首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many mutualisms host "exploiter" species that consume the benefits provided by one or both mutualists without reciprocating. Exploiters have been widely assumed to destabilize mutualisms, yet they are common. We develop models to explore conditions for local coexistence of obligate plant/pollinating seed parasite mutualisms and nonpollinating exploiters. As the larvae of both pollinators and (at a later time) exploiters consume seeds, we examine the importance of intraspecific and (asymmetric) interspecific competition among and between pollinators and exploiters for achieving three-way coexistence. With weak intra- and interspecific competition, exploiters can invade the stable mutualism and coexist with the mutualists (either stably or with oscillations), provided the exploiters' intrinsic birthrate (b(E)) slightly exceeds that of the pollinators. At higher b(E), all three species go locally extinct. When facing strong interspecific competition, exploiters cannot invade and coexist with the mutualists if intraspecific competition in pollinators and exploiters is weak. However, strong intraspecific competition in pollinators and exploiters facilitates exploiter invasion and coexistence and greatly expands the range of b(E) over which stable coexistence occurs. Our results suggest that mutualist/exploiter coexistence may be more easily achieved than previously thought, thus highlighting the need for a better understanding of competition among and between mutualists and exploiters.  相似文献   

2.
Parasites of mutualisms   总被引:13,自引:0,他引:13  
Cooperation invites cheating, and nowhere is this more apparent than when different species cooperate, known as mutualism. In almost all mutualisms studied, specialist parasites have been identified that purloin the benefits that one mutualist provides another. Explaining how parasites are kept from driving mutualisms extinct remains an unsolved problem because existing theories explaining the maintenance of cooperation do not apply to parasites of mutualisms. Nonetheless, these theories can be summarized in such a way as to suggest how mutualisms can persist in the face of parasites. (1) For cooperation to occur, the recipient of a benefit must reciprocate, and the recriprocated benefit must be captured by the initial giver or its offspring. (2) For cooperation to persist, the mutualism must be re-assembled each generation. Because most mutualisms are of the "by-product' type, broadly defined, the first condition is normally always fulfilled. Thus, the maintenance of mutualism usually requires enforcement of the second condition: reliable re-assembly. Hence, I argue that the persistence of mutualism is best understood by using theories of species coexistence, because each mutualist can be considered a resource for the other, and species coexistence theory explains how multiple taxa (e.g. parasites and mutualists) can stably partition a resource over multiple generations. This approach connects the study of mutualism to theories of population regulation and helps to identify key factors that have promoted the evolution, maintenance and breakdown of mutualism. I discuss how these ideas might apply to and be tested in ant-plant, fig-wasp and yucca-moth mutualisms.  相似文献   

3.
Interspecific mutualisms have been playing a central role in the functioning of all ecosystems since the early history of life. Yet the theory of coevolution of mutualists is virtually nonexistent, by contrast with well-developed coevolutionary theories of competition, predator-prey and host-parasite interactions. This has prevented resolution of a basic puzzle posed by mutualisms: their persistence in spite of apparent evolutionary instability. The selective advantage of 'cheating', that is, reaping mutualistic benefits while providing fewer commodities to the partner species, is commonly believed to erode a mutualistic interaction, leading to its dissolution or reciprocal extinction. However, recent empirical findings indicate that stable associations of mutualists and cheaters have existed over long evolutionary periods. Here, we show that asymmetrical competition within species for the commodities offered by mutualistic partners provides a simple and testable ecological mechanism that can account for the long-term persistence of mutualisms. Cheating, in effect, establishes a background against which better mutualists can display any competitive superiority. This can lead to the coexistence and divergence of mutualist and cheater phenotypes, as well as to the coexistence of ecologically similar, but unrelated mutualists and cheaters.  相似文献   

4.
Many models of mutualism have been proposed and studied individually. In this paper, we develop a general class of models of facultative mutualism that covers many of such published models. Using mild assumptions on the growth and self-limiting functions, we establish necessary and sufficient conditions on the boundedness of model solutions and prove the global stability of a unique coexistence equilibrium whenever it exists. These results allow for a greater flexibility in the way each mutualist species can be modelled and avoid the need to analyse any single model of mutualism in isolation. Our generalization also allows each of the mutualists to be subject to a weak Allee effect. Moreover, we find that if one of the interacting species is subject to a strong Allee effect, then the mutualism can overcome it and cause a unique coexistence equilibrium to be globally stable.  相似文献   

5.
In this paper we argue that two-species models of mutualism may be oversimplifications of the real world that lead to erroneous predictions. We present a four-species model of a pollination mutualism embedded in other types of community interactions. Conclusions derived from two-species models about the destabilizing effect of mutualisms are misleading when applied to the present scenario; although the mutualisms are locally destabilizing, the effect is more than canceled by an increased chance of feasibility. The crucial difference is the interaction of the mutualists with other species in a larger web. Furthermore, community persistence (without unrealistic population explosion), arguably a superior ecological criterion, is greatly enhanced by the presence of mutualisms. Therefore, we predict that mutualisms should be common in the real world, a prediction matching empirial findings and in contrast to the predictions from local stability analysis of basic two-species models. This method of stabilizing a mutualism appears superior in some ways to the often-used method of introducing density dependence in the strength of the mutualism, because it permits obligate mutualisms to exist even at low densities, again matching empirical findings. Lastly, this study is an example of how complex model assemblages can behave qualitatively differently from analogous simpler ones.  相似文献   

6.
A major goal in the study of mutualism is to understand how co‐operation is maintained when mutualism may potentially turn into parasitism. Although certain mechanisms facilitate the persistence of mutualism, parasitic species have repeatedly evolved from mutualistic ancestors. However, documented examples of mutualism reversals are still rare. Leafflowers (Phyllantheae; Phyllanthaceae) include approximately 500 species that engage in obligate mutualism with leafflower moths (Epicephala; Gracillariidae), which actively pollinate flowers, and whose larvae feed on the resulting seeds. We found that the Taiwanese population of the Phyllanthus reticulatus species complex was associated with six sympatric Epicephala species, of which three were derived parasites that induced gall formation on flowers/buds and produced no seeds. Notably, two parasitic species have retained mutualistic pollination behaviour, suggesting that the parasitism was likely not selected for to reduce the cost of mutualism. We propose that the galling habit evolved as an adaptation to escape parasitism by a specialized braconid wasp. The tough gall produced by one species was almost free of braconid parasitism, and the swollen gall induced by the other species probably prevents attack as a result of the larger airspace inside the gall. Our findings suggest that the presence of a third‐party partner can greatly influence the evolutionary fate of mutualisms, regardless of whether the pairwise interaction continues to favour co‐operation.  相似文献   

7.
Introduced species often benefit from escaping their enemies when they are transported to a new range, an idea commonly expressed as the enemy release hypothesis. However, species might shed mutualists as well as enemies when they colonize a new range. Loss of mutualists might reduce the success of introduced populations, or even cause failure to establish. We provide the first quantitative synthesis testing this natural but often overlooked parallel of the enemy release hypothesis, which is known as the missed mutualist hypothesis. Meta-analysis showed that plants interact with 1.9 times more mutualist species, and have 2.3 times more interactions with mutualists per unit time in their native range than in their introduced range. Species may mitigate the negative effects of missed mutualists. For instance, selection arising from missed mutualists could cause introduced species to evolve either to facilitate interactions with a new suite of species or to exist without mutualisms. Just as enemy release can allow introduced populations to redirect energy from defence to growth, potentially evolving increased competitive ability, species that shift to strategies without mutualists may be able to reallocate energy from mutualism toward increased competitive ability or seed production. The missed mutualist hypothesis advances understanding of the selective forces and filters that act on plant species in the early stages of introduction and establishment and thus could inform the management of introduced species.  相似文献   

8.
Ecosystems worldwide depend on habitat‐forming foundation species that often facilitate themselves with increasing density and patch size, while also engaging in facultative mutualisms. Anthropogenic global change (e.g., climate change, eutrophication, overharvest, land‐use change), however, is causing rapid declines of foundation species‐structured ecosystems, often typified by sudden collapse. Although disruption of obligate mutualisms involving foundation species is known to precipitate collapse (e.g., coral bleaching), how facultative mutualisms (i.e., context‐dependent, nonbinding reciprocal interactions) affect ecosystem resilience is uncertain. Here, we synthesize recent advancements and combine these with model analyses supported by real‐world examples, to propose that facultative mutualisms may pose a double‐edged sword for foundation species. We suggest that by amplifying self‐facilitative feedbacks by foundation species, facultative mutualisms can increase foundation species’ resistance to stress from anthropogenic impact. Simultaneously, however, mutualism dependency can generate or exacerbate bistability, implying a potential for sudden collapse when the mutualism's buffering capacity is exceeded, while recovery requires conditions to improve beyond the initial collapse point (hysteresis). Thus, our work emphasizes the importance of acknowledging facultative mutualisms for conservation and restoration of foundation species‐structured ecosystems, but highlights the potential risk of relying on mutualisms in the face of global change. We argue that significant caveats remain regarding the determination of these feedbacks, and suggest empirical manipulation across stress gradients as a way forward to identify related nonlinear responses.  相似文献   

9.
Protective mutualisms, where a symbiont reduces the negative effects of another species on a shared host, represent a common type of species interaction in natural communities, yet it is still unclear what ecological conditions might favor their emergence. Studies suggest that the initial evolution of protective mutualists might involve closely related pathogenic variants with similar life histories, but different competitive abilities and impacts on host fitness. We derive a model to evaluate this hypothesis and show that, in general, a protective variant cannot spread from rarity or exclude a more pathogenic strain. While the conditions allowing mutualist invasion are more likely with increased environmental productivity, they still depend on initial densities in the invaded patch exceeding a threshold, highlighting the likely importance of spatial structure and demographic stochasticity. Using a numerical simulation approach, we show that regional coexistence is in fact possible in an explicitly spatial system and that, under some circumstances, the mutualist population can exclude the enemy. More broadly, the establishment of protective mutualists may be favored when there are other life‐history differences from more pathogenic symbionts, such as vertical transmission or additional direct benefits to hosts.  相似文献   

10.
Mutualistic bacteria infect most eukaryotic species in nearly every biome. Nonetheless, two dilemmas remain unresolved about bacterial–eukaryote mutualisms: how do mutualist phenotypes originate in bacterial lineages and to what degree do mutualists traits drive or hinder bacterial diversification? Here, we reconstructed the phylogeny of the hyperdiverse phylum Proteobacteria to investigate the origins and evolutionary diversification of mutualistic bacterial phenotypes. Our ancestral state reconstructions (ASRs) inferred a range of 34–39 independent origins of mutualist phenotypes in Proteobacteria, revealing the surprising frequency with which host-beneficial traits have evolved in this phylum. We found proteobacterial mutualists to be more often derived from parasitic than from free-living ancestors, consistent with the untested paradigm that bacterial mutualists most often evolve from pathogens. Strikingly, we inferred that mutualists exhibit a negative net diversification rate (speciation minus extinction), which suggests that mutualism evolves primarily via transitions from other states rather than diversification within mutualist taxa. Moreover, our ASRs infer that proteobacterial mutualist lineages exhibit a paucity of reversals to parasitism or to free-living status. This evolutionary conservatism of mutualism is contrary to long-standing theory, which predicts that selection should often favour mutants in microbial mutualist populations that exploit or abandon more slowly evolving eukaryotic hosts.  相似文献   

11.
Kailen A. Mooney  Kunal Mandal 《Oikos》2010,119(5):874-882
Protection mutualisms often involve multiple species of protector that vary in quality as mutualists. Because protectors may compete for access to mutualists, concordance between competitive ability and degree of benefit will determine the overall strength of multi‐species mutualisms. We compared the abilities of two similarly sized congener ants as competitors for, and mutualists of pine‐feeding aphids, and how insectivorous birds affected each ant–aphid mutualism. Formica planipilis and F. podzolica were indistinguishable in forager abundance, but the former was 13‐fold more abundant at competition baits and provided 11‐fold more benefits to aphids. These results highlight how, in a single environment, a great ecological distance can exist between two congener ants of similar size. Insectivorous birds disrupted the two mutualisms to a similar extent, reducing aphid and ant abundance by 91% and 39% respectively. Nevertheless, birds had an important influence on the relative benefits of the two ants to aphids: where F. planipilis consistently benefited aphids, F. podzolica only did so in the absence of birds. Consequently, the presence of insectivorous birds and ant species identity jointly determined whether ant–aphid mutualisms occurred in pine canopies and the strength of such interactions. Our study highlights the inter‐relatedness of competition, predation and mutualism, and how competition can serve to strengthen mutualism by filtering inferior mutualists.  相似文献   

12.
The persistence of mutualisms in host‐microbial – or holobiont – systems is difficult to explain because microbial mutualists, who bear the costs of providing benefits to their host, are always prone to being competitively displaced by non‐mutualist ‘cheater’ species. This disruptive effect of competition is expected to be particularly strong when the benefits provided by the mutualists entail costs such as reduced competitive ability. Using a metacommunity model, we show that competition between multiple cheaters within the host's microbiome, when combined with the spatial structure of host–microbial interactions, can have a constructive rather than a disruptive effect by allowing the emergence and maintenance of mutualistic microorganisms within the host. These results indicate that many of the microorganisms inhabiting a host's microbiome, including those that would otherwise be considered opportunistic or even potential pathogens, play a cryptic yet critical role in promoting the health and persistence of the holobiont across spatial scales.  相似文献   

13.
Mutualism among species is ubiquitous in natural ecosystems but its evolution is not well understood. We provided a simple lattice model to clarify the importance of spatial structure for the evolution of mutualism. We assumed reproductive rates of two species are modified through interaction between species and examine conditions where mutualists of both species, that give some benefit to the other species with their own cost, invade non-mutualists populations. When dispersal of offspring is unlimited, we verified the evolution of mutualism is impossible under any condition. On the other hand, when the dispersal is limited to neighboring lattice sites, mutualists can invade if the ratio of cost to benefit is low and the intrinsic reproductive rate is low in case where the parameter values are symmetric between species. Under the same conditions, non-mutualists cannot invade mutualist populations, that is, the latter are evolutionarily stable. In case of asymmetric parameters, mutualists tend to invade if the average value of costs to two species is low or that of benefits is high, and if the intrinsic reproductive rate is low for one of the two species. A mechanistic explanation of why mutualists increase when the dispersal is limited is given by showing that mutualist pairs of the two species at the same lattice site rapidly increase at the initial phase of the invasion.  相似文献   

14.
McKeon CS  Stier AC  McIlroy SE  Bolker BM 《Oecologia》2012,169(4):1095-1103
The majority of our understanding of mutualisms comes from studies of pairwise interactions. However, many hosts support mutualist guilds, and interactions among mutualists make the prediction of aggregate effects difficult. Here, we apply a factorial experiment to interactions of 'guard' crustaceans that defend their coral host from seastar predators. Predation was reduced by the presence of mutualists (15% reduction in predation frequency and 45% in volume of coral consumed). The frequency of attacks with both mutualists was lower than with a single species, but it did not differ significantly from the expected frequency of independent effects. In contrast, the combined defensive efficacy of both mutualist species reduced the volume of coral tissue lost by 73%, significantly more than the 38% reduction expected from independent defensive efforts, suggesting the existence of a cooperative synergy in defensive behaviors of 'guard' crustaceans. These emergent 'multiple defender effects' are statistically and ecologically analogous to the emergent concept of 'multiple predator effects' known from the predation literature.  相似文献   

15.
Plants engage in multiple root symbioses that offer varying degrees of benefit. We asked how variation in partner quality persists using a resource‐ratio model of population growth. We considered the plant's ability to preferentially allocate carbon to mutualists and competition for plant carbon between mutualist and nonmutualist symbionts. We treated carbon as two nutritionally interchangeable, but temporally separated, resources—carbon allocated indiscriminately for the construction of the symbiosis, and carbon preferentially allocated to the mutualist after symbiosis establishment and assessment. This approach demonstrated that coexistence of mutualists and nonmutualists is possible when fidelity of the plant to the mutualist and the cost of mutualism mediate resource competition. Furthermore, it allowed us to trace symbiont population dynamics given varying degrees of carbon allocation. Specifically, coexistence occurs at intermediate levels of preferential allocation. Our findings are consistent with previous empirical studies as well the application of biological market theory to plantroot symbioses.  相似文献   

16.
In Lotka–Volterra equations (LVEs) of mutualisms, population densities of mutualists will increase infinitely if the mutualisms between them are strong, which is called the divergence problem. In order to avoid the problem, a mutualism system of two species is analyzed in this work. The model is derived from reactions on lattice and has a form similar to that of LVEs. Population densities of species will not increase infinitely because of spatial limitation on the lattice. Stability analysis of the model demonstrates basic mechanisms by which the mutualisms lead to coexistence/extinction of the species. When in coexistence, intermediate mutualistic effect is shown to lead to the maximal density in certain parameter ranges, while a strong or weak mutualistic effect is not so good. Furthermore, the stability analysis exhibits that extremely strong/weak mutualisms will result in extinction of one/both species.  相似文献   

17.
Mutualist species compete intra and inter-specifically for the resources provided by their partners. Because obligate mutualists are more reliant than facultative mutualists on the resources that their partners provide, they are expected to compete more strongly for those resources. Here, I examined interference competition in two goby fishes: Nes longus (an obligate mutualist) and Ctenogobius saepepallens (a facultative mutualist). Both gobies associate with the shrimp, Alpheus floridanus. Shrimp provide gobies with refuge from predators (a burrow in the sand), and gobies provide shrimp with a warning signal when predators are near. Using an aquarium experiment, I examined the behavior of a pair of gobies with access to a single shrimp burrow. I used four different goby pairings: large N. longus and small N. longus, large N. longus and small C. saepepallens, large C. saepepallens and small N. longus, and large C. saepepallens and small C. saepepallens. When paired with large N. longus individuals, small gobies of both species were less likely to occupy the single burrow than when paired with large C. saepepallens individuals. In addition, large N. longus individuals were less likely to co-occupy the single burrow with smaller gobies than were large C. saepepallens individuals. These results seem to indicate that large N. longus individuals exclude smaller gobies from burrows, while large C. saepepallens individuals do not. This study adds evidence to the supposition that obligate mutualists in general compete more strongly for mutualist partners than do facultative mutualists.  相似文献   

18.
Interactions between seed-parasitic pollinators and their hosts provide useful model systems for the analysis of evolution of mutualism and potential coevolution between plants and insects. Here I present the systematics, pollination ecology and evolution of one of these interactions. I have documented and analysed the phylogenetic and geographic associations between Trollius (Ranunculaceae: 18 spp.) and Chiastocheta (Diptera: Anthomyiidae; 17 spp.), a host-specific genus of seed-parasitic flies that pollinate their host plants to varying extent. Their interactions are usually facultative mutualisms, but in the specialized T. europaeus three fly species are obligate mutualists and a fourth species is an antagonist. The distribution patterns of fly species among Trollius species suggest that the flies evolved in associations with five highly derived Trollius species, and secondarily colonized four more primitive taxa in the parts of their ranges that overlapped with primary hosts. In general, host specificity is maintained primarily through allopatry, with colonization occurring in regions of overlap between parapatric taxa. Fly speciation has occurred in allopatry, both within and among host taxa. Cospeciation is not evident, but convergent evolution in Trollius flowers of several traits, viz. orange sepals, elongated staminodia and increased carpel number per flower, may be the result of mutualism with Chiastocheta.  相似文献   

19.
In ecological communities, numerous species coexist and affect each others’ population levels via various types of interspecific interactions. Previous ecological theory explaining multispecies coexistence tended to focus on a single interaction type, such as antagonism, competition, or mutualism, and its consequences on population dynamics. Hence, it remains unclear what, if any, contribution multiple coexisting interaction types have on the multispecies coexistence. Here, we show that the coexistence of multiple interaction types can be essential for multispecies coexistence. We present a simple model in which the exploiter and mutualist adaptively switch between two competing resource species. An adaptive mutualist, which favors the more abundant species, provides a mechanism of majority-advantage and, thus, potentially inhibits the coexistence of resource species. In the absence of an exploiter, an adaptive mutualist leads to competitive exclusion at the resource species level. However, the coexistence of an adaptive exploiter and a mutualist allows the coexistence of all species in the community, because the mutualist-mediated “winner” tends to be suppressed by the adaptive exploiter. The mutualist indirectly increases the abundance of the exploiter through mutualistic interactions, thereby indirectly supporting this coexistence mechanism. In fact, coexistence may occur even if the exploiter or mutualist alone cannot mediate the coexistence of two resources. We conclude that the coexistence of mutualism and antagonism may be the key to the persistence of the four-species module in the presence of adaptive switching.  相似文献   

20.
Mutualisms are ubiquitous in nature, as is their exploitation by both conspecific and heterospecific cheaters. Yet, evolutionary theory predicts that cheating should be favoured by natural selection. Here, we show theoretically that asymmetrical competition for partners generally determines the evolutionary fate of obligate mutualisms facing exploitation by third-species invaders. When asymmetry in partner competition is relatively weak, mutualists may either exclude exploiters or coexist with them, in which case their co-evolutionary response to exploitation is usually benign. When asymmetry is strong, the mutualists evolve towards evolutionary attractors where they become extremely vulnerable to exploiter invasion. However, exploiter invasion at an early stage of the mutualism's history can deflect mutualists' co-evolutionary trajectories towards slightly different attractors that confer long-term stability against further exploitation. Thus, coexistence of mutualists and exploiters may often involve an historical effect whereby exploiters are co-opted early in mutualism history and provide lasting 'evolutionary immunization' against further invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号