首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence on androgenesis of donor plant growth conditions, anther size and developmental stage of the microspore, medium composition and different anther treatments prior to culture was investigated in L. esculentum Mill. cv Roma and its hybrids. Growth conditions of donor plants affected the induction of tomato androgenesis. Anthers isolated from plants grown in the greenhouse during winter at high humidity and in short days possessed higher androgenetic ability than those grown in the field. The physiological state and age of the donor plants also influenced the processes investigated. Regarding the developmental stage of microspores, the period from prophase to telophase II is optimal for tomato anther implantation. More then 20 culture media were tested. Two, based on Murashige and Skoog medium were selected as most favourable for callus induction, organogenesis and regeneration. The effect on callus induction of 2ip in combination with indole-3-acetic acid (IAA) was greater than that of zeatin and IAA. Zeatin promoted entire plant regeneration. A highly significant interaction between genotype and medium was observed. Temperature and gamma ray treatments of anthers enhanced callus production, shoot formation and plant regeneration. Treatments at 4 °C (48 h) and 10 °C (9 days) stimulated these processes. Combined treatment of anthers with 4 Gy and 10 °C for 9 days was the most efficient. Received: 5 September 1997 / Revision recieved: 5 June 1998 / Accepted: 15 June 1998  相似文献   

2.
When the proper stimuli are given, somatic plant cells may form adventitious embryos, roots or shoots. The three pathways of regeneration show apparent similarities. They consist of three analogous phases: 1) dedifferentiation (during which the tissue becomes competent to respond to the organogenic/embryogenic stimulus), 2) induction (during which cells become determined to form either a root, a shoot or an embryo), and 3) realization (outgrowth to an organ or an embryo). The first phase may involve a period of callus growth (indirect regeneration), but often cells present in the explant become competent without cell division or without cell division at a large scale (direct regeneration). In an explant, only very few cells show the organogenic/embryogenic response. In direct regeneration, the three regenerative pathways start from cells in different tissues. This is most obvious when the different types of regeneration occur in the same explant. The hormonal trigger for the dedifferentiation phase is a general one, probably auxin. During the induction phase, each pathway requires specific hormonal triggers. During the realization phase, hormones should be absent or at low concentration. The successive steps in the regeneration process coincide with events on the molecular and biochemical levels, but so far no coherent picture has emerged. In particular during the early stages of regeneration, research on these levels is hampered by a technical problem, viz., the very low proportion of cells that participate in the process of regeneration. New methods may overcome this problem. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Shoot regeneration was achieved from leaves of in vitro cultures of Prunus avium L. cv. 'Lapins' and 'Sweetheart' using woody plant medium (WPM) supplemented with 1-naphthalene-acetic acid (NAA) and thidiazuron (TDZ) or benzyladenine (BA). Percent regeneration was influenced by plant growth regulators and by explant type, orientation and wounding. Optimal regeneration was observed with whole-leaf explants wounded by transverse cuts along the midrib and incubated abaxial surfaces uppermost, on media supplemented with 2.27 or 4.54 µM TDZ plus 0.27 µM NAA. The percent regeneration of the two cultivars was not significantly different. Optimum conditions for regeneration resulted in 71.4% of 'Lapins' and 54% of 'Sweetheart' explants producing one or more shoots per explant.  相似文献   

4.
Cytokinins, donor plants and their time in vitro as well as basal media were investigated for their influence on shoot regenerative capacity of American elm (Ulmus americana L.) leaves. Leaves excised from six 2-year-old seedlings formed adventitious shoots when placed on Driver and Kuniyuki Walnut (DKW) medium supplemented with 7.5, 15 or 22.5 M of benzyladenine (BA) or thidiazuron (TDZ). Thidiazuron induced significantly higher regeneration percentages on elm leaves than BA, regardless of concentration used. Donor plant also affected the efficiency of shoot regeneration, with certain seedlings having 1.5 to 7 times more explants forming shoots as compared to other seedlings tested. By subculture 15, the average number of shoots per regenerating explant increased at least 3-fold for leaves on media with BA or TDZ for the one donor plant that survived continued subculturing. Leaf explants from donor plants with the highest regenerative capacity had a higher percentage of shoot formation on DKW than MS medium. Explants from productive donor plants should be placed on DKW medium supplemented with TDZ to improve shoot regeneration efficiency from American elm leaves.  相似文献   

5.
Procedures for callus induction, plantlet regeneration, andAgrobacterium-mediated transformation ofBrassica juncea were optimized by studying several factors, including explant types, and various plant growth regulators and adjuvants, such as silver nitrate, sucrose and agar. The highest shoot regeneration frequency was obtained from hypocotyl and cotyledonary petiole explants on MS medium containing 3 mg/L benzylaminopurine (BA) and 2 mg/L α-naphthaleneacetic acid (NAA). Transformation was affected by a number of factors, including explant type, selection agents, preculture duration, pre-selection conditions, and coculture temperature. Transformation efficiencies for hypocotyl and cotyledonary petiole explants were at 65% and 69%, respectively.  相似文献   

6.
The present paper reports the establishment of rice cell suspension culture system, including callus induction and proliferation, isolation of single cells and small aggregates, cell suspension culture and callus re-formation, as well as regeneration of plantlets. The results have been obtained as follows: 1. The compositions of the different media used for callus induction, callus proliferation, cell suspension and plant regeneration are summarized in Table 1.2. Two kinds of disifectants, mercuric chloride and sodium hypochlorite, were used for surface sterilization of brown rice. The percentage of callus formation and callus yields were much higher when sodium hypochlorite was used (Fig. 3). We suggest that the disinfactant is one of the important factors that affect callus formed at the initial stage has an influence upon subsequent isolation of cells and suspension culture and even plant regeneration. 3. Table 3 shows that addition of yeast extract to the medium improves callus yield greatly and the efficiency of callus formation to a lesser extent. 4. Both medium Ⅱ (modified B5 medium) and N6 medium were suitable for cell suspension culture, but medium II was more effective for cell growth and callus re-formation (Fig. 4 and Table 4). 5. Effect of 2, 4-D on cell growth was tested at the concentration range among 0, 10-6, 10-5, 10-4 to 10-3 M. The results indicated that 10-5 M of 2,4-D was most effective for induction of rice callus. It has also been found that absence of 2,4-D increased callus re-formation in suspension culture, but no plant regeneration was observed. 6. By using 7% sucrose in differentiation medium, for all the three varieties, the plant regeneration frequency was raised up to 3 or 4 times than those of the 3% ones (Table 6). Occurrence of albino plants is often reported as one of the problems in rice anther culture. It is, however, no problem in seed-derived rice cell culture.  相似文献   

7.
The in vitro competency of mature cereal embryos (winter, spring and durum wheats, oat, barley and triticale) was assessed for direct multiple shoot production on culture media containing the plant growth regulators, thidiazuron (TDZ) and/or 6–benzylaminopurine (BAP). Mature embryos of CDC Dancer oat showed the best response, with 69 shoots per explant on culture medium containing a combination of 4.5 μM TDZ and 4.4 μM BAP. TDZ alone induced about 16 shoots per explant from the oat. Among the wheat genotypes, durum wheat showed the most number of shoots (35) per explant on culture medium containing 4.5 μM of TDZ and 4.4 μM of BAP. With TDZ alone, shoot regeneration for durum wheat ranged from 27–32 shoots per explant. The regeneration frequency from the three winter wheat genotypes ranged from 11–25 shoots per explant and was highest on culture medium containing 9.1 μM TDZ and 4.4 μM BAP. The latter culture medium was also effective for a triticale genotype, inducing 34 shoots per explant. The regeneration from mature embryos of barley genotypes ranged from 5–9 shoots per explant. The mature embryos of all the cereals tested could be used for in vitro regeneration with TDZ and TDZ+BAP combinations.  相似文献   

8.
Immature and mature embryos of 12 common winter wheat (Triticum aestivum) genotypes were cultured in vitro to develop an efficient method of callus formation and plant regeneration from mature embryo culture, and to compare the responses of both embryo cultures. Fifteen days after anthesis, immature embryos were aseptically dissected from seeds and placed with the scutellum upwards on a solid agar medium containing the inorganic components of Murashige and Skoog (MS) and 2 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D). Mature embryos were moved slightly in the imbibed seeds. The seeds with moved embryos were placed furrow downwards in dishes containing 8 mg/l 2,4-D for callus induction. The developed calli and regenerated plants were maintained on 2,4-D-free MS medium. Plants regenerated from both embryo cultures were vernalized and grown to maturity in soil. Regenerated plantlets all maintained the hexaploid chromosome number. A strong genotypic effect on the culture responses was found for both explant cultures. Callus induction rate, regeneration capacity of callus and number of plants regenerated were independent of each other. Mature embryos had a high frequency of callus induction and regeneration capacity, and therefore, being available throughout the year, can be used as an effective explant source in wheat tissue culture. Received: 4 February 1997 / Revision received: 1 April 1997 / Accepted: 5 May 1997  相似文献   

9.
One of the basic components of a medium influencing somatic embryogenesis of cereals from immature embryos is the type of auxin. According to some researchers, phytohormones can also play an important role during Agrobacterium-mediated transformation. In this first part of research, the influence of three types of auxins used alone or in combination of two on somatic embryogenesis and plant regeneration in three cereal species has been tested. Eight cultivars of barley, five cultivars of wheat and three cultivars of triticale have been used. Efficiency of plant development on two regeneration media, with and without growth regulators has been compared. Efficiency of regeneration characterized by frequency of explants that form embryogenic callus ranged from 25% for wheat cultivar Torka to 100% for two barley cultivars. Mean number of plantlets regenerating per explant differed significantly (from 2 to 58) depending on the type of auxin in inducing media, the type of regenerating media as well as cultivar. The biggest differences in regeneration efficiency were observed between barley cultivars, however regeneration of plants occurred in all combinations tested. The best regeneration coefficients for most barley cultivars were obtained after culture on dicamba or dicamba with 2,4-D. However, in the case of highly regenerating cv Scarlett, the most effective culture media contained picloram or 2,4-D alone. The highest values of regeneration coefficients for two triticale cultivars (Wanad and Kargo) were obtained on picloram (26.1 and 21.4, respectively) and for `Gabo' on picloram with dicamba (12.6). The range of mean number of regenerated plantlets was from 12 to 30. Dicamba alone or lower concentrations of picloram with 2,4-D were the best media influencing embryogenic callus formation in five wheat cultivars. However, the highest values of regeneration coefficients ranging from 10.6 to 26.8 were obtained at lower concentrations of picloram with 2,4-D or picloram with dicamba. R2 regeneration medium containing growth regulators was significantly better for plantlet development in several combinations (cultivar and induction medium) than the one without growth regulators. Generally, regeneration coefficients for all tested cultivars of three cereal species on the best media were high, ranging from 5.5 for barley cultivar Rodion to 51.6 for another barley cultivar Scarlett. Plantlets developed normally, flowering and setting seed.  相似文献   

10.
The efficiency ofAgrobacterium-based transformation technique in oilseed rape and cauliflower was influenced by cultivar specificity, donor plant age and explant type. Marked differences in demands for plant hormone contents in the regeneration medium were recorded already among different types of nontransformed explants. The highest regeneration capacity was recorded with stem and leaf segments isolated from one-month-old aseptically grown plants. The regeneration was markedly species-dependent. Regeneration of transformed plants from stem segments and thin layers isolated from field-grown oilseed rape plants (at the most 2% of regenerating explants) and from oilseed rape hypocotyls (0.8% of regenerating explants) and cauliflower (1.2% of explant regenerated transformed shoots) was achieved after disarmedAgrobacterium treatment. Hypersensitive reaction of explants could be prevented by using prolongedin vitro precultivation and delayed application of the selective agent.  相似文献   

11.
Genotypic differences between six genotypes of Primula vulgaris could be observed in callus induction rate, type of callus, root formation during the callus phase, and shoot regeneration rate. The shoot regeneration rate ranged from zero to 11.6 shoots per explant. There was no correlation between callus induction rate and shoot regeneration rate. Callus consistency and colour were an indicator of the organogenetic capacity of callus. An experiment with different periods of treatment with 4.0 mg l 2,4-dichlorophenoxyacetic acid and 2.0 mg l21 thidiazuron revealed that the shoot regeneration rate varied tremendously between genotypes. In two genotypes a period of 8 weeks on medium with plant growth regulators was sufficient to induce shoot regeneration. In three other genotypes a longer induction period was not able to overcome low regeneration capacity. However an increase in shoot regeneration rate was observed after 16iV32 weeks of induction. Phenotypic stability was also strongly dependent on genotype. In three genotypes the majority of regenerated plants looked normal and were diploid. Aberrations like abnormal growth habit, crinkly leaves, deviation of flower colour or lack of pollen formation occurred in only one genotype at a very low frequency (1.5 genotypes between 12.5 and 18.1 regenerants was tetraploid.  相似文献   

12.
卫俨  李梅兰  朱木兰 《生物资源》2018,40(4):308-313
通过品种、外植体类型、培养基、外源植物激素的选择等几方面对国内多肉植物的离体再生研究现状进行了综述。发现多肉植物的离体再生研究多以种子、叶片、茎段、花器官等为外植体;不定芽诱导阶段常用的培养基类型为MS培养基,不定根诱导常用1/2 MS培养基;6-苄氨基腺嘌呤(6-BA)、萘乙酸(NAA)和激动素(KT)作为常见的外源植物激素,被广泛运用于多肉植物愈伤组织诱导、不定芽诱导、不定根诱导等离体再生各阶段;分析了当前存在的问题和发展前景,以期为日后多肉植物的相关研究提供可行性建议。  相似文献   

13.
Summary Basal media, plant growth regulator type and concentration, sucrose, and light were examined for their effects on duckweed (Lemna gibba) frond proliferation, callus induction and growth, and frond regeneration. Murashige and Skoog medium proved best for callus induction and growth, while Schenk and Hildebrandt medium proved best for frond proliferation. The ability of auxin to induce callus was associated with the relative strength of the four auxins tested, with 20 or 50 μM 2,4-dichlorophenoxyacetic acid giving the highest frequency (10%) of fronds producing callus. Auxin combinations did not improve callus induction frequency. Auxin in combination with other plant growth regulators was needed for long-term callus growth; the two superior plant growth regulator combinations were 10 μM naphthaleneacetic acid, 10 μM gibberellic acid, and 2 μM benzyladenine with either 1 or 20 μM 2,4-dichlorophenoxyacetic acid. Three percent sucrose was best for callus induction and growth. Callus induction and growth required light. Callus that proliferated from each frond’s meristematic zone contained a mixture of dedifferentiated and somewhat organized cell masses. Continual callus selection was required to produce mostly dedifferentiated, slow-growing callus cell lines. Frond regeneration occurred on Schenk and Hildebrandt medium without plant growth regulators but was promoted by 1 μM benzyladenine. Callus maintained its ability to regenerate fronds for at least 10 mo. Regenerated fronds showed a slower growth rate than normal fronds and a low percentage of abnormal morphologies that reverted to normal after one or two subcultures.  相似文献   

14.
The embryoid formation and plant regeneration in anther cultures of three barley (Hordeum vulgare L.) cultivars (Niki, Karina, Thermi), one F1 hybrid (Niki × Thermi), two F2 populations (Niki × Thermi, Niki × Karina), and two F3 populations (Niki × Thermi, Niki × Karina) were investigated in two solid induction media after cold pretreatment for 14 and 28 days at 4°C . The media used (N6 and FHG) differed in their composition and source of energy (maltose in FHG vs. sucrose in N6). Embryoid frequency and green plant regeneration depended on both the induction medium composition and cold pretreatment. The combination of the FHG induction medium with 28-day-long cold pretreatment was the most efficient in haploid embryoid formation and green plant production. In addition, the green plant production was genotype-dependent. Cv. Thermi and F1 hybrid Niki × Thermi exhibited the highest frequency of green plant production. The parent with high or even moderate frequency of embryoid formation in anther culture could lead to the effective production of green plants from the F1 hybrid or the F2 generation for breeding purposes.  相似文献   

15.
李洪清  梁承邺  黄毓文  郭俊彦   《广西植物》1999,19(3):246-250
研究了在外植体的不同发育阶段中,碳源以及不同的生长激素配比对木薯次生胚状体诱导及植株再生的影响。结果表明:以固体成熟培养基上生长15d的胚状体子叶为外植体,次生胚状体的产量最高,达29.3个成熟胚状体/1个外植体。在次生胚状体的诱导阶段,以麦芽糖(40g/L)代替蔗糖作碳源,能同时提高次生胚状体的产量(32.5个胚次体/1个外植体)及植株再生频率(74.3%)。2,4-D与PP333;(0.1mg/L)配合能提高植株再生频率到77.6%。2,4-D与BAP(2mg/L)或激动素(2.0mg/L)配合则大大降低了胚状体诱导及植株再生频率。  相似文献   

16.
Summary An efficient and reproducible protocol has been developed for in vitro shoot regeneration from cotyledonary explants derived by germinating immature ovules ofImpatiens platypetala Lindl. ‘TR6-27-2’. Cotyledonary explants were cultured on a modified Murashige and Skoog (MS) agar-solidified medium containing 7.5g · liter−1 sucrose, 22.2µ M N6-benzyladenine (BA), and 0.54µM α-naphthaleneacetic acid (NAA). The induction of organogenic tissues occurred after 6 to 8 wk in culture. Exogenous auxin and cytokinin were essential for the induction of organogenic tissues and survival of explants, and BA was most effective for the induction of organogenic tissues, compared with other cytokinins tested. The addition of glutamine (500 mg · liter−1) was also important for growth of organogenic tissues after induction and for reducing explant death during culture. The induction of organogenic tissue was also influenced by the type of cotyledon cultured and the age of the donor seedlings. On average, eight shoots per explant were induced from organogenic tissues larger than 0.5 cm in diameter 6 to 8 wk after transfer to a modified MS agar-solidified medium without NAA and BA reduced to 4.44µM. Shoots longer than 0.5 cm in length were successfully rooted 2 to 4 wk after transfer to a basal MS medium containing 30g · liter−1 sucrose.  相似文献   

17.
Summary A method has been developed for the induction of adventitious shoots from leaf tissue of Echinacea pallida with subsequent whole-plant regeneration. Proliferating callus and shoot cultures were derived from leaf tissue explants placed on Murashige and Skoog medium supplemented with 6-benzylaminopurine and naphthaleneacetic acid combinations. The optimum shoot regeneration frequency (63%) and number of shoots per explant (2.3 shoots per explant) was achieved using media supplemented with 26.6 μM 6-benzylaminopurine and 0.11 μM naphthaleneacetic acid. Rooting of regenerated shoot explants was successful on Murashige and Skoog medium, both with and without the addition of indole-3-butyric acid. All plantlets survived acclimatization, producing phenotypically normal plants in the greenhouse. This study demonstrates that leaf tissue of E. pallida is competent for adventitious shoot regeneration and establishes a useful method for the micropropagation of this important medicinal plant.  相似文献   

18.
Thirty-two barley cultivars grown in Spain, 18 of the two-row type and 14 of the six-row type, were screened for plant regeneration from cultured immature embryos. Although there was much variation in regeneration capacity among the cultivars, plants were obtained from all cultivars except Almunia. No statistical differences were found in the percentage of regeneration between two- and six-row types. The influence of the auxins 2,4-dichlorophenoxyacetic acid, dicamba, and picloram on the induction and maintenance of embryogenesis and regeneration capacity after 3–4 months in culture, were evaluated for cultivars Cobra, Hop and Reinette. Hop had the highest rates of maintenance of embryogenic capacity and plant regeneration. The medium containing dicamba gave the best embryogenic callus induction, maintenance and regeneration. Five regeneration media, differing in growth regulators and micronutrient composition, as well as partial desiccation of the calli before regeneration, were tested. The regeneration medium containing 10 μm copper sulfate gave the best results. Regeneration frequencies after 3–4 months in culture of cultivar Hop were raised from 59.5 to 93.7% in this medium. Silver nitrate and partial desiccation of the calli also enhanced plant regeneration, but the medium containing 10 μm of silver nitrate reduced root formation. Received: 30 October 1997 / Revision received: 3 April 1998 / Accepted: 17 April 1998  相似文献   

19.
中华结缕草(Zoysia sinica Hance)组织培养和再生植株研究   总被引:2,自引:0,他引:2  
以中华结缕草(Zoysia sinica Hance)成熟种子为外植体在附加2.5mg/L2,4-D、0.25mg/L 6-BA和1~2mg/L VB1的改良MS培养基(MSm)上愈伤组织的诱导率最高为43.0%。愈伤组织的最佳继代培养基为MSm附加0.1mg/L 6-BA和2.0mg/L 2,4-D。在无生长调节物质的MS培养基(MS0)上,外观呈白色到淡黄色、含有密实颗粒的愈伤组织再生率为30%~60%。  相似文献   

20.
Factors influencing reliable shoot regeneration from leaf explants of rapeseed (Brassica napus L.) were examined. Addition of AgNO3 to callus induction medium was significantly effective for shoot regeneration in all three genotypes initially tested. When 48 genotypes subsequently were surveyed, a large variation of shoot regenerability was observed, ranging from 100 to 0% in frequency of bud formation and from 7.5 to 0 in the number of buds per explant. A significant correlation (r=0.84) was observed between the frequency of bud formation and the number of buds per explant. The shoot regenerability from leaf explants was not related to that from cotyledonary explants (r=0.28). Histological observations showed that an organized structure developed from calluses produced at vascular bundle tissues after 7 days of culture on callus induction medium, and they developed shoot apical meristems one week after transfer onto shoot induction medium. Regenerated plantlets were obtained 2 months after the initiation of culture and they normally flowered and set seeds. No alterations of morphology or DNA contents were observed in regenerated plants and their S1 progenies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号