首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Food webs are known to have myriad trophic links between resource and consumer species. While herbivores have well‐understood trophic tendencies, the difficulties associated with characterizing the trophic positions of higher‐order consumers have remained a major problem in food web ecology. To better understand trophic linkages in food webs, analysis of the stable nitrogen isotopic composition of amino acids has been introduced as a potential means of providing accurate trophic position estimates. In the present study, we employ this method to estimate the trophic positions of 200 free‐roaming organisms, representing 39 species in coastal marine (a stony shore) and 38 species in terrestrial (a fruit farm) environments. Based on the trophic positions from the isotopic composition of amino acids, we are able to resolve the trophic structure of these complex food webs. Our approach reveals a high degree of trophic omnivory (i.e., noninteger trophic positions) among carnivorous species such as marine fish and terrestrial hornets.This information not only clarifies the trophic tendencies of species within their respective communities, but also suggests that trophic omnivory may be common in these webs.  相似文献   

2.
Detritivory is the dominant trophic paradigm in most terrestrial, aquatic, and marine ecosystems, yet accurate measurement of consumer trophic position within detrital (=“brown”) food webs has remained unresolved. Measurement of detritivore trophic position is complicated by the fact that detritus is suffused with microbes, creating a detrital complex of living and nonliving biomass. Given that microbes and metazoans are trophic analogues of each other, animals feeding on detrital complexes are ingesting other detritivores (microbes), which should elevate metazoan trophic position and should be rampant within brown food webs. We tested these hypotheses using isotopic (15N) analyses of amino acids extracted from wild and laboratory‐cultured consumers. Vertebrate (fish) and invertebrate detritivores (beetles and moths) were reared on detritus, with and without microbial colonization. In the field, detritivorous animal specimens were collected and analyzed to compare trophic identities among laboratory‐reared and free‐roaming detritivores. When colonized by bacteria or fungi, the trophic positions of detrital complexes increased significantly over time. The magnitude of trophic inflation was mediated by the extent of microbial consumption of detrital substrates. When detrital complexes were fed to vertebrate and invertebrate animals, the consumers registered similar degrees of trophic inflation, albeit one trophic level higher than their diets. The wild‐collected detritivore fauna in our study exhibited significantly elevated trophic positions. Our findings suggest that the trophic positions of detrital complexes rise predictably as microbes convert nonliving organic matter into living microbial biomass. Animals consuming such detrital complexes exhibit similar trophic inflation, directly attributable to the assimilation of microbe‐derived amino acids. Our data demonstrate that detritivorous microbes elevate metazoan trophic position, suggesting that detritivory among animals is, functionally, omnivory. By quantifying the impacts of microbivory on the trophic positions of detritivorous animals and then tracking how these effects propagate “up” food chains, we reveal the degree to which microbes influence consumer groups within trophic hierarchies. The trophic inflation observed among our field‐collected fauna further suggests that microbial proteins represent an immense contribution to metazoan biomass. Collectively, these findings provide an empirical basis to interpret detritivore trophic identity, and further illuminate the magnitude of microbial contributions to food webs.  相似文献   

3.
Structure of tropical river food webs revealed by stable isotope ratios   总被引:7,自引:0,他引:7  
Fish assemblages in tropical river food webs are characterized by high taxonomic diversity, diverse foraging modes, omnivory, and an abundance of detritivores. Feeding links are complex and modified by hydrologic seasonality and system productivity. These properties make it difficult to generalize about feeding relationships and to identify dominant linkages of energy flow. We analyzed the stable carbon and nitrogen isotope ratios of 276 fishes and other food web components living in four Venezuelan rivers that differed in basal food resources to determine 1) whether fish trophic guilds integrated food resources in a predictable fashion, thereby providing similar trophic resolution as individual species, 2) whether food chain length differed with system productivity, and 3) how omnivory and detritivory influenced trophic structure within these food webs. Fishes were grouped into four trophic guilds (herbivores, detritivores/algivores, omnivores, piscivores) based on literature reports and external morphological characteristics. Results of discriminant function analyses showed that isotope data were effective at reclassifying individual fish into their pre-identified trophic category. Nutrient-poor, black-water rivers showed greater compartmentalization in isotope values than more productive rivers, leading to greater reclassification success. In three out of four food webs, omnivores were more often misclassified than other trophic groups, reflecting the diverse food sources they assimilated. When fish δ15N values were used to estimate species position in the trophic hierarchy, top piscivores in nutrient-poor rivers had higher trophic positions than those in more productive rivers. This was in contrast to our expectation that productive systems would promote longer food chains. Although isotope ratios could not resolve species-level feeding pathways, they did reveal how top consumers integrate isotopic variability occurring lower in the food web. Top piscivores, regardless of species, had carbon and nitrogen profiles less variable than other trophic groups.  相似文献   

4.
Despite the growing evidence for individual variation in trophic niche within populations, its potential indirect effects on ecosystem processes remains poorly understood. In particular, few studies have investigated how intraspecific trophic variability can modulate the effects of consumers on ecosystems through potential changes in nutrient excretion rates. Here, we first quantified the level of intraspecific trophic variability in 11 wild populations of the omnivorous fish Lepomis gibbosus. Outputs from stomach content and stable isotope analyses revealed that the degree of trophic specialization and trophic positions were highly variable between and within these wild populations. There was intrapopulation variation in trophic position of more than one trophic level, suggesting that individuals consumed a range of plant and animal resources. We then experimentally manipulated intraspecific trophic variability to assess how it can modulate consumer‐mediated nutrient effects on relevant processes of ecosystem functioning. Specifically, three food sources varying in nutrient quality (e.g. plant material, macro‐invertebrate and fish meat) were used individually or in combination to simulate seven diet treatments. Results indicated that intraspecific variability in growth and nitrogen excretion rates were more related to the composition of the diet rather than the degree of specialization, and increased with the trophic position of the diet consumed. We subsequently used microcosms and showed that critical ecosystem functions, such as primary production and community respiration, were affected by the variability in excretory products, and this effect was biomass‐dependent. These results highlight the importance of considering variation within species to better assess the effects of individuals on ecosystems and, more specifically, the effects of consumer‐mediated nutrient recycling because the body size and the trophic ecology of individuals are affected by a large spectrum of natural and human‐induced environmental changes.  相似文献   

5.
Documenting trophic links in a food web has traditionally required complex exclusion experiments coupled with extraordinarily labor-intensive direct observations of predator foraging. Newer techniques such as stable isotope analysis (SIA) may facilitate relatively quick and accurate assessments of consumer feeding behavior. Ratios of N and C isotopes are thought to be useful for determining species' trophic position (e.g., 1 degrees consumer, 2 degrees consumer, or omnivore) and their original carbon source (e.g., C3 or C4 plants; terrestrial or marine nutrients). Thus far, however, applications of stable isotopes to terrestrial arthropod food webs have suggested that high taxon-specific variation may undermine the effectiveness of this method. We applied stable isotope analysis to a pear orchard food web, in which biological control of a dominant pest, pear psylla (Cacopsylla pyricola), involves primarily generalist arthropod predators with a high frequency of omnivory. We found multiple sources of isotopic variation in this food web, including differences among plant tissues; time, stage, and taxon-specific differences among herbivores (despite similar feeding modes); and high taxon-specific variation among predators (with no clear evidence of omnivory). Collectively, these multiple sources of isotopic variation blur our view of the structure of this food web. Idiosyncrasies in consumer trophic shifts make ad hoc application of SIA to even moderately complex food webs intractable. SIA may not be a generally applicable "quick and dirty" method for delineating terrestrial food web structure-not without calibration of specific consumer food trophic shifts.  相似文献   

6.
Body size of consumer species is a fundamental trait that influences the trophic ecology of individuals and their contribution to the functioning of freshwater ecosystems. However, the relationship between body size and trophic ecology can be highly variable both within and between closely-related and similarly-sized species. In this study we compared the intra- and interspecific relationship between body size and trophic position for North American Yellow Perch Perca flavescens and European Perch Perca fluviatilis, which share similarities in morphology, life history traits and trophic requirements. We used stable isotope ratios (δ15N and δ13C) to characterize differences in size-dependency of trophic position and to trace consumer foraging history of Yellow Perch in lakes in the Northwestern United States and European Perch in lakes in Germany. The trophic position and stable isotope ratios of Yellow Perch and European Perch steadily increased with total body length, but European Perch were consistently feeding at higher trophic positions than Yellow Perch at a given length. European Perch occupied considerably higher trophic positions (mean trophic position = 3.9) than Yellow Perch (mean trophic position = 2.8). Large European Perch were increasingly piscivorous, whereas large Yellow Perch were more opportunistic and omnivorous predators of invertebrate prey. Overall, the trophic position among individual Yellow Perch varied more strongly than in European Perch. We conclude that both species similarly increase in trophic position with size, but the specific size-dependency of both trophic position and resource use varies with taxonomy and local ecological conditions. Thus, body size as a sole measure of trophic position should be considered cautiously when generalizing across populations and species.  相似文献   

7.
《Trends in parasitology》2023,39(9):749-759
Wild animals are usually infected with parasites that can alter their hosts’ trophic niches in food webs as can be seen from stable isotope analyses of infected versus uninfected individuals. The mechanisms influencing these effects of parasites on host isotopic values are not fully understood. Here, we develop a conceptual model to describe how the alteration of the resource intake or the internal resource use of hosts by parasites can lead to differences of trophic and isotopic niches of infected versus uninfected individuals and ultimately alter resource flows through food webs. We therefore highlight that stable isotope studies inferring trophic positions of wild organisms in food webs would benefit from routine identification of their infection status.  相似文献   

8.
9.
10.
Recently, it was proposed that stable isotope patterns can be used to quantify the width of the ecological niche of animals. However, the potential effects of habitat use on isotopic patterns of consumers have not been fully explored and consequently isotopic patterns may yield deceptive estimates of niche width. Here, we simulated four different scenarios of a consumer foraging across an isotopically heterogeneous landscape to test the combined effects of habitat and diet selection on the widths of the isotopic niche. We then modeled the actions of a naïve researcher who randomly sampled consumers from the simulated populations, and used these results to assess the overlap and partitioning of the isotopic and the ecological niches when habitat‐derived differences among isotope signatures are not considered. Our results suggest that populations of dietary specialists exhibited broader isotopic niches than populations composed of dietary generalists, and habitat generalists exhibited narrower isotopic niche widths compared with populations of individuals that foraged in specific habitats. The conversion of isotopic niches to ecological niches without knowledge of foraging behavior and habitat‐derived isotopic differences transformed an informative δ‐space into ‘a blurry p‐space’. Therefore, knowledge of habitat‐derived differences in stable isotope values and understanding of habitat use and individual foraging behavior are critical for the correct quantification of the ecological niche.  相似文献   

11.
Most food webs use taxonomic or trophic species as building blocks, thereby collapsing variability in feeding linkages that occurs during the growth and development of individuals. This issue is particularly relevant to integrating parasites into food webs because parasites often undergo extreme ontogenetic niche shifts. Here, we used three versions of a freshwater pond food web with varying levels of node resolution (from taxonomic species to life stages) to examine how complex life cycles and parasites alter web properties, the perceived trophic position of organisms, and the fit of a probabilistic niche model. Consistent with prior studies, parasites increased most measures of web complexity in the taxonomic species web; however, when nodes were disaggregated into life stages, the effects of parasites on several network properties (e.g., connectance and nestedness) were reversed, due in part to the lower trophic generality of parasite life stages relative to free-living life stages. Disaggregation also reduced the trophic level of organisms with either complex or direct life cycles and was particularly useful when including predation on parasites, which can inflate trophic positions when life stages are collapsed. Contrary to predictions, disaggregation decreased network intervality and did not enhance the fit of a probabilistic niche model to the food webs with parasites. Although the most useful level of biological organization in food webs will vary with the questions of interest, our results suggest that disaggregating species-level nodes may refine our perception of how parasites and other complex life cycle organisms influence ecological networks.  相似文献   

12.
Fish trophic niches reflect important ecological interactions and provide insight into the structure of mangrove food webs. Few studies have been conducted in mangrove fish predators to investigate interpopulation trophic niches and ontogenetic shifts. Using stable isotope analysis and two complementary approaches, the authors investigated trophic niche patterns within and between two ontogenetic groups (juveniles and sub-adults) of a generalist predator (Acentrogobius viridipunctatus) in four mangroves with heterogeneous environmental conditions (e.g., tidal regimes, salinity fluctuations and mangrove tree community). The authors hypothesized that the trophic niche between populations would vary regionally and trophic position would increase consistently from juvenile to sub-adult stages. The results revealed that both δ13C and δ15N values varied greatly across populations and between ontogenetic groups, and complex spatio-ontogenetic variations were expressed by Layman's metrics. They also found some niche separation in space, which is most likely related to resource availability in spatially diverse ecosystems. In addition, trophic niche position increased consistently from juveniles to sub-adults, indicating ontogenetic feeding shifts. The isotopic plasticity index and Fulton's condition index also showed significant spatial-ontogenetic variation, which is consistent with optimal foraging theory. The findings highlight that trophic plasticity has a high adaptive value for mangrove fish predators in dynamic ecosystems.  相似文献   

13.
Pteropods are a group of small marine gastropods that are highly sensitive to multiple stressors associated with climate change. Their trophic ecology is not well studied, with most research having focused primarily on the effects of ocean acidification on their fragile, aragonite shells. Stable isotopes analysis coupled with isotope‐based Bayesian niche metrics is useful for characterizing the trophic structure of biological assemblages. These approaches have not been implemented for pteropod assemblages. We used isotope‐based Bayesian niche metrics to investigate the trophic relationships of three co‐occurring pteropod species, with distinct feeding behaviors, sampled from the Southern Kerguelen Plateau area in the Indian Sector of the Southern Ocean—a biologically and economically important but poorly studied region. Two of these species were gymnosomes (shell‐less pteropods), which are traditionally regarded as specialist predators on other pteropods, and the third species was a thecosome (shelled pteropod), which are typically generalist omnivores. For each species, we aimed to understand (a) variability and overlap among isotopic niches; and (b) whether there was a relationship between body size and trophic position. Observed isotopic niche areas were broadest for gymnosomes, especially Clione limacina antarctica, whose observed isotopic niche area was wider than expected on both δ13C and δ15N value axes. We also found that trophic position significantly increased with increasing body length for Spongiobranchaea australis. We found no indication of a dietary shift toward increased trophic position with increasing body size for Clio pyramidata f. sulcata. Trophic positions ranged from 2.8 to 3.5, revealing an assemblage composed of both primary and secondary consumer behaviors. This study provides a comprehensive comparative analysis on trophodynamics in Southern Ocean pteropod species, and supports previous studies using gut content, fatty acid and stable isotope analyses. Combined, our results illustrate differences in intraspecific trophic behavior that may be attributed to differential feeding strategies at species level.  相似文献   

14.
1.  Stable carbon and nitrogen isotope and fish stomach content analyses were used to investigate food webs in five relatively undisturbed lakes on the Boreal Plain of Canada. Stable isotope analysis was also used to determine the importance of external and internal carbon sources.
2.  Overlap in the carbon and nitrogen signatures of primary producers made it difficult to determine unambiguously the feeding habits of many invertebrates. However, isotope analysis suggested that external carbon inputs were detectable in the aquatic food chains of the one lake with a short water residence time («1 year). In the other four lakes, with water residence times ≥1 year, autochthonous carbon was the only detectable carbon source in the food webs.
3.  Food webs in these lakes spanned a range of four to five trophic levels. Both invertebrates and fish appeared to eat a variety of food, often feeding at more than one trophic level.
4.  With the exception of one lake (SPH20), top predators in these lakes, northern pike ( Esox lucius ) and fathead minnows ( Pimephales promelas ), occupied similar trophic positions despite large differences in body size and trophic morphology. In SPH20, where there were two additional fish species, pike occupied a higher trophic position. However, all the top predators in each lake appeared to be omnivores and generalists.
5.  The prevalence of omnivory and the apparent generalist feeding habits of fish in these lakes suggest that organisms are flexible in their feeding habits and that these food webs will be resilient to disturbance.  相似文献   

15.
Link arrangement in food webs is determined by the species' feeding habits. This work investigates whether food web topology is organized in a gradient of trophic positions from producers to consumers. To this end, we analyzed 26 food webs for which the consumption rate of each species was specified. We computed the trophic positions and the link densities of all species in the food webs. Link density measures how much each species contributes to the distribution of energy in the system. It is expressed as the number of links species establish with other nodes, weighted by their magnitude. We computed these two metrics using various formulations developed in the ecological network analysis framework. Results show a positive correlation between trophic position and link density across all the systems, regardless the specific formulas used to measure the two quantities. We performed the same analysis on the corresponding binary matrices (i.e. removing information about rates). In addition, we investigated the relation between trophic position and link density in: a) simulated binary webs with same connectance as the original ones; b) weighted webs with constant topology but randomized link strengths and c) weighted webs with constant connectance where both topology and link strengths are randomized. The correlation between the two indices attenuates, vanishes or becomes negative in the case of binary food webs and simulated data (weighted and unweighted).
According to our analysis, link density in food webs decreases with trophic position so that it is greatly reduced toward the top of the trophic hierarchy. This outcome, that seems to challenge previous conclusions based on null models, strongly depends on link quantification. Including interaction strengths may improve substantially our understanding of food web organization, and possibly contradict results based on the analysis of binary webs.  相似文献   

16.
For decades, food web theory has proposed phenomenological models for the underlying structure of ecological networks. Generally, these models rely on latent niche variables that match the feeding behaviour of consumers with their resource traits. In this paper, we used a comprehensive database to evaluate different hypotheses on the best dependency structure of trait‐matching patterns between consumers and resource traits. We found that consumer feeding behaviours had complex interactions with resource traits; however, few dimensions (i.e. latent variables) could reproduce the trait‐matching patterns. We discuss our findings in the light of three food web models designed to reproduce the multidimensionality of food web data; additionally, we discuss how using species traits clarify food webs beyond species pairwise interactions and enable studies to infer ecological generality at larger scales, despite potential taxonomic differences, variations in ecological conditions and differences in species abundance between communities.  相似文献   

17.
Understanding how omnivorous consumers are affected by their resources and how this is expressed through the food chain is a fundamental issue in ecology. We used stable isotope analysis of archived scales of two pelagic single-chain omnivorous fish species, bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix), to reconstruct historical trophic interactions patterns along a gradient of resources. We found that, although bighead carp and silver carp utilize the similar resources from the pelagic food chain, they can coexist and persist not only by regulating their trophic position and trophic dissimilarity, but also by regulating trophic niche width. Omnivorous fish often exhibit flexible foraging strategies, which is closely related to the availability of ecologic context. We found a positive relationship between trophic dissimilarity and zooplankton density, which may indicate that the competitive interactions induce strong top-down effects on zooplankton, and/or that high zooplankton availability release the between-population trophic interaction through bottom-up effect. The trophic niche width of bighead carp was positively related with zooplankton availability, probably reflecting that the niche of an omnivore at a higher trophic position is more sensitive to high quality resources. Our results indicate how different aspects of the trophic partitioning of coexisting omnivores may be regulated by different ecological contexts. These alternatives are not mutually exclusive and further theoretical work should include both these mechanisms to re-evaluate the effects of omnivory on food web properties.  相似文献   

18.
1. Analysis of the stable isotope signatures of carbon (C) and nitrogen (N) of foods and consumers has led to some preliminary understanding of the relative importance of autochthonous and allochthonous resources in tropical streams. However, robust generalizations about the dynamics of food webs in these habitats, and their response to shading gradients or season, are still lacking. In addition, the feasibility of employing a baseline δ15N value for estimating trophic positions (TPs) of consumers in small tropical streams has yet to be explored. 2. We analysed data on stable isotope signatures of food sources and aquatic consumers obtained from 14 studies carried out in small streams in monsoonal Hong Kong (22°30′N, 114°10′E) between 1996 and 2006. Emphasis was placed on determining the relative importance of leaf litter and autochthonous foods in supporting consumer biomass, and the extent to which trophic base and TP vary among streams and seasons. 3. Although allochthonous leaf litter was generally 13C‐ and 15N‐depleted relative to autochthonous foods, there were marked isotopic shifts of food sources and consumers in response to season (dry versus wet) and stream shading. Consumer taxa were generally more 13C‐ and 15N‐enriched in the unshaded streams, but seasonal effects were more variable. Despite these changes, there was consistent evidence that stream food webs were based on periphytic algae and/or cyanobacteria with leaf litter serving as a minor food. 4. Heptageniidae (Ephemeroptera), Tipulidae (Diptera), Elmidae (Coleoptera) and shrimps (Atyidae) were used as a baseline for calculating the TPs of other consumer taxa. The maximum TPs in shaded streams remained fairly constant between seasons (dry = 3.93; wet = 3.97), while those in unshaded streams were higher and showed seasonal fluctuations (dry = 5.13; wet = 4.39). 5. Although variations in consumer isotope signatures in response to season and shading gradients did not confound our interpretation of the stream food base, changes in consumer δ15N did affect the calculation of consumer TPs. Misleading estimates of consumer TPs are likely if samples are collected from a narrow range of streams and/or during one season. Overestimation of the TPs of specialist herbivores (e.g. fish grazers) is also possible when autochthonous resources are substantially more 15N‐enriched than allochthonous foods.  相似文献   

19.
Generalist predator populations are sometimes made up of individuals that specialize on particular prey items. To examine specialization in thick‐billed murres Uria lomvia during self‐feeding we obtained stomach contents and muscle stable isotope values for 213 birds feeding close to five colonies in the Canadian Arctic. Adults were less specialized during self‐feeding than during chick‐provisioning. Nonetheless, particular specialists clustered together within the foraging network. While sexes showed similar levels of specialization, individuals of the same sex clustered together within the foraging network. The significant degree of clustering regardless of sex showed that individuals specializing on one prey item tend to also specialize on another, although network topology varied from colony to colony. Adult muscle stable isotope values correlated with the stable isotope values of the prey found in stomachs, at least at the one colony with relevant prey data, suggesting that specializations are maintained over time. Degree of specialization increased with niche width across the five colonies, but similarity in gastro‐intestinal and bill morphology was independent of dietary similarity. Thus, although individual specialization is thought to play a key role in sympatric speciation through trophic specialization, we found no support for an association between morphology and foraging patterns in our species. We conclude that self‐feeding murres show clustered dietary specialization, and that specialization is highest where diet is most diverse.  相似文献   

20.
Stable isotope analysis has emerged as one of the primary means for examining the structure and dynamics of food webs, and numerous analytical approaches are now commonly used in the field. Techniques range from simple, qualitative inferences based on the isotopic niche, to Bayesian mixing models that can be used to characterize food‐web structure at multiple hierarchical levels. We provide a comprehensive review of these techniques, and thus a single reference source to help identify the most useful approaches to apply to a given data set. We structure the review around four general questions: (1) what is the trophic position of an organism in a food web?; (2) which resource pools support consumers?; (3) what additional information does relative position of consumers in isotopic space reveal about food‐web structure?; and (4) what is the degree of trophic variability at the intrapopulation level? For each general question, we detail different approaches that have been applied, discussing the strengths and weaknesses of each. We conclude with a set of suggestions that transcend individual analytical approaches, and provide guidance for future applications in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号