首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A significant fraction of all proteins are misfolded and must be degraded. The ubiquitin-proteasome pathway provides an essential protein quality control function necessary for normal cellular homeostasis. Substrate specificity is mediated by proteins called ubiquitin ligases. In the endoplasmic reticulum (ER) a specialized pathway, the endoplasmic reticulum associated degradation (ERAD) pathway provides means to eliminate misfolded proteins from the ER. One marker used by the ER to identify misfolded glycoproteins is the presence of a high-mannose (Man5-8GlcNAc2) glycan. Recently, FBXO2 was shown to bind high mannose glycans and participate in ERAD. Using glycan arrays, immobilized glycoprotein pulldowns, and glycan competition assays we demonstrate that FBXO2 preferentially binds unfolded glycoproteins. Using recombinant, bacterially expressed GST-FBXO2 as an unfolded protein sensor we demonstrate it can be used to monitor increases in misfolded glycoproteins after physiological or pharmaceutical stressors.  相似文献   

2.
The multiprotein von Hippel-Lindau (VHL) tumor suppressor and Skp1-Cul1-F-box protein (SCF) complexes belong to families of structurally related E3 ubiquitin ligases. In the VHL ubiquitin ligase, the VHL protein serves as the substrate recognition subunit, which is linked by the adaptor protein Elongin C to a heterodimeric Cul2/Rbx1 module that activates ubiquitylation of target proteins by the E2 ubiquitin-conjugating enzyme Ubc5. In SCF ubiquitin ligases, F-box proteins serve as substrate recognition subunits, which are linked by the Elongin C-like adaptor protein Skp1 to a Cul1/Rbx1 module that activates ubiquitylation of target proteins, in most cases by the E2 Cdc34. In this report, we investigate the functions of the Elongin C and Skp1 proteins in reconstitution of VHL and SCF ubiquitin ligases. We identify Elongin C and Skp1 structural elements responsible for selective interaction with their cognate Cullin/Rbx1 modules. In addition, using altered specificity Elongin C and F-box protein mutants, we investigate models for the mechanism underlying E2 selection by VHL and SCF ubiquitin ligases. Our findings provide evidence that E2 selection by VHL and SCF ubiquitin ligases is determined not solely by the Cullin/Rbx1 module, the target protein, or the integrity of the substrate recognition subunit but by yet to be elucidated features of these macromolecular complexes.  相似文献   

3.
FBXO25 is one of the 69 known human F-box proteins that serve as specificity factors for a family of ubiquitin ligases composed of SKP1, Rbx1, Cullin1, and F-box protein (SCF1) that are involved in targeting proteins for degradation across the ubiquitin proteasome system. However, the substrates of most SCF E3 ligases remain unknown. Here, we applied an in chip ubiquitination screen using a human protein microarray to uncover putative substrates for the FBXO25 protein. Among several novel putative targets identified, the c-fos protooncogene regulator ELK-1 was characterized as the first endogenous substrate for SCF1(FBXO25) E3 ligase. FBXO25 interacted with and mediated the ubiquitination and proteasomal degradation of ELK-1 in HEK293T cells. In addition, FBXO25 overexpression suppressed induction of two ELK-1 target genes, c-fos and egr-1, in response to phorbol 12-myristate 13-acetate. Together, our findings show that FBXO25 mediates ELK-1 degradation through the ubiquitin proteasome system and thereby plays a role in regulating the activation of ELK-1 pathway in response to mitogens.  相似文献   

4.
Although the function of many glycoproteins in the nervous system of fruit flies is well understood, information about the glycosylation profile and glycan attachment sites for such proteins is scarce. In order to fill this gap and to facilitate the analysis of N-linked glycosylation in the nervous system, we have performed an extensive survey of membrane-associated glycoproteins and their N-glycosylation sites isolated from the adult Drosophila brain. Following subcellular fractionation and trypsin digestion, we used different lectin affinity chromatography steps to isolate N-glycosylated glycopeptides. We identified a total of 205 glycoproteins carrying N-linked glycans and revealed their 307 N-glycan attachment sites. The size of the resulting dataset furthermore allowed the statistical characterization of amino acid distribution around the N-linked glycosylation sites. Glycan profiles were analyzed separately for glycopeptides that were strongly and weakly bound to Concanavalin A (Con A), or that failed to bind Concanavalin A, but did bind to wheat germ agglutinin (WGA). High- or paucimannosidic glycans dominated each of the profiles, although the wheat germ agglutinin-bound glycan population was enriched in more extensively processed structures. A sialylated glycan structure was unambiguously detected in the wheat germ agglutinin-bound fraction. Despite the large amount of starting material, insufficient amount of glycopeptides was retained by the Wisteria floribunda (WFA) and Sambucus nigra columns to allow glycan or glycoprotein identification, providing further evidence that the vast majority of glycoproteins in the adult Drosophila brain carry primarily high-mannose, paucimannose, and hybrid glycans. The obtained results should facilitate future genetic and molecular approaches addressing the role of N-glycosylation in the central nervous system (CNS) of Drosophila.  相似文献   

5.
Ubiquitin E3 ligases are a diverse family of protein complexes that mediate the ubiquitination and subsequent proteolytic turnover of proteins in a highly specific manner. Among the several classes of ubiquitin E3 ligases, the Skp1-Cullin-F-box (SCF) class is generally comprised of three 'core' subunits: Skp1 and Cullin, plus at least one F-box protein (FBP) subunit that imparts specificity for the ubiquitination of selected target proteins. Recent genetic and biochemical evidence in Arabidopsis thaliana suggests that post-translational turnover of proteins mediated by SCF complexes is important for the regulation of diverse developmental and environmental response pathways. In this report, we extend upon a previous annotation of the Arabidopsis Skp1-like (ASK) and FBP gene families to include the Cullin family of proteins. Analysis of the protein interaction profiles involving the products of all three gene families suggests a functional distinction between ASK proteins in that selected members of the protein family interact generally while others interact more specifically with members of the F-box protein family. Analysis of the interaction of Cullins with FBPs indicates that CUL1 and CUL2, but not CUL3A, persist as components of selected SCF complexes, suggesting some degree of functional specialization for these proteins. Yeast two-hybrid analyses also revealed binary protein interactions between selected members of the FBP family in Arabidopsis. These and related results are discussed in terms of their implications for subunit composition, stoichiometry and functional diversity of SCF complexes in Arabidopsis.  相似文献   

6.
In SCF (Skp1/Cullin/F-box protein) ubiquitin ligases, substrate specificity is conferred by a diverse array of F-box proteins. Only in fully assembled SCF complexes, it is believed, can substrates bound to F-box proteins become ubiquitinated. Here we show that Fbx2, a brain-enriched F-box protein implicated in the ubiquitination of glycoproteins discarded from the endoplasmic reticulum, binds the co-chaperone/ubiquitin ligase CHIP (C terminus of Hsc-70-interacting protein) through a unique N-terminal PEST domain in Fbx2. CHIP facilitates the ubiquitination and degradation of Fbx2-bound glycoproteins, including unassembled NMDA receptor subunits. These findings indicate that CHIP acts with Fbx2 in a novel ubiquitination pathway that links CHIP to glycoprotein quality control in neurons. In addition, they expand the repertoire of pathways by which F-box proteins can regulate ubiquitination and suggest a new role for PEST domains as a protein interaction motif.  相似文献   

7.
The F-box protein family   总被引:8,自引:0,他引:8  
Kipreos ET  Pagano M 《Genome biology》2000,1(5):reviews3002.1-reviews30027
The F-box is a protein motif of approximately 50 amino acids that functions as a site of protein-protein interaction. F-box proteins were first characterized as components of SCF ubiquitin-ligase complexes (named after their main components, Skp I, Cullin, and an F-box protein), in which they bind substrates for ubiquitin-mediated proteolysis. The F-box motif links the F-box protein to other components of the SCF complex by binding the core SCF component Skp I. F-box proteins have more recently been discovered to function in non-SCF protein complexes in a variety of cellular functions. There are 11 F-box proteins in budding yeast, 326 predicted in Caenorhabditis elegans, 22 in Drosophila, and at least 38 in humans. F-box proteins often include additional carboxy-terminal motifs capable of protein-protein interaction; the most common secondary motifs in yeast and human F-box proteins are WD repeats and leucine-rich repeats, both of which have been found to bind phosphorylated substrates to the SCF complex. The majority of F-box proteins have other associated motifs, and the functions of most of these proteins have not yet been defined.  相似文献   

8.
Herein we detail the first glycoproteomic analysis of a human pathogen. We describe an approach that enables the identification of organelle and cell surface N-linked glycoproteins from Trypanosoma cruzi, the causative agent of Chagas' disease. This approach is based on a subcellular fractionation protocol to produce fractions enriched in either organelle or plasma membrane/cytoplasmic proteins. Through lectin affinity capture of the glycopeptides from each subcellular fraction and stable isotope labeling of the glycan attachment sites with H(2)18O, we unambiguously identified 36 glycosylation sites on 35 glycopeptides which mapped to 29 glycoproteins. We also present the first expression evidence for 11 T. cruzi specific glycoproteins and provide experimental data indicating that the mucin associated surface protein family (MASP) and dispersed gene family (DGF-1) are post-translationally modified by N-linked glycans.  相似文献   

9.
10.
11.
A novel class of ubiquitin ligases, termed the SCF complex, consists of invariable components, Skp1 and Cullin, and variable components called F-box proteins, which have a primary role in determining substrate specificity. We have isolated a cDNA encoding the mouse F-box protein Fwd2 (also known as MD6) as a possible constituent of an SCF-type ubiquitin ligase. Fwd2 cDNA contains 1890 bp with a 1362-bp open reading frame and encodes an approximately 51.5-kDa protein. Fwd2 is expressed predominantly in liver and, to a lesser extent, in the testis, lung, heart, and skeletal muscle. Immunofluorescence staining for Fwd2 protein shows a pattern with the cytoplasm. A coimmunoprecipitation assay has revealed the in vivo interaction between Skp1 and Fwd2 through the F-box domain. Fwd2 also interacts with Cul1 through Skp1, suggesting that Skp1, Cul1, and the F-box protein Fwd2 form an SCF complex (SCF(Fwd2)). We have also isolated and determined the nucleotide sequence and genomic organization of the gene that encodes mouse Fwd2. This gene spans approximately 17 kb and consists of six exons and five introns. Our results suggest that Fwd2 is an F-box protein that constitutes an SCF ubiquitin ligase complex and that it plays a critical role in the ubiquitin-dependent degradation of proteins expressed in the liver.  相似文献   

12.
LSECtin is a member of the C-type lectin family of glycan-binding receptors that is expressed on sinusoidal endothelial cells of the liver and lymph nodes. To compare the sugar and pathogen binding properties of LSECtin with those of related but more extensively characterized receptors, such as DC-SIGN, a soluble fragment of LSECtin consisting of the C-terminal carbohydrate-recognition domain has been expressed in bacteria. A biotin-tagged version of the protein was also generated and complexed with streptavidin to create tetramers. These forms of the carbohydrate-recognition domain were used to probe a glycan array and to characterize binding to oligosaccharide and glycoprotein ligands. LSECtin binds with high selectivity to glycoproteins terminating in GlcNAcbeta1-2Man. The inhibition constant for this disaccharide is 3.5 microm, making it one of the best low molecular weight ligands known for any C-type lectin. As a result of the selective binding of this disaccharide unit, the receptor recognizes glycoproteins with a truncated complex and hybrid N-linked glycans on glycoproteins. Glycan analysis of the surface glycoprotein of Ebola virus reveals the presence of such truncated glycans, explaining the ability of LSECtin to facilitate infection by Ebola virus. High mannose glycans are also present on the viral glycoprotein, which explains why DC-SIGN also binds to this virus. Thus, multiple receptors interact with surface glycoproteins of enveloped viruses that bear different types of relatively poorly processed glycans.  相似文献   

13.
Most cell surface molecules are glycoproteins consisting of linear arrays of globular domains containing stretches of amino acid sequence with similarities to regions in other proteins. These conserved regions form the basis for the classification of proteins into superfamilies. Recombinant soluble forms of six leukocyte antigens belonging to the Ly-6 (CD59), scavenger receptor (CD5), and immunoglobulin (CD2, CD48, CD4, and Thy-1) superfamilies were expressed in the same Chinese hamster ovary cell line, thus providing an opportunity to examine the extent to which N-linked oligosaccharide processing might vary in a superfamily-, domain-, or protein-dependent manner in a given cell. While we found no evidence for superfamily-specific modifications of the glycans, marked differences were seen in the types of oligosaccharides attached to individual proteins within a given superfamily. The relative importance of local protein surface properties versus the overall tertiary structure of the molecules in directing this protein-specific variation was examined in the context of molecular models. These were constructed using the 3D structures of the proteins, glycan data from this study, and an oligosaccharide structural database. The results indicated that both the overall organization of the domains and the local protein structure can have a large bearing on site-specific glycan modification of cells in stasis. This level of control ensures that the surface of a single cell will display a diverse repertoire of glycans and precludes the presentation of multiple copies of a single oligosaccharide on the cell surface. The glycans invariably shield large regions of the protein surfaces although, for the glycoproteins examined here, these did not hinder the known active sites of the molecules. The models also indicated that sugars are likely to play a role in the packing of the native cell surface glycoproteins and to limit nonspecific protein-protein interactions. In addition, glycans located close to the cell membrane are likely to affect crucially the orientation of the glycoproteins to which they are attached.  相似文献   

14.
Mannosidases are a diverse group of glycoside hydrolases that play crucial roles in mannose trimming of oligomannose glycans, glycoconjugates, and glycoproteins involved in numerous cellular processes, such as glycan biosynthesis and metabolism, structure regulation, cellular recognition, and cell–pathogen interactions. Exomannosidases and endomannosidases cleave specific glycosidic bonds of mannoside linkages in glycans and can be used in enzyme-based methods for sequencing of isomeric glycan structures. α1-6-mannosidase from Xanthomonas manihotis is known as a highly specific exoglycosidase that removes unbranched α1-6 linked mannose residues from oligosaccharides. However, we discovered that this α1-6-mannosidase also possesses an unexpected β1-4-galactosidase activity in the processing of branched hybrid and complex glycans through our use of enzymatic reactions, high performance anion-exchange chromatography, and liquid chromatography mass spectrometric sequencing. Our docking simulation of the α1-6-mannosidase with glycan substrates reveals potential interacting residues in a relatively shallow pocket slightly differing from its homologous enzymes in the glycoside hydrolase 125 family, which may be responsible for the observed higher promiscuity in substrate binding and subsequent terminal glycan hydrolysis. This observation of novel β1-4-galactosidase activity of the α1-6-mannosidase provides unique insights into its bifunctional activity on the substrate structure-dependent processing of terminal α1-6-mannose of unbranched glycans and terminal β1-4-galactose of hybrid and complex glycans. The finding thus suggests the dual glycosidase specificity of this α1-6-mannosidase and the need for careful consideration when used for the structural elucidation of glycan isomers.  相似文献   

15.
Calnexin and calreticulin are homologous molecular chaperones that promote proper folding, oligomeric assembly, and quality control of newly synthesized glycoproteins in the endoplasmic reticulum (ER). Both are lectins that bind to substrate glycoproteins that have monoglucosylated N-linked oligosaccharides. Their binding to newly translated influenza virus hemagglutinin (HA), and various mutants thereof, was analyzed in microsomes after in vitro translation and expression in live CHO cells. A large fraction of the HA molecules was found to occur in ternary HA– calnexin–calreticulin complexes. In contrast to calnexin, calreticulin was found to bind primarily to early folding intermediates. Analysis of HA mutants with different numbers and locations of N-linked glycans showed that although the two chaperones share the same carbohydrate specificity, they display distinct binding properties; calreticulin binding depends on the oligosaccharides in the more rapidly folding top/hinge domain of HA whereas calnexin is less discriminating. Calnexin's binding was reduced if the HA was expressed as a soluble anchor-free protein rather than membrane bound. When the co- and posttranslational folding and trimerization of glycosylation mutants was analyzed, it was observed that removal of stem domain glycans caused accelerated folding whereas removal of the top domain glycans (especially the oligosaccharide attached to Asn81) inhibited folding. In summary, the data established that individual N-linked glycans in HA have distinct roles in calnexin/calreticulin binding and in co- and posttranslational folding.  相似文献   

16.
The Gram-negative bacterium Campylobacter jejuni encodes an extensively characterized N-linked protein glycosylation system that modifies many surface proteins with a heptasaccharide glycan. In C. jejuni, the genes that encode the enzymes required for glycan biosynthesis and transfer to protein are located at a single pgl gene locus. Similar loci are also present in the genome sequences of all other Campylobacter species, although variations in gene content and organization are evident. In this study, we have demonstrated that only Campylobacter species closely related to C. jejuni produce glycoproteins that interact with both a C. jejuni N-linked-glycan-specific antiserum and a lectin known to bind to the C. jejuni N-linked glycan. In order to further investigate the structure of Campylobacter N-linked glycans, we employed an in vitro peptide glycosylation assay combined with mass spectrometry to demonstrate that Campylobacter species produce a range of structurally distinct N-linked glycans with variations in the number of sugar residues (penta-, hexa-, and heptasaccharides), the presence of branching sugars, and monosaccharide content. These data considerably expand our knowledge of bacterial N-linked glycan structure and provide a framework for investigating the role of glycosyltransferases and sugar biosynthesis enzymes in glycoprotein biosynthesis with practical implications for synthetic biology and glycoengineering.  相似文献   

17.
Quality control in the endoplasmic reticulum must discriminate nascent proteins in their folding process from terminally unfolded molecules, selectively degrading the latter. Unassembled Ig-mu and J chains, two glycoproteins with five N-linked glycans and one N-linked glycan, respectively, are degraded by cytosolic proteasomes after a lag from synthesis, during which glycan trimming occurs. Inhibitors of mannosidase I (kifunensine), but not of mannosidase II (swainsonine), prevent the degradation of mu chains. Kifunensine also inhibits J chain dislocation and degradation, without inhibiting secretion of IgM polymers. In contrast, glucosidase inhibitors do not significantly affect the kinetics of mu and J degradation. These results suggest that removal of the terminal mannose from the central branch acts as a timer in dictating the degradation of transport-incompetent, glycosylated Ig subunits in a calnexin-independent way. Kifunensine does not inhibit the degradation of an unglycosylated substrate (lambda Ig light chains) or of chimeric mu chains extended with the transmembrane region of the alpha T cell receptor chain, implying the existence of additional pathways for extracting proteins from the endoplasmic reticulum lumen for proteasomal degradation.  相似文献   

18.
The F-box protein is the substrate recognition subunit of SCF (SKP1/CUL1/F-box) E3 ubiquitin ligase complex, a multicomponent RING-type E3 ligase involved in the regulation of numerous cellular processes by targeting critical regulatory proteins for ubiquitination. However, whether and how F-box proteins are regulated is largely unknown. Here we report that FBXO28, a poorly characterized F-box protein, is a novel substrate of SCF E3 ligase. Pharmaceutical or genetic inhibition of neddylation pathway that is required for the activation of SCF stabilizes FBXO28 and prolongs its half-life. Meanwhile, FBXO28 is subjected to ubiquitination and cullin1-based SCF complex promotes FBXO28 degradation. Moreover, deletion of F-box domain stabilizes FBXO28 and knockdown of endogenous FBXO28 strongly upregulates exogenous FBXO28 expression. Taken together, these data reveal that SCFFBXO28 is the E3 ligase responsible for the self-ubiquitination and proteasomal degradation of FBXO28, providing a new clue for the upstream signaling regulation for F-box proteins.  相似文献   

19.
The SCF ubiquitin ligase complex consists of four components, Skp1, Cul1, ROC1/Rbx1, and a variable subunit F-box protein, which serves as a receptor for target proteins. The F-box proteins consist of an N-terminal ∼40 amino acid F-box domain that binds to Skp1 and the C-terminal substrate-binding domain. We have reported previously that Fbs1 and Fbs2 are N-linked glycoprotein-specific F-box proteins. In addition, other three F-box proteins, Fbg3, Fbg4, and Fbg5, show high homology to Fbs1 and Fbs2, but their functions remain largely unknown. Here we report that Skp1 assists in correct folding of exogenously expressed F-box proteins. Fbs2 as well as Fbg3, Fbg4, and Fbg5 proteins formed SCF complexes but did not bind to N-glycoproteins when exogenously expressed alone. However, co-expression of Fbs2 and Fbg5 with Skp1 facilitated their binding to glycoproteins that reacted with ConA. Furthermore, Skp1 increased the cellular concentrations of F-box proteins by preventing aggregate formation. These observations suggest that Skp1 plays an important role in stabilizing the conformation of these F-box proteins, which increases their expression levels and substrate-binding.  相似文献   

20.
RNASET2 (Ribonuclease T2) functions as a tumor suppressor in preventing ovarian tumorigenesis. However, the mechanisms underlying the regulation of RNASET2 protein are completely unknown. Here we identified the F-box protein FBXO6, a substrate recognition subunit of an SCF (Skp1-Cul1-F-box protein) complex, as the ubiquitin E3 ligase for RNASET2. We found that the interaction between FBXO6 and RNASET2 induced RNASET2 instability through the ubiquitin-mediated proteasome degradation pathway. FBXO6 promoted K48-dependent ubiquitination of RNASET2 via its FBA domain. Through analysis of the TCGA dataset, we found that FBXO6 was significantly increased in ovarian cancer tissues and the high expression of FBXO6 was related to the poor overall survival (OS) of ovarian cancer patients at advanced stages. An inverse correlation between the protein levels of FBXO6 and RNASET2 was observed in clinic ovarian cancer samples. Depletion of FBXO6 promoted ovarian cancer cells proliferation, migration, and invasion, which could be partially reversed by RNASET2 silencing. Thus, our data revealed a novel FBXO6-RNASET2 axis, which might contribute to the development of ovarian cancer. We propose that inhibition of FBXO6 might represent an effective therapeutic strategy for ovarian cancer treatment.Subject terms: Oncogenes, Ubiquitin ligases  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号