首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Question: Do soil water content and/or soil nitrogen (N) content and/or soil phosphorus (P) content affect the biomass of Vaccinium myrtillus and V. vitis‐idaea in a sub‐alpine heath? Location: Dolomites, northern Italy, 1800 m a.s.l. Methods: We determined above‐ground and below‐ground biomass of the shrubs at three sites, each on a different substrate type. At each site, we determined soil N‐ and P‐contents. We also determined leaf water potential (Psi;1), N‐ and P‐concentrations in plant tissues and litter, as well as δ13C and δ15N in mature leaves. Results: V. myrtillus biomass was highest at the silicate site, V. vitis‐idaea biomass was highest at the carbonate site. Both shrubs had low biomass at the peat site, possibly due to a toxic effect of waterlogging in wet soils. For both species, pre‐dawn Psi;1 indicated optimal hydration and midday Psi;1 did not show any sign of water stress. Water use efficiency (WUE) did not differ among sites for any species. Whole‐plant nutrient concentrations showed that, with increasing biomass, N was diluted in V. myrtillus tissues while P was diluted in V. vitis‐idaea tissues. Foliar N‐concentration was higher overall for V. myrtillus. Foliar P‐concentration in V. myrtillus peaked at the silicate site. Foliar N : P ratios suggested that V. myrtillus was primarily P‐limited and V. vitis‐idaea primarily N‐limited. Conclusions: Water content affected the distribution of the two shrubs in a similar way, higher P‐availability in the soil enhanced V. myrtillus rather than V. vitis‐idaea.  相似文献   

2.
Vaccinium myrtillus and Vaccinium vitis‐idaea are two dwarf shrubs widespread in the European Alps. We studied the hydraulics of these species hypothesizing that (1) the hydraulic architecture of dwarf shrubs differs from trees, (2) hydraulic properties reflect the species' ecological amplitude and (3) hydraulic properties vary spatially and seasonally. Key hydraulic parameters (osmotic potential, turgor loss point, xylem hydraulic conductivity, vulnerability to drought‐induced embolism, stomata closure, drought‐induced cell damage and embolism repair) and related wood anatomical traits (conduit diameter and conduit wall reinforcement) were analyzed at four sites in Tyrol, Austria. Both species exhibited low hydraulic safety as well as low hydraulic efficiency. Fifty percentage embolism accumulated at ?2.08 (V. myrtillus) and ?1.97 MPa (V. vitis‐idaea), 88% stomata closure was at ?2.19 and ?2.35 MPa, respectively. After drought, both species showed embolism repair on re‐watering. Site‐specific variation within species was low, while seasonal changes in embolism resistance and turgor loss point were observed. Results indicate that studied Vaccinium species have a high risk for embolism formation. This is balanced by refilling capacities, which are probably based on the small growth height of dwarf shrubs. V. vitis‐idaea, which occurs on drier sites, showed more efficient repair and a lower turgor loss point than V. myrtillus.  相似文献   

3.
Periodic measurements of gas‐exchange rates and determinations of foliar N and P concentrations were used for evaluating instantaneous water‐use efficiency and photosynthetic nutrient‐use efficiency in two co‐existing dwarf shrubs of different growth form (V. myrtillus, deciduous, and V. vitis‐idaea, evergreen) in a subalpine heath in the southern Alps of Italy. Those data were compared with cumulative assessments of water‐use efficiency and photosynthetic nutrient‐use efficiency obtained by measuring leaf carbon isotope discrimination in leaf tissues and by estimating nutrient resorption from senescing leaves. V. myrtillus presented higher dry‐weight based rates of net photosynthesis (Aweight) compared to V. vitis‐idaea. Aweight was positively correlated with foliar‐nutrient status and intercellular‐to‐ambient gradient in CO2 concentrations. Aweight was, furthermore, negatively correlated with leaf specific mass. Instantaneous photosynthetic nutrient‐use efficiency did not differ between the two species but the percentages of N and P pools resorbed from senescing leaves were somewhat higher in the deciduous species. The evergreen species showed lower P concentrations in senescing leaves which indicated a higher proficiency in resorbing phosphorus compared to the deciduous species. In addition, the evergreen species achieved a higher carbon gain per unit foliar N and P, due to a longer mean residence time of both nutrients. The two species did not differ from each other with respect to both instantaneous and long‐term water‐use efficiency. This was consistent with the climatic pattern, showing no sign of water deficiency through the growing season. Current‐year V. vitis‐idaea leaves had a significantly higher Δ13C compared to previous‐year leaves, possibly mirroring a long term acclimation of evergreen leaves, as far as they age, to the habitat conditions in the understory where evergreen species are usually confined within mixed dwarf‐shrub communities.  相似文献   

4.
Extreme weather events can have strong negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme, short‐lived, winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (for instance, 2–10 °C for 2–14 days) but upon return to normal winter climate exposes the ecosystem to much colder temperatures due to the loss of insulating snow. Single events have been shown to reduce plant reproduction and increase shoot mortality, but impacts of multiple events are little understood as are the broader impacts on community structure, growth, carbon balance, and nutrient cycling. To address these issues, we simulated week‐long extreme winter warming events – using infrared heating lamps and soil warming cables – for 3 consecutive years in a sub‐Arctic heathland dominated by the dwarf shrubs Empetrum hermaphroditum, Vaccinium vitis‐idaea (both evergreen) and Vaccinium myrtillus (deciduous). During the growing seasons after the second and third winter event, spring bud burst was delayed by up to a week for E. hermaphroditum and V. myrtillus, and berry production reduced by 11–75% and 52–95% for E. hermaphroditum and V. myrtillus, respectively. Greater shoot mortality occurred in E. hermaphroditum (up to 52%), V. vitis‐idaea (51%), and V. myrtillus (80%). Root growth was reduced by more than 25% but soil nutrient availability remained unaffected. Gross primary productivity was reduced by more than 50% in the summer following the third simulation. Overall, the extent of damage was considerable, and critically plant responses were opposite in direction to the increased growth seen in long‐term summer warming simulations and the ‘greening’ seen for some arctic regions. Given the Arctic is warming more in winter than summer, and extreme events are predicted to become more frequent, this generates large uncertainty in our current understanding of arctic ecosystem responses to climate change.  相似文献   

5.
Insulation provided by snow cover and tolerance of freezing by physiological acclimation allows Arctic plants to survive cold winter temperatures. However, both the protection mechanisms may be lost with winter climate change, especially during extreme winter warming events where loss of snow cover from snow melt results in exposure of plants to warm temperatures and then returning extreme cold in the absence of insulating snow. These events cause considerable damage to Arctic plants, but physiological responses behind such damage remain unknown. Here, we report simulations of extreme winter warming events using infrared heating lamps and soil warming cables in a sub‐Arctic heathland. During these events, we measured maximum quantum yield of photosystem II (PSII), photosynthesis, respiration, bud swelling and associated bud carbohydrate changes and lipid peroxidation to identify physiological responses during and after the winter warming events in three dwarf shrub species: Empetrum hermaphroditum, Vaccinium vitis‐idaea and Vaccinium myrtillus. Winter warming increased maximum quantum yield of PSII, and photosynthesis was initiated for E. hermaphroditum and V. vitis‐idaea. Bud swelling, bud carbohydrate decreases and lipid peroxidation were largest for E. hermaphroditum, whereas V. myrtillus and V. vitis‐idaea showed no or less strong responses. Increased physiological activity and bud swelling suggest that sub‐Arctic plants can initiate spring‐like development in response to a short winter warming event. Lipid peroxidation suggests that plants experience increased winter stress. The observed differences between species in physiological responses are broadly consistent with interspecific differences in damage seen in previous studies, with E. hermaphroditum and V. myrtillus tending to be most sensitive. This suggests that initiation of spring‐like development may be a major driver in the damage caused by winter warming events that are predicted to become more frequent in some regions of the Arctic and that may ultimately drive plant community shifts.  相似文献   

6.
Polar regions are predicted to undergo large increases in winter temperature and an increased frequency of freeze–thaw cycles, which can cause ice layers in the snow pack and ice encasement of vegetation. Early or late winter timing of ice encasement could, however, modify the extent of damage caused to plants. To determine impacts of the date of ice encasement, a novel field experiment was established in sub‐arctic Sweden, with icing events simulated in January and March 2008 and 2009. In the subsequent summers, reproduction, phenology, growth and mortality, as well as physiological indicators of leaf damage were measured in the three dominant dwarf shrubs: Vaccinium uliginosum, Vaccinium vitis‐idaea and Empetrum nigrum. It was hypothesised that January icing would be more damaging compared to March icing due to the longer duration of ice encasement. Following 2 years of icing, E. nigrum berry production was 83% lower in January‐iced plots compared to controls, and V. vitis‐idaea electrolyte leakage was increased by 69%. Conversely, electrolyte leakage of E. nigrum was 25% lower and leaf emergence of V. vitis‐idaea commenced 11 days earlier in March‐iced plots compared to control plots in 2009. There was no effect of icing on any of the other parameters measured, indicating that overall these study species have moderate to high tolerance to ice encasement. Even much longer exposure under the January icing treatment does not clearly increase damage.  相似文献   

7.
The Arctic is experiencing the greatest climate change in winter, including increases in freeze–thaw cycles that can result in ice encasement of vegetation. Ice encasement can expose plants to hypoxia and greater temperature extremes, but currently the impacts of icing on plants in the field remain little understood. With this in mind, a unique field manipulation experiment was established in heathland in northern Sweden with ice encasement simulated in early March 2008, 2009 and 2010 until natural thaw each spring. In the following summers we assessed the impacts on flowering, bud phenology, shoot growth and mortality and leaf damage (measured by chlorophyll fluorescence and electrolyte leakage) of the three dominant dwarf shrub species Empetrum nigrum, Vaccinium vitis‐idaea (both evergreen) and Vaccinium myrtillus (deciduous). Two consecutive winters of icing decreased V. vitis‐idaea flowering by 57%, while flowering of V. myrtillus and E. nigrum remained unaffected. Vaccinium myrtillus showed earlier budburst but shoot growth for all species was unchanged. Shoot mortality of V. myrtillus and V. vitis‐idaea increased after the first year (by 70 and 165%, respectively) and again for V. myrtillus following the third year (by 67%), while E. nigrum shoot mortality remained unaffected, as were chlorophyll fluorescence and electrolyte leakage in all species. Overall, the sub‐arctic heathland was relatively tolerant to icing, but the considerable shoot mortality of V. myrtillus contrasting with the general tolerance of E. nigrum suggests plant community structure in the longer term could change if winters continue to see a greater frequency of icing events.  相似文献   

8.
Abstract. The deciduous Vaccinium myrtillus and the evergreen Vaccinium vitis‐idaea were subjected to five removal treatments of understorey layers: control, removal of the moss layer, removal of the field layer, removal of both moss and field layers and removal of moss, field and humus layers. A second factor, sowing, was included to investigate sexual reproduction after disturbance. Density of new ramets and seedlings and growth of annual shoots were studied for the first two growing seasons, whereas cover was measured for five growing seasons after disturbance treatment. Initially, vegetative production of new ramets and species cover increased rapidly in all disturbed plots, except for the most severe treatment, in which production of new ramets was virtually absent throughout the study. Full recovery following removal of the field layer only or both field and moss layers was reached after four years for V. myrtillus. V. vitis‐idaea recovered more quickly, after one year (removal of field layer only) and four years (removal of field and moss layers). The relative growth of V. myrtillus and V. vitis‐idaea increased in the latter treatment in terms of production of annual shoots and length of annual shoots, respectively. Seedling density increased after sowing in the most severe treatment. The results underscore the importance of vegetative growth for recovery of these species at moderate‐level disturbances. The high rate of sexual reproduction in the most severe treatment implies that strong mechanical disturbance is needed to enhance the establishment of new genotypes in these species.  相似文献   

9.
Question: How do N fertilization and disturbance affect the understorey vegetation, microbial properties and soil nutrient concentration in boreal forests? Location: Kuusamo (66°22′N; 29°18′E) and Oulu (65°02′N; 25°47′E) in northern Finland. Methods: We conducted a fully factorial experiment with three factors: site (two levels), N fertilization (four levels) and disturbance (two levels). We measured treatment effects on understorey biomass, vegetation structure, and plant, soil and microbial N and C concentrations. Results: The understorey biomass was not affected by fertilization either in the control or in the disturbance treatment. Fertilization reduced the biomass of deciduous Vaccinium myrtillus. Disturbance had a negative effect on the biomass of V. myrtillus and evergreen Vaccinium vitis‐idaea and decreased the relative proportion of evergreen species. Fertilization and disturbance increased the biomass of grass Deschampsia flexuosa and the relative proportion of graminoids. The amount of NH4+ increased in soil after fertilization, and microbial C decreased after disturbance. Conclusions: Our results suggest that the growth of slow‐growing Vaccinium species and soil microbes in boreal forests are not limited by N availability. However, significant changes in the proportion of dwarf shrubs to graminoids and a decrease in the biomass of V. myrtillus demonstrate the susceptibility of understorey vegetation to N enrichment. N enrichment and disturbance seem to have similar effects on understorey vegetation. Consequently, increasing N does not affect the rate or the direction of recovery after disturbance. Moreover, our study demonstrates the importance of understorey vegetation as a C source for soil microbes in boreal forests.  相似文献   

10.
Doris Grellmann 《Oikos》2002,98(2):190-204
This study investigated the impacts of fertilization and grazing by Norwegian lemmings (Lemmus lemmus), grey‐sided voles (Clethrionomys rufocanus), and reindeer (Rangifer tarandus) on a diverse tundra plant community dominated by deciduous shrubs. Four out of eight study areas, having a size of 2500 m2 each, were fertilized with a N‐P‐K fertilizer and four areas served as unfertilized controls. Two types of exclosures were used within each study area, one to exclude solely reindeer, and one to exclude both rodents and reindeer. Open, grazed plots served as controls. During 5 years following the fertilization event the changes in vegetation inside and outside the exclosures were monitored using a point frequency method. The densities of rodents on the fertilized and unfertilized areas were investigated by live trapping and by counting nests of overwintering individuals. Reindeer do not graze on the study area during the growing season but migrate through this area in autumn and spring. Fertilization increased the abundance of vascular plants while grazing by reindeer and rodents decreased the abundance of vascular plants significantly on both fertilized and unfertilized areas. Rodents preferred clearly the fertilized areas during winter, decreasing the abundance of Vaccinium myrtillus and Vaccinium vitis‐idaea, while very little grazing occurred during summer. Graminoids showed the strongest positive response to fertilization and dominated the plant community on ungrazed plots, while winter grazing by both reindeer and rodents significantly decreased the abundance of graminoids. Deciduous shrubs (Betula nana, Vaccinium myrtillus) increased slightly but significantly due to fertilization and evergreen dwarf shrubs showed no response to fertilization. However, the use of functional growth forms for predicting the responses of nutrient enrichment and grazing must be questioned, as responses to fertilization as well as preferences by herbivores were shown to be species‐specific rather than uniform within functional groups based on plant growth forms.  相似文献   

11.
Selective herbivory of palatable plant species provides a competitive advantage for unpalatable plant species, which often have slow growth rates and produce slowly decomposable litter. We hypothesized that through a shift in the vegetation community from palatable, deciduous dwarf shrubs to unpalatable, evergreen dwarf shrubs, selective herbivory may counteract the increased shrub abundance that is otherwise found in tundra ecosystems, in turn interacting with the responses of ecosystem carbon (C) stocks and CO2 balance to climatic warming. We tested this hypothesis in a 19‐year field experiment with factorial treatments of warming and simulated herbivory on the dominant deciduous dwarf shrub Vaccinium myrtillus. Warming was associated with a significantly increased vegetation abundance, with the strongest effect on deciduous dwarf shrubs, resulting in greater rates of both gross ecosystem production (GEP) and ecosystem respiration (ER) as well as increased C stocks. Simulated herbivory increased the abundance of evergreen dwarf shrubs, most importantly Empetrum nigrum ssp. hermaphroditum, which led to a recent shift in the dominant vegetation from deciduous to evergreen dwarf shrubs. Simulated herbivory caused no effect on GEP and ER or the total ecosystem C stocks, indicating that the vegetation shift counteracted the herbivore‐induced C loss from the system. A larger proportion of the total ecosystem C stock was found aboveground, rather than belowground, in plots treated with simulated herbivory. We conclude that by providing a competitive advantage to unpalatable plant species with slow growth rates and long life spans, selective herbivory may promote aboveground C stocks in a warming tundra ecosystem and, through this mechanism, counteract C losses that result from plant biomass consumption.  相似文献   

12.
Climate change and elevated atmospheric CO2 levels could increase the vulnerability of plants to freezing. We analyzed tissue damage resulting from naturally occurring freezing events in plants from a long–term in situ CO2 enrichment (+ 200 ppm, 2001–2009) and soil warming (+ 4°C since 2007) experiment at treeline in the Swiss Alps (Stillberg, Davos). Summer freezing events caused damage in several abundant subalpine and alpine plant species in four out of six years between 2005 and 2010. Most freezing damage occurred when temperatures dropped below –1.5°C two to three weeks after snow melt. The tree Larix decidua and the dwarf shrubs Vaccinium myrtillus and Empetrum hermaphroditum showed more freezing damage under experimentally elevated CO2 and/or temperatures than under control conditions. Soil warming induced a 50% die‐back of E. hermaphroditum during a single freezing event due to melting of the protective snow cover. Although we could not identify a clear mechanism, we relate greater freezing susceptibility to a combination of advanced plant phenology in spring and changes in plant physiology. The climate record since 1975 at the treeline site indicated a summer warming by 0.58°C/decade and a 3.5 days/decade earlier snow melt, but no significant decrease in freezing events during the vegetation period. Therefore, in a warmer climate with higher CO2 levels but constant likelihood of extreme weather events, subalpine and alpine plants may be more susceptible to freezing events, which may partially offset expected enhanced growth with global change. Hence, freezing damage should be considered when predicting changes in growth of alpine plants or changes in community composition under future atmospheric and climate conditions.  相似文献   

13.
It has been hypothesized that the wide range of forms and complexities of phosphorus (P) in soil may result in resource partitioning that contributes to the maintenance of plant species diversity. Here, we test whether the graminoid, Deschampsia cespitosa, and the ericaceous shrub, Vaccinium vitis‐idaea, which often coexist, display preferences in utilization of P forms, and differ in their production of extracellular P‐degrading enzymes. We provided plants with no additional P, or P forms with decreasing lability, namely sodium phosphate (SP), D‐glucose 6 phosphate (DG6P), sodium phytate (PASS), and a combination of SP, DG6P, and PASS. We also tested if preferences for P forms affected the competitive outcomes between the two species compared between conspecifics, as indicated by shoot biomass and acquisition of nitrogen (N) and P. Both D. cespitosa and V. vitis‐idaea produced the greatest biomass when supplied with a mix of all three forms of P. Of the three forms of P tested alone, shoot biomass produced by both species was least when supplied with SP. D. cespitosa performed better when grown with PASS or a mix of all P forms compared with the performance of V. vitis‐idaea on these substrates. This was reflected by substantially greater phytase activity on the surface of its roots compared with V. vitis‐idaea. In contrast, V. vitis‐idaea produced more phosphomonoesterase to hydrolyze the simple organic P form, DG6P. Although N was kept constant in the treatments, the ability of plants to acquire it was dependent on species identity, competition, and P supply. These findings provide direct evidence for preferences toward specific forms of P and indicate a key role played by organic forms of P. The results support the idea that partitioning for soil P is one factor regulating plant competition, and ultimately, community composition. Our data also highlight the importance of the interplay between P supply and N acquisition.  相似文献   

14.
Climate change scenarios predict an increased frequency of extreme climatic events. In Arctic regions, one of the most profound of these are extreme and sudden winter warming events in which temperatures increase rapidly to above freezing, often causing snow melt across whole landscapes and exposure of ecosystems to warm temperatures. Following warming, vegetation and soils no longer insulated below snow are then exposed to rapidly returning extreme cold. Using a new experimental facility established in sub‐Arctic dwarf shrub heathland in northern Sweden, we simulated an extreme winter warming event in the field and report findings on growth, phenology and reproduction during the subsequent growing season. A 1‐week long extreme winter warming event was simulated in early March using infrared heating lamps run with or without soil warming cables. Both single short events delayed bud development of Vaccinium myrtillus by up to 3 weeks in the following spring (June) and reduced flower production by more than 80%: this also led to a near‐complete elimination of berry production in mid‐summer. Empetrum hermaphroditum also showed delayed bud development. In contrast, Vaccinium vitis‐idaea showed no delay in bud development, but instead appeared to produce a greater number of actively growing vegetative buds within plots warmed by heating lamps only. Again, there was evidence of reduced flowering and berry production in this species. While bud break was delayed, growing season measurements of growth and photosynthesis did not reveal a differential response in the warmed plants for any of the species. These results demonstrate that a single, short, extreme winter warming event can have considerable impact on bud production, phenology and reproductive effort of dominant plant species within sub‐Arctic dwarf shrub heathland. Furthermore, large interspecific differences in sensitivity are seen. These findings are of considerable concern, because they suggest that repeated events may potentially impact on the biodiversity and productivity of these systems should these extreme events increase in frequency as a result of global change. Although climate change may lengthen the growing season by earlier spring snow melt, there is a profound danger for these high‐latitude ecosystems if extreme, short‐lived warming in winter exposes plants to initial warm temperatures, but then extreme cold for the rest of the winter. Work is ongoing to determine the longer term and wider impacts of these events.  相似文献   

15.
Climate warming is strongly altering the timing of season initiation and season length in the Arctic. Phenological activities are among the most sensitive plant responses to climate change and have important effects at all levels within the ecosystem. We tested the effects of two experimental treatments, extended growing season via snow removal and extended growing season combined with soil warming, on plant phenology in tussock tundra in Alaska from 1995 through 2003. We specifically monitored the responses of eight species, representing four growth forms: (i) graminoids (Carex bigellowii and Eriophorum vaginatum); (ii) evergreen shrubs (Ledum palustre, Cassiope tetragona, and Vaccinium vitis‐idaea); (iii) deciduous shrubs (Betula nana and Salix pulchra); and (iv) forbs (Polygonum bistorta). Our study answered three questions: (i) Do experimental treatments affect the timing of leaf bud break, flowering, and leaf senescence? (ii) Are responses to treatments species‐specific and growth form‐specific? and (iii) Which environmental factors best predict timing of phenophases? Treatment significantly affected the timing of all three phenophases, although the two experimental treatments did not differ from each other. While phenological events began earlier in the experimental plots relative to the controls, duration of phenophases did not increase. The evergreen shrub, Cassiope tetragona, did not respond to either experimental treatment. While the other species did respond to experimental treatments, the total active period for these species did not increase relative to the control. Air temperature was consistently the best predictor of phenology. Our results imply that some evergreen shrubs (i.e., C. tetragona) will not capitalize on earlier favorable growing conditions, putting them at a competitive disadvantage relative to phenotypically plastic deciduous shrubs. Our findings also suggest that an early onset of the growing season as a result of decreased snow cover will not necessarily result in greater tundra productivity.  相似文献   

16.
The consequences for plant-insect interactions of atmospheric changes in alpine ecosystems are not well understood. Here, we tested the effects of elevated CO2 on leaf quality in two dwarf shrub species (Vaccinium myrtillus and V. uliginosum) and the response of the alpine grasshopper (Miramella alpina) feeding on these plants in a field experiment at the alpine treeline (2,180 m a.s.l.) in Davos, Switzerland. Relative growth rates (RGR) of M. alpina nymphs were lower when they were feeding on V. myrtillus compared to V. uliginosum, and were affected by elevated CO2 depending on plant species and nymph developmental stage. Changes in RGR correlated with CO2-induced changes in leaf water, nitrogen, and starch concentrations. Elevated CO2 resulted in reduced female adult weight irrespective of plant species, and prolonged development time on V. uliginosum only, but there were no significant differences in nymphal mortality. Newly molted adults of M. alpina produced lighter eggs and less secretion (serving as egg protection) under elevated CO2. When grasshoppers had a choice among four different plant species grown either under ambient or elevated CO2, V. myrtillus and V. uliginosum consumption increased under elevated CO2 in females while it decreased in males compared to ambient CO2-grown leaves. Our findings suggest that rising atmospheric CO2 distinctly affects leaf chemistry in two important dwarf shrub species at the alpine treeline, leading to changes in feeding behavior, growth, and reproduction of the most important insect herbivore in this system. Changes in plant-grasshopper interactions might have significant long-term impacts on herbivore pressure, community dynamics and ecosystem stability in the alpine treeline ecotone.  相似文献   

17.
Alpine tundra ecosystems such as those which are dominated by ericaceous dwarf shrubs in northern Scandinavia are characterised by low productivity, and this is due in part to low availability of nutrients and retardation of those microbial processes required for nutrient cycling. We conducted an eight‐year field experiment in an alpine tundra in northern Sweden, in which eleven treatments aimed at alleviating possible stresses were applied to field plots; these included addition of various forms of nitrogen and other nutrients, addition of lime, addition of available carbon, and reduction of possible adverse effects of secondary metabolites produced by the dwarf shrub Empetrum hermaphroditum. Nearly all of the treatments had statistically significant effects on at least some of the plant species present in the experiment. Addition of nitrogen and liming both had important effects in reducing E. hermaphroditum cover and in these treatments Deschampsia flexuosa rapidly became dominant. Manipulations that reduced E. hermaphroditum or its effects frequently also stimulated Vaccinium myrtillus and V. vitis‐idaea. Fertilisation and liming treatments also often caused decreases in the mosses Dicranum sp. and Pleurozium schreberi, and the lichen Cladina spp. Ordination analysis revealed that vascular plant community structure was most significantly altered by treatments involving mineral nitrogen addition and liming, moss community structure by treatments involving addition of available carbon and lichen community structure by treatments involving addition of some forms of nitrogen, lime and reduction of effects of E. hermaphroditum. Nearly all treatments significantly reduced total plant diversity (species richness) and several treatments reduced diversity of each of the vascular plant, lichen and moss groups. This reduction in diversity was frequently associated with monopolisation of plots by D. flexuosa. Decomposition rates of litter added to the plots were generally only weakly influenced by treatments, but several treatments (most notably those involving nitrogen addition) induced litter nitrogen immobilisation and increased litter microbial biomass levels. Humus nitrogen and microbial levels were also sometimes enhanced by the nitrogen addition treatments. This suggests that those plots dominated by D. flexuosa were likely to result in greater conservation of nitrogen in the litter relative to those dominated by E. hermaphroditum. An important exception to this pattern was the effects of the liming treatment which, although responsible for an increase in D. flexuosa, caused net losses of nitrogen and reduced microbial biomass both in the litter and the humus. Our data therefore suggest that treatments which have vastly differing consequences for humus properties and the decomposer subsystem (and ultimately conservation of nitrogen in the soil), but which alleviate an inherent stress, have similar consequences above‐ground, e.g. E. hermaphroditum decline, D. flexuosa enhancement, and associated reductions of plant diversity.  相似文献   

18.
Renato Gerdol 《Flora》2005,200(2):168-174
Net primary production (NPP) of two Vaccinium species (V. myrtillus and V. uliginosum) was determined in three subalpine heath communities on the Northern Apennines (N. Italy). The main objective of the study was to test the hypothesis that two species sharing the same plant functional type (deciduous dwarf shrub) have similar growth performances along environmental gradients. The second objective was to assess whether, and to what extent, NPP of the two species was associated with functional and morphological traits, which can affect plant growth in relation to nutrient status. Total community NPP in the three communities was closely related to soil nutrient availability. NPP of V. uliginosum did not vary among communities, while that of V. myrtillus peaked in the most fertile habitat. The N:P ratio in the whole plant as well as in the leaves of the two shrubs exactly mirrored the among-community pattern in soil phosphate concentration. In particular, the foliar N:P ratio in both V. uliginosum and V. myrtillus was >16 in the poorer sites, which indicates P limitation. I concluded that the growth response of the two shrubs in relation to soil nutrient availability is individualistic. Growth of V. myrtillus is P-limited while that of V. uliginosum is not.  相似文献   

19.

Background and aims

Mountain birch forests dominate in the Subarctic but little is known of their non-methane biogenic volatile organic compound (BVOC) emissions. The dwarf shrubs Empetrum hermaphroditum, Vaccinium myrtillus and Vaccinium uliginosum co-dominate in the forest floors of these forests. The abundance of these three dwarf shrubs relative to each other could be affected by climate warming expected to increase nutrient availability by accelerating litter decomposition and nutrient mineralization. We 1) compared the BVOC emission profiles of vegetation covers dominated by E. hermaphroditum and V. myrtillus plus V. uliginosum in a subarctic mountain birch forest floor, 2) distinguished the BVOCs emitted from plants and soil and 3) measured how the BVOC emissions from the different vegetation covers differed under darkness.

Methods

BVOCs were sampled during two growing seasons using a conventional ecosystem chamber-based method, collected on adsorbent and analyzed with gas chromatography–mass spectrometry.

Results

High abundance of E. hermaphroditum increased the sesquiterpene emissions. Soil released fewer different BVOCs than controls (i.e. natural vegetation) but the total emission rates were similar. Darkness did not affect the emissions. Carbon emitted as BVOCs was less than 0.2% of the CO2 exchange.

Conclusions

Our results suggest that sesquiterpene emissions from subarctic mountain birch forest floors would be reduced following an increased abundance of V. myrtillus and V. uliginosum with climate change because these species respond rapidly to increased nutrient availability.  相似文献   

20.
Obligate herbivores dominate studies of the effects of climate change on mammals, however there is limited empirical evidence for how changes in the abundance or quality of plant food affect mammalian omnivores. Omnivores can exploit a range of different food resources over the course of a year, but they often rely on seasonally restricted highly nutritious fruiting bodies during critical life stages. Brown bears Ursus arctos in Sweden are dependent on berries for fattening before entering hibernation. We used a ten‐year time series to evaluate the effect of temperature and snow on annual variation in berry abundance and how this variation affected bears. We found marked interannual variation in berry production of bilberry Vaccinium myrtillus and lingonberry V. vitis‐idaea, that we could attribute in part to temperature during plant dormancy and flowering and precipitation during fruit ripening. Both, autumn weights of female bears and spring weights of yearling bears increased linearly with bilberry abundance. When bilberry abundance was low, lightweight female bears had a lower reproductive success than females in better condition. This effect vanished when food abundance was above average, indicating that lightweight females could compensate for their initial weight during good bilberry years. Our study highlights the importance of considering individuals’ dynamic responses to variation in food availability, which leave some more vulnerable to food shortage than others. Individual life‐history heterogeneity in response to resource variation likely affects long‐term population recruitment. Our findings emphasize that Scandinavian bears can be dependent on a single food resource during a critical period of the year and are therefore less resilient to environmental change than expected for an omnivore. Future climate scenarios predict ambiguous trends for weather covariates that affected crucial stages of berry phenology, preventing a clear prognosis of how climate change may affect long‐term bilberry production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号