首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Bovine alpha1,3galactosyltransferase (alpha1,3GalT) transfers galactose from UDP-alpha-galactose to terminal beta-linked galactosyl residues with retention of configuration of the incoming galactose residue. The epitope synthesized has been shown to be critical for xenotransplantation. According to a proposed double-displacement reaction mechanism, glutamate-317 (E317) is thought to be the catalytic nucleophile. The proposed catalytic role of E317 involves an initial nucleophilic attack with inversion of configuration and formation of a covalent sugar-enzyme intermediate between E317 and galactose from the donor substrate, followed by a second nucleophilic attack performed by the acceptor substrate with a second inversion of configuration. To determine whether E317 of alpha1,3GalT is critical for enzyme activity, site-directed mutagenesis was used to substitute alanine, aspartic acid, cysteine and histidine for E317. If the proposed reaction mechanism for the alpha1,3GalT enzyme is correct, E317D and E317H would produce active enzymes since they can act as nucleophiles. The non-conservative mutation E317A and conservative mutation E317C are predicted to produce inactive or very low activity enzymes since the E317A mutant cannot engage in a nucleophilic attack, and the E317C mutant would trap the galactose residue. The results obtained demonstrate that E317D and E317H mutants retained activity, albeit significantly less than the wild-type enzyme. Additionally, both E317A and E317C mutant also retained enzyme activity, suggesting that E317 is not the catalytic nucleophile proposed in the double-displacement mechanism. Therefore, either a different amino acid may act as the catalytic nucleophile or the reaction must proceed by a different mechanism.  相似文献   

2.
alpha-1,3-Galactosyltransferase (alpha3GT) catalyzes the transfer of galactose from UDP-galactose to form an alpha 1-3 link with beta-linked galactosides; it is part of a family of homologous retaining glycosyltransferases that includes the histo-blood group A and B glycosyltransferases, Forssman glycolipid synthase, iGb3 synthase, and some uncharacterized prokaryotic glycosyltransferases. In mammals, the presence or absence of active forms of these enzymes results in antigenic differences between individuals and species that modulate the interplay between the immune system and pathogens. The catalytic mechanism of alpha3GT is controversial, but the structure of an enzyme complex with the donor substrate could illuminate both this and the basis of donor substrate specificity. We report here the structure of the complex of a low-activity mutant alpha3GT with UDP-galactose (UDP-gal) exhibiting a bent configuration stabilized by interactions of the galactose with multiple residues in the enzyme including those in a highly conserved region (His315 to Ser318). Analysis of the properties of mutants containing substitutions for these residues shows that catalytic activity is strongly affected by His315 and Asp316. The negative charge of Asp316 is crucial for catalytic activity, and structural studies of two mutants show that its interaction with Arg202 is needed for an active site structure that facilitates the binding of UDP-gal in a catalytically competent conformation.  相似文献   

3.
UDP-galactose:beta-galactosyl alpha-1,3-galactosyltransferase (alpha3GT) catalyzes the transfer of galactose from UDP-alpha-d-galactose into an alpha-1,3 linkage with beta-galactosyl groups in glycoconjugates. The enzyme is expressed in many mammalian species but is absent from humans, apes, and old world monkeys as a result of the mutational inactivation of the gene; in humans, a large fraction of natural antibodies are directed against its product, the alpha-galactose epitope. alpha3GT is a member of a family of metal-dependent retaining glycosyltransferases including the histo-blood group A and B synthases. A crystal structure of the catalytic domain of alpha3GT was recently reported (Gastinel, L. N., Bignon, C., Misra, A. K., Hindsgaul, O., Shaper, J. H., and Joziasse, D. H. (2001) EMBO J. 20, 638-649). However, because of the limited resolution (2.3 A) and high mobility of the atoms (as indicated by high B-factors) this structure (form I) does not provide a clear depiction of the catalytic site of the enzyme. Here we report a new, highly ordered structure for the catalytic domain of alpha3GT at 1.53-A resolution (form II). This provides a more accurate picture of the details of the catalytic site that includes a bound UDP molecule and a Mn(2+) cofactor. Significantly, in the new structure, the C-terminal segment (residues 358-368) adopts a very different, highly structured conformation and appears to form part of the active site. The properties of an Arg-365 to Lys mutant indicate that this region is important for catalysis, possibly reflecting its role in a donor substrate-induced conformational change.  相似文献   

4.
The crystal structures of alpha-galactosidase from the mesophilic fungus Trichoderma reesei and its complex with the competitive inhibitor, beta-d-galactose, have been determined at 1.54 A and 2.0 A resolution, respectively. The alpha-galactosidase structure was solved by the quick cryo-soaking method using a single Cs derivative. The refined crystallographic model of the alpha-galactosidase consists of two domains, an N-terminal catalytic domain of the (beta/alpha)8 barrel topology and a C-terminal domain which is formed by an antiparallel beta-structure. The protein contains four N-glycosylation sites located in the catalytic domain. Some of the oligosaccharides were found to participate in inter-domain contacts. The galactose molecule binds to the active site pocket located in the center of the barrel of the catalytic domain. Analysis of the alpha-galactosidase- galactose complex reveals the residues of the active site and offers a structural basis for identification of the putative mechanism of the enzymatic reaction. The structure of the alpha-galactosidase closely resembles those of the glycoside hydrolase family 27. The conservation of two catalytic Asp residues, identified for this family, is consistent with a double-displacement reaction mechanism for the alpha-galactosidase. Modeling of possible substrates into the active site reveals specific hydrogen bonds and hydrophobic interactions that could explain peculiarities of the enzyme kinetics.  相似文献   

5.
6.
Bovine α1,3galactosyltransferase (α1,3GalT) transfers galactose from UDP-α-galactose to terminal β-linked galactosyl residues with retention of configuration of the incoming galactose residue. The epitope synthesized has been shown to be critical for xenotransplantation. According to a proposed double-displacement reaction mechanism, glutamate-317 (E317) is thought to be the catalytic nucleophile. The proposed catalytic role of E317 involves an initial nucleophilic attack with inversion of configuration and formation of a covalent sugar–enzyme intermediate between E317 and galactose from the donor substrate, followed by a second nucleophilic attack performed by the acceptor substrate with a second inversion of configuration. To determine whether E317 of α1,3GalT is critical for enzyme activity, site-directed mutagenesis was used to substitute alanine, aspartic acid, cysteine and histidine for E317. If the proposed reaction mechanism for the α1,3GalT enzyme is correct, E317D and E317H would produce active enzymes since they can act as nucleophiles. The non-conservative mutation E317A and conservative mutation E317C are predicted to produce inactive or very low activity enzymes since the E317A mutant cannot engage in a nucleophilic attack, and the E317C mutant would trap the galactose residue. The results obtained demonstrate that E317D and E317H mutants retained activity, albeit significantly less than the wild-type enzyme. Additionally, both E317A and E317C mutant also retained enzyme activity, suggesting that E317 is not the catalytic nucleophile proposed in the double-displacement mechanism. Therefore, either a different amino acid may act as the catalytic nucleophile or the reaction must proceed by a different mechanism.  相似文献   

7.
UDP-galactose:beta-galactosyl-alpha1,3-galactosyltransferase (alpha3GT) catalyzes the synthesis of galactosyl-alpha-1,3-beta-galactosyl structures in mammalian glycoconjugates. In humans the gene for alpha3GT is inactivated, and its product, the alpha-Gal epitope, is the target of a large fraction of natural antibodies. alpha3GT is a member of a family of metal-dependent-retaining glycosyltransferases that includes the histo blood group A and B enzymes. Mn(2+) activates the catalytic domain of alpha3GT (alpha3GTcd), but the affinity reported for this ion is very low relative to physiological levels. Enzyme activity over a wide range of metal ion concentrations indicates a dependence on Mn(2+) binding to two sites. At physiological metal ion concentrations, Zn(2+) gives higher levels of activity and may be the natural cofactor. To determine the role of the cation, metal activation was perturbed by substituting Co(2+) and Zn(2+) for Mn(2+) and by mutagenesis of a conserved D(149)VD(151) sequence motif that is considered to act in cation binding in many glycosyltransferases. The aspartates of this motif were found to be essential for activity, and the kinetic properties of a Val(150) to Ala mutant with reduced activity were determined. The results indicate that the cofactor is involved in binding UDP-galactose and has a crucial influence on catalytic efficiency for galactose transfer and for the low endogenous UDP-galactose hydrolase activity. It may therefore interact with one or more phosphates of UDP-galactose in the Michaelis complex and in the transition state for cleavage of the UDP to galactose bond. The DXD motif conserved in many glycosyltransferases appears to have a key role in metal-mediated donor substrate binding and phosphate-sugar bond cleavage.  相似文献   

8.
Keratan sulfate glycosaminoglycans are among the most abundant carbohydrate components of the cornea and are suggested to play an important role in maintaining corneal extracellular matrix structure. Keratan sulfate carbohydrate chains consist of repeating N-acetyllactosamine disaccharides with sulfation on the 6-O positions of N-acetylglucosamine and galactose. Despite its importance for corneal function, the biosynthetic pathway of the carbohydrate chain and particularly the elongation steps are poorly understood. Here we analyzed enzymatic activity of two glycosyltransferases, beta1,3-N-acetylglucosaminyltansferase-7 (beta3GnT7) and beta1,4-galactosyltransferase-4 (beta4GalT4), in the production of keratan sulfate carbohydrate in vitro. These glycosyltransferases produced only short, elongated carbohydrates when they were reacted with substrate in the absence of a carbohydrate sulfotransferase; however, they produced extended GlcNAc-sulfated poly-N-acetyllactosamine structures with more than four repeats of the GlcNAc-sulfated N-acetyllactosamine unit in the presence of corneal N-acetylglucosamine 6-O sulfotransferase (CGn6ST). Moreover, we detected production of highly sulfated keratan sulfate by a two-step reaction in vitro with a mixture of beta3GnT7/beta4GalT4/CGn6ST followed by keratan sulfate galactose 6-O sulfotransferase treatment. We also observed that production of highly sulfated keratan sulfate in cultured human corneal epithelial cells was dramatically reduced when expression of beta3GnT7 or beta4GalT4 was suppressed by small interfering RNAs, indicating that these glycosyltransferases are responsible for elongation of the keratan sulfate carbohydrate backbone.  相似文献   

9.
Nucleotide sequences were determined for alpha1,3 galactosyltransferases (alpha1,3 GalTs) from several species (bat, mink, dog, sheep, and dolphin) and compared with those previously determined for this enzyme and members of the alpha1,3 galactosyl/N-acetylgalactosyltransferase (alpha1,3 Gal(NAc)Ts) family of enzymes. Sequence comparison of the newly characterized alpha1,3 GalT nucleotide and predicted amino acid sequences with those previously characterized for other alpha1,3GalT enzymes demonstrated a remarkable level of sequence identity at the nucleotide and amino acid level. The identity of each sequence as an alpha1,3 GalT was confirmed by expressing the encoded protein and characterizing the resulting enzyme. The alpha1,3 GalTs have a significant degree of sequence homology with A and B transferases, the alpha1,3 GalNAcT that catalyzes the synthesis of Forssman antigen, and the recently cloned iso-globotriaosylceramide synthase. Among the conserved residues, there are two Cys residues. To determine if these conserved residues are free or involved in the formation of a disulfide bond, bovine alpha1,3 GalT was characterized by chemical modification and mass spectrometry. Each peptide containing a Cys residue was chemically labeled with an alkylating reagent demonstrating that these enzymes do not contain disulfide bonds. Similar results have recently been reported for A and B transferases (Yen et al., 2000, J. Mass. Spectrom., 35, 990-1002). Thus, the highly conserved Cys residues found in these members of the alpha1,3 Gal(NAc)Ts family of enzymes are likely involved in other important aspects of enzyme structure/function within this enzyme family.  相似文献   

10.
alpha1,3galactosyltransferase (alpha1,3GalT) catalyzes the synthesis of a range of glycoconjugates containing the Galalpha1,3Gal epitope which is recognized by the naturally occurring human antibody, anti-Gal. This enzyme may be a useful synthetic tool to produce a range of compounds to further investigate the binding site of anti-Gal and other proteins with a Galalpha1,3Gal binding site. Thus, the enzyme has been probed with a series of type 2 disaccharide-C8(Galbeta1-4GlcNAc-C8) analogs. The enzyme tolerated acceptors with modifications at C2 and C3 of the N-acetylglucosamine residue, producing a family of compounds with a nonreducing alpha1,3 linked galactose. Compounds that did not serve as acceptors were evaluated as inhibitors. Interestingly, the type 1 disaccharide-C8, Galbeta1-3GlcNAc-C8, was a good inhibitor of the enzyme (Ki = 270 microM vs. Km = 190 microM for Galbeta1-4GlcNAc-C8). A potential photoprobe, based on a modified type 2 disaccharide (octyl 3-amino-3-deoxy-3-N-(2-diazo-3, 3, 3-trifluoropropionyl-beta-D-galactopyranosyl-(1, 4)-2-acetamindo-2-deoxy-beta-D-glycopyranoside, (DTFP-LacNAc-C8)), was evaluated as an inhibitor of alpha1,3GalT. alpha1,3GalT bound DTFP-LacNAc-C8 with an affinity (Ki = 300 microM) similar to that displayed by the enzyme for LacNAc-C8. Additional studies were done to determine the enzyme's ability to transfer a range of sugars from UDP-sugar donors. The results of these experiments demonstrated that alpha1,3GalT has a strict specificity for UDP-Gal. Finally, inactivation studies with various amino acid modifiers were done to obtain information on the importance of different types of amino acids for alpha1,3GalT activity.  相似文献   

11.
beta-Secretase (betaSEC) was expressed in Drososphila melanogaster Schneider 2 (S2) cells transformed with cDNAs encoding beta1,4-galactosyltransferase (GalT) and Galbeta1,4-GlcNAc alpha2,6-sialyltransferase (ST). The apparent molecular weight of recombinant beta-secretase was increased from 56kDa to 61kDa. A lectin blot analysis indicated that recombinant beta-secretase from S2betaSEC/GalT-ST cells (S2 cells co-transformed with cDNAs encoding beta-secretase, glycosyltransferases, GalT, and ST) contained the glycan residues of beta1,4-linked galactose and alpha2,6-linked sialic acid. Two dimensional electrophoresis revealed that recombinant beta-secretase from S2betaSEC/GalT-ST cells had a lower isoelectric point compared to beta-secretase from control S2betaSEC cells (S2 cells transformed only with beta-secretase cDNA). Recombinant beta-secretase from transformed S2 cells was also present as heterogeneous forms. The enzyme activity of recombinant beta-secretase from S2betaSEC/GalT-ST cells was enhanced up to 260% compared to control S2betaSEC cells. We have shown that an exogeneous human glycosyltransferases cDNA can be introduced into S2 cells to extend the N-glycan processing capabilities of the insect cell line, and that the extended glycosylation improves the activity of recombinant beta-secretase.  相似文献   

12.
6-sulfate modified N-acetylglucosamine (6-sulfo-GlcNAc) is often found as part of many biologically important carbohydrate epitopes such as 6-sulfo-LeX. In these epitopes, the 6-sulfo-GlcNAc moiety is extended by a galactose sugar in a β1-4 linkage. The β4GalT1 enzyme transfers galactose (Gal) from UDP-Gal to N-acetylglucosamine (GlcNAc) in the presence of manganese. Here we report that the β4GalT1 enzyme transfers Gal to the 6-sulfo-GlcNAc and 4-methylumbelliferyl-6-sulfo-N-acetyl-β-D-glucosaminide (6-sulfo-βGlcNAc-MU) acceptor substrates, although with very low efficiency. To understand the effect that the 6-sulfate group on the GlcNAc acceptor has on the catalytic activity of the β4GalT1 molecule, we have determined the crystal structure of the catalytic domain of bovine β4GalT1 mutant enzyme M344H-β4GalT1 complex with the 6-sulfo-GlcNAc molecule. In the crystal structure, the 6-sulfo-GlcNAc is bound to the protein in a way that is similar to the GlcNAc molecule. However, the 6-sulfate group engages in additional interactions with the hydrophobic region, residues 276–285, of the protein molecule, and this group is found wedged between the aromatic side chains of Phe-280 and Trp314 residues. Since the side chain of the Trp314 residue undergoes conformational changes during the catalytic cycle of the enzyme, molecular interaction between Trp314 and the 6-sulfate group might hinder this conformational change. Therefore, the lack of a favorable binding environment, together with hindrance to the conformational changes, might be responsible for the poor catalytic activity.  相似文献   

13.
GalT2 (UDP-Gal:GA2/GM2/GD2 beta-1,3-galactosyltransferase) is a Golgi-resident type II membrane protein that participates in the synthesis of glycosphingolipids. The molecular determinants for traffic and localization of this and other glycosyltransferases are still poorly characterized. Considering the possibility that interactions with other proteins may influence these processes, in the present study we carried out a yeast two-hybrid screening using elements of the N-terminal domain of GalT2 as bait. In this screening, we identified calsenilin and its close homologue CALP (calsenilin-like protein), both members of the recoverin-NCS (neuronal calcium sensor) family of calcium-binding proteins. In vitro, GalT2 binds to immobilized recombinant CALP, and CALP binds to immobilized peptides with the GalT2 cytoplasmic tail sequence. GalT2 and calsenilin interact physically when co-expressed in CHO (Chinese-hamster ovary)-K1 cells. The expression of CALP or calsenilin affect Golgi localization of GalT2, and of two other glycosyltransferases, SialT2 (CMP-NeuAc:GM3 sialyltransferase) and GalNAcT (UDP-GalNAc:lactosylceramide/GM3/GD3 beta1-4 N-acetylgalactosaminyltransferase), by redistributing them from the Golgi to the ER (endoplasmic reticulum), whereas the localization of the VSV-G (G-protein of the vesicular stomatitis virus) or the Golgin GM130 was essentially unaffected. Conversely, the expression of GalT2 affects the localization of calsenilin and CALP by shifting a fraction of the molecules from being mostly diffuse in the cytosol, to clustered structures in the perinuclear region. These combined in vivo and in vitro results suggest that CALP and calsenilin are involved in the trafficking of Golgi glycosyltransferases.  相似文献   

14.
15.
The catalytic domain of bovine alpha1-->3-galactosyltransferase (alpha3GalT), residues 80-368, have been cloned and expressed, in Escherichia coli. Using a sequential purification protocol involving a Ni(2+) affinity column followed by a UDP-hexanolamine affinity column, we have obtained a pure and active protein from the soluble fraction which catalyzes the transfer of galactose (Gal) from UDP-Gal to N-acetyllactosamine (LacNAc) with a specific activity of 0.69 pmol/min/ng. The secondary structural content of alpha3GalT protein was analyzed by Fourier transform infrared (FTIR) spectroscopy, which shows that the enzyme has about 35% beta-sheet and 22% alpha-helix. This predicted secondary structure content by FTIR spectroscopy was used in the protein sequence analysis algorithm, developed by the Biomolecular Engineering Research Center at Boston University and Tasc Inc., for the assignment of secondary structural elements to the amino acid sequence of alpha3GalT. The enzyme appears to have three major and three minor helices and five sheet-like structures. The studies on the acceptor substrate specificity of the enzyme, alpha3GalT, show that in addition to LacNAc, which is the natural substrate, the enzyme accepts various other disaccharides as substrates such as lactose and Gal derivatives, beta-O-methylgalactose and beta-D-thiogalactopyranoside, albeit with lower specific activities. There is an absolute requirement for Gal to be at the non-reducing end of the acceptor molecule which has to be beta1-->4-linked to a second residue that can be more diverse in structure. The kinetic parameters for four acceptor molecules were determined. Lactose binds and functions in a similar way as LacNAc. However, beta-O-methylgalactose and Gal do not bind as tightly as LacNAc or lactose, as their K(ia) and K(A) values indicate, suggesting that the second monosaccharide is critical for holding the acceptor molecule in place. The 2' and 4' hydroxyl groups of the receiving Gal moiety are important in binding. Even though there is large structural variability associated with the second residue of the acceptor molecule, there are constraints which do not allow certain Gal-R sugars to be good acceptors for the enzyme. The beta1-->4-linked residue at the second position of the acceptor molecule is preferred, but the interactions between the enzyme and the second residue are likely to be non-specific.  相似文献   

16.
A family of five beta1,3-galactosyltransferases has been characterized that catalyze the formation of Galbeta1,3GlcNAcbeta and Galbeta1,3GalNAcbeta linkages present in glycoproteins and glycolipids (beta3GalT1, -2, -3, -4, and -5). We now report a new member of the family (beta3GalT6), involved in glycosaminoglycan biosynthesis. The human and mouse genes were located on chromosomes 1p36.3 and 4E2, respectively, and homologs are found in Drosophila melanogaster and Caenorhabditis elegans. Unlike other members of the family, beta3GalT6 showed a broad mRNA expression pattern by Northern blot analysis. Although a high degree of homology across several subdomains exists among other members of the beta3-galactosyltransferase family, recombinant enzyme did not utilize glucosamine- or galactosamine-containing acceptors. Instead, the enzyme transferred galactose from UDP-galactose to acceptors containing a terminal beta-linked galactose residue. This product, Galbeta1,3Galbeta is found in the linkage region of heparan sulfate and chondroitin sulfate (GlcAbeta1,3Galbeta1,3Galbeta1,4Xylbeta-O-Ser), indicating that beta3GalT6 is the so-called galactosyltransferase II involved in glycosaminoglycan biosynthesis. Its identity was confirmed in vivo by siRNA-mediated inhibition of glycosaminoglycan synthesis in HeLa S3 cells. Its localization in the medial Golgi indicates that this is the major site for assembly of the linkage region.  相似文献   

17.
L N Gastinel  C Cambillau    Y Bourne 《The EMBO journal》1999,18(13):3546-3557
beta1,4-galactosyltransferase T1 (beta4Gal-T1, EC 2.4.1.90/38), a Golgi resident membrane-bound enzyme, transfers galactose from uridine diphosphogalactose to the terminal beta-N-acetylglucosamine residues forming the poly-N-acetyllactosamine core structures present in glycoproteins and glycosphingolipids. In mammals, beta4Gal-T1 binds to alpha-lactalbumin, a protein that is structurally homologous to lyzozyme, to produce lactose. beta4Gal-T1 is a member of a large family of homologous beta4galactosyltransferases that use different types of glycoproteins and glycolipids as substrates. Here we solved and refined the crystal structures of recombinant bovine beta4Gal-T1 to 2.4 A resolution in the presence and absence of the substrate uridine diphosphogalactose. The crystal structure of the bovine substrate-free beta4Gal-T1 catalytic domain showed a new fold consisting of a single conical domain with a large open pocket at its base. In the substrate-bound complex, the pocket encompassed residues interacting with uridine diphosphogalactose. The structure of the complex contained clear regions of electron density for the uridine diphosphate portion of the substrate, where its beta-phosphate group was stabilized by hydrogen-bonding contacts with conserved residues including the Asp252ValAsp254 motif. These results help the interpretation of engineered beta4Gal-T1 point mutations. They suggest a mechanism possibly involved in galactose transfer and enable identification of the critical amino acids involved in alpha-lactalbumin interactions.  相似文献   

18.
19.
Previously, we have shown that simple paucimannosidic N-glycan structures in insect Drosophila S2 cells arise mainly because of β-N-acetylglucosaminidase (GlcNAcase) action. Thus, in an earlier report, we suppressed GlcNAcase activity and clearly demonstrated that more complex N-glycans with two terminal N-acetylglucosamine (GlcNAc) residues were then synthesized. In the present work, we investigated the synergistic effects of β-1,4-galactosyltransferase (GalT) expression and GlcNAcase suppression on N-glycan patterns. We found that the N-glycan pattern of human erythropoietin secreted by engineered S2 cells expressing GalT but not GlcNAcase was complete, even in small portion, except for sialylation; the N-glycan structures had two terminal galactose (Gal) residues. When GalT was expressed but GlcNAcase was not inhibited, N-glycan with GlcNAc and Gal at only one branch end was synthesized. Therefore, it will be possible to express a complete functional human glycoprotein in engineered Drosophila S2 cells by suppressing GlcNAcase and co-expressing additional glycosyltransferases of N-glycosylation pathway.  相似文献   

20.
Starting with oligopeptide sequences and using PCR, the gene of the cyclodextrinase from Flavobacterium sp. no. 92 was derived from the genomic DNA. The gene was sequenced and expressed in Escherichia coli; the gene product was purified and crystallized. An X-ray diffraction analysis using seleno-methionines with multiwavelength anomalous diffraction techniques yielded the refined 3D structure at 2.1 A resolution. The enzyme hydrolyzes alpha(1,4)-glycosidic bonds of cyclodextrins and linear malto-oligosaccharides. It belongs to the glycosylhydrolase family no. 13 and has a chain fold similar to that of alpha-amylases, cyclodextrin glycosyltransferases, and other cyclodextrinases. In contrast with most family members but in agreement with other cyclodextrinases, the enzyme contains an additional characteristic N-terminal domain of about 100 residues. This domain participates in the formation of a putative D2-symmetric tetramer but not in cyclodextrin binding at the active center as observed with the other cyclodextrinases. Moreover, the domain is located at a position quite different from that of the other cyclodextrinases. Whether oligomerization facilitates the cyclodextrin deformation required for hydrolysis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号