationship between COX-2 selectivity and cardiovascular side effects. Moreover, in the light of these results we propose that novel selective COX-2 inhibitors should be tested on PGI2 synthase activity inhibition.  相似文献   

10.
11.
JY Zhang  YF Diao  HR Kim  DI Jin 《PloS one》2012,7(7):e40433
X-box binding protein-1 (XBP-1) is an important regulator of a subset of genes during endoplasmic reticulum (ER) stress. In the current study, we analyzed endogenous XBP-1 expression and localization, with a view to determining the effects of ER stress on the developmental competency of preimplantation embryos in mice. Fluorescence staining revealed that functional XBP-1 is localized on mature oocyte spindles and abundant in the nucleus at the germinal vesicle (GV) stage. However, in preimplantation embryos, XBP-1 was solely detected in the cytoplasm at the one-cell stage. The density of XBP-1 was higher in the nucleus than the cytoplasm at the two-cell, four-cell, eight-cell, morula, and blastocyst stages. Furthermore, RT-PCR analysis confirmed active XBP-1 mRNA splicing at all preimplantation embryo stages, except the one-cell stage. Tunicamycin (TM), an ER stress inducer used as a positive control, promoted an increase in the density of nuclear XBP-1 at the one-cell and two-cell stages. Similarly, culture medium supplemented with 25 mM sorbitol displayed a remarkable increase active XBP-1 expression in the nuclei of 1-cell and 2-cell embryos. Conversely, high concentrations of TM or sorbitol led to reduced nuclear XBP-1 density and significant ER stress-induced apoptosis. Tauroursodeoxycholic acid (TUDCA), a known inhibitor of ER stress, improved the rate of two-cell embryo development to blastocysts by attenuating the expression of active XBP-1 protein in the nucleus at the two-cell stage. Our data collectively suggest that endogenous XBP-1 plays a role in normal preimplantation embryonic development. Moreover, XBP-1 splicing is activated to generate a functional form in mouse preimplantation embryos during culture stress. TUDCA inhibits hyperosmolar-induced ER stress as well as ER stress-induced apoptosis during mouse preimplantation embryo development.  相似文献   

12.
The two cyclooxygenase (COX) isoforms, COX-1 and COX-2, both metabolize arachidonic acid to PGH(2), the common substrate for thromboxane A(2) (TXA(2)), prostacyclin (PGI(2)), and PGE(2) synthesis. We characterized the synthesis of these prostanoids in HUVECs in relation to COX-1 and COX-2 activity. Untreated HUVEC expressed only COX-1, whereas addition of IL-1beta caused induction of COX-2. TXA(2) was the predominant COX-1-derived product, and TXA(2) synthesis changed little with up-regulation of COX-2 by IL-1beta (2-fold increase). By contrast, COX-2 up-regulation was associated with large increases in the synthesis of PGI(2) and PGE(2) (54- and 84-fold increases, respectively). Addition of the selective COX-2 inhibitor, NS-398, almost completely abolished PGI(2) and PGE(2) synthesis, but had little effect on TXA(2) synthesis. The up-regulation of COX-2 by IL-1beta was accompanied by specific up-regulation of PGI synthase and PGE synthase, but not TX synthase. An examination of the substrate concentration dependencies showed that the pathway of TXA(2) synthesis was saturated at a 20-fold lower arachidonic acid concentration than that for PGI(2) and PGE(2) synthesis. In conclusion, endothelial prostanoid synthesis appears to be differentially regulated by the induction of COX-2. The apparent PGI(2) and PGE(2) linkage with COX-2 activity may be explained by a temporal increase in total COX activity, together with selective up-regulation of PGI synthase and PGE synthase, and different kinetic characteristics of the terminal synthases. These findings have particular importance with regard to the potential for cardiovascular consequences of COX-2 inhibition.  相似文献   

13.
Prostaglandin E2 (PGE2) is shown to be essential for female reproduction. Cyclooxygenase (COX) is a rate-limiting enzyme in prostaglandin synthesis from arachidonic acid and exists in two isoforms: COX-1 and COX-2. Prostaglandin E synthase (PGES) is a terminal prostanoid synthase and can catalyse the isomerization of the COX product PGH2 to PGE2, including microsomal PGES-1 (mPGES-1), cytosolic PGES (cPGES) and mPGES-2. This study examined the protein expression of COX-1, COX-2, mPGES-1, cPGES and mPGES-2 in preimplantation mouse embryos by immunohistochemistry. Embryos at different stages collected from oviducts or uteri were transferred into a flushed oviduct of non-pregnant mice. The oviducts containing embryos were paraffin-embedded and processed for immunostaining. COX-1 immunostaining was at a basal level in zygotes and a low level at the 2-cell stage, reaching a high level from the 4-cell to blastocyst stage. COX-2 immunostaining was at a low level at the zygote stage and was maintained at a high level from the 2-cell to blastocyst stages. A low level of mPGES-1 immunostaining was observed from the zygote to 8-cell stages. The signal for mPGES-1 immunostaining became stronger at the morula stage and was strongly seen at the blastocyst stage. cPGES immunostaining was strongly observed in zygotes, 2-cell and 8-cell embryos. There was a slight decrease in cPGES immunostaining at the 4-cell, morula and blastocyst stages. mPGES-2 immunostaining was at a low level from the zygote to morula stages and at a high level at the blastocyst stage. We found that the COX-1, COX-2, mPGES-1, cPGES and mPGES-2 protein signals were all at a high level at the blastocyst stage. PGE2 produced during the preimplantation development may play roles during embryo transport and implantation.  相似文献   

14.
The contribution of cycloxygenase (COX)-1 and COX-2 in antigen-induced release of mediators and ensuing bronchoconstriction was investigated in the isolated perfused guinea pig lung (IPL). Antigen challenge with ovalbumin (OVA) of lungs from actively sensitised animals induced release of thromboxane (TX)A(2), prostaglandin (PG)D(2), PGF(2)(alpha), PGI(2) and PGE(2), measured in the lung effluent as immunoreactive TXB(2), PGD(2)-MOX, PGF(2)(alpha), 6-keto PGF(1)(alpha) and PGE(2), respectively. This release was abolished by the non-selective COX inhibitor flurbiprofen (10 microM). In contrast, neither the selective COX-1 inhibitor FR122047 nor the selective COX-2 inhibitor celecoxib (10 microM each) significantly inhibited the OVA-induced bronchoconstriction or release of COX products, except for PGD(2). Another non-selective COX inhibitor, diclofenac (10 microM) also significantly inhibited antigen-induced bronchoconstriction. The data suggest that both COX isoenzymes, COX-1 and COX-2 contribute to the immediate antigen-induced generation of prostanoids in IPL and that the COX-1 and COX-2 activities are not associated with different profiles of prostanoid end products.  相似文献   

15.
Atherosclerotic plaque formation is a dynamic process involving repeated injury and inflammation of the endothelium. We have demonstrated previously that thrombin and tryptase stimulation of human coronary artery endothelial cells (HCAEC) leads to increased phospholipase A(2) (PLA(2)) activity and generation of membrane phospholipid derived inflammatory metabolites, including eicosanoids and platelet activating factor. Thus, our hypothesis is that selective PLA(2) inhibitors have therapeutic potential as anti-inflammatory agents. Stimulation of confluent HCAEC monolayers with thrombin or tryptase resulted in a concentration and time-dependent increase in both prostaglandin E(2) (PGE(2)) and prostacyclin (PGI(2)) production. Pretreatment with PX-18 to inhibit secretory PLA(2) or BEL to inhibit calcium-independent PLA(2) prior to thrombin or tryptase stimulation resulted in a significant inhibition of both PGI(2) and PGE(2) release. However, pretreatment with methyl arachidonyl fluorophosphonate (MAFP), a widely used inhibitor of cytosolic PLA(2) isoforms, resulted in a significant potentiation of both thrombin and tryptase stimulated PGI(2) and PGE(2) release as a consequence of increased free arachidonic acid production. We conclude that the use of selective PLA(2) inhibitors may be of therapeutic benefit in the development and progression of atherosclerosis, however, the development of such an agent requires rigorous screening.  相似文献   

16.
Neutrophil infiltration mediated by TNF-alpha is associated with various types of gastric injury, whereas PGs play a crucial role in gastric defense. We examined roles of two isoforms of cyclooxygenase (COX) and PGE2 in Helicobacter pylori-induced gastritis in mice. Mice infected with H. pylori were given selective COX-1 inhibitor SC-560 (10 mg/kg), selective COX-2 inhibitor NS-398 (10 mg/kg), or nonselective COX inhibitor indomethacin (2 mg/kg) with or without 16,16-dimethyl PGE2 for 1 wk. H. pylori infection increased levels of mRNA for COX-1 and -2 in gastric tissue by 1.2-fold and 3.3-fold, respectively, accompanied by a significant increase in PGE2 production by gastric tissue. H. pylori infection significantly elevated MPO activity, a marker of neutrophil infiltration, and epithelial cell apoptosis in the stomach. SC-560 augmented MPO activity and epithelial cell apoptosis with associated reduction in PGE2 production, whereas NS-398 had the same effects without affecting PGE2 production. Inhibition of both COX-1 and -2 by indomethacin or concurrent treatment with SC-560 and NS-398 resulted in a stronger increase in MPO activity and apoptosis than inhibition of either COX-1 or -2 alone. H. pylori infection elevated TNF-alpha mRNA expression in the stomach, which was further increased by indomethacin. Effects of COX inhibitors on neutrophil infiltration, apoptosis, and TNF-alpha expression in H. pylori-infected mice were abolished by exogenous 16,16-dimethyl PGE2. In conclusion, PGE2 derived from either COX-1 or -2 is involved in regulation of gastric mucosal inflammation and contributes to maintenance of mucosal integrity during H. pylori infection via inhibition of TNF-alpha expression.  相似文献   

17.
18.
Prostacyclin (PGI2) is a potent vasodilator and important mediator of vascular homeostasis; however, its clinical use is limited because of its short (<2‐min) half‐life. Thus, we hypothesize that the use of engineered endothelial progenitor cells (EPCs) that constitutively secrete high levels of PGI2 may overcome this limitation of PGI2 therapy. A cDNA encoding COX‐1‐10aa‐PGIS, which links human cyclooxygenase‐1 (COX‐1) to prostacyclin synthase (PGIS), was delivered via nucleofection into outgrowth EPCs derived from rat bone marrow mononuclear cells. PGI2‐secreting strains (PGI2‐EPCs) were established by continuous subculturing of transfected cells under G418 selection. Genomic PCR, RT‐PCR, and Western blot analyses confirmed the overexpression of COX‐1‐10aa‐PGIS in PGI2‐EPCs. PGI2‐EPCs secreted significantly higher levels of PGI2 in vitro than native EPCs (P < 0.05) and showed higher intrinsic angiogenic capability; conditioned medium (CM) from PGI2‐EPCs promoted better tube formation than CM from native EPCs (P < 0.05). Cell‐ and paracrine‐mediated in vitro angiogenesis was attenuated when COX‐1‐10aa‐PGIS protein expression was knocked down. Whole‐cell patch‐clamp studies showed that 4‐aminopyridine‐sensitive K+ current density was increased significantly in rat smooth muscle cells (rSMCs) cocultured under hypoxia with PGI2‐EPCs (7.50 ± 1.59 pA/pF; P < 0.05) compared with rSMCs cocultured with native EPCs (3.99 ± 1.26 pA/pF). In conclusion, we successfully created EPC strains that overexpress an active novel enzyme resulting in consistent secretion of PGI2. PGI2‐EPCs showed enhanced intrinsic proangiogenic properties and provided favorable paracrine‐mediated cellular protections, including promoting in vitro angiogenesis of native EPCs and hyperpolarization of SMCs under hypoxia. J. Cell. Physiol. 227: 2907–2916, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
The hyperalgesic effects of prostacyclin and prostaglandin E2.   总被引:13,自引:0,他引:13  
Hyperalgesia induced in rat paws or dog knee joints by prostacyclin (PGI2) and prostaglandin E2 was measured by a modification of the Randall-Selitto method (1) or by the degree of incapacitation (2). In both species PGI2 induced an immediate hyperalgesic effect but the effect of PGE2 had a longer latency. Low doses of PGI2 caused a short lasting effect but PGE2, large doses of PGI2 or successive administration of small doses of PGI2 caused a long lasting effect. It is suggested that prostacyclin mediates rat paw hyperalgesia induced by carrageenin. The long lasting hyperalgesic effect of PGE2 and high doses of PGI2 is possibly an indirect effect caused by stimulation of a sensory nerve sensitising mechanism.  相似文献   

20.
Among the biochemical processes associated with the atherogenic process are increased aortic cholesteryl ester (CE) accumulation and altered prostaglandin (PG) production. The precise physiological role of PG, particularly prostacyclin (PGI2), in the control of CE metabolism in intact aortic smooth muscle cells remains to be fully elucidated. We report here that cytosolic neutral cholesteryl ester hydrolytic activity (NCEH) in intact cultured aortic smooth muscle cells is significantly increased by 75-250 nM PGI2 at the end of a 2-hr incubation period. The effect was mediated by increased intracellular cAMP levels since the effect of PGI2 on NCEH activity was abolished in the presence of an inhibitor of adenylate cyclase activity, viz., dideoxyadenosine (DDA0. Although the addition of 20-100 microM dibutyryl cAMP (Bt2cAMP) and 50-100 microM sodium arachidonate also increased NCEH activity twofold, 6-keto PGF1 alpha, PGE1, and PGE2 did not increase the activity of this enzyme. In contrast to these findings, 75-250 nM PGE2 significantly inhibited CE synthetic activity (ACAT) approximately 60%. Arachidonate or Bt2cAMP did not affect ACAT activity. This decrease in ACAT activity induced by PGE2 does not appear to be mediated by cAMP. Taken together, these findings suggest that PGI2, a well known potent vasodilator and inhibitor of platelet aggregation, and PGE2 may have an important regulatory role in aortic CE metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号