首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The murine int-6 locus, identified as a frequent integration site of mouse mammary tumor viruses, encodes the 48-kDa eIF3e subunit of translation initiation factor eIF3. Previous studies indicated that the catalytically active core of budding yeast eIF3 consists of five subunits, all conserved in eukaryotes, but does not contain a protein closely related to eIF3e/Int-6. Whereas the budding yeast genome does not encode a protein closely related to murine Int-6, fission yeast does encode an Int-6 ortholog, designated here Int6. We found that fission yeast Int6/eIF3e is a cytoplasmic protein associated with 40 S ribosomes. FLAG epitope-tagged Tif35, a putative core eIF3g subunit, copurified with Int6 and all five orthologs of core eIF3 subunits. An int6 deletion (int6Delta) mutant was viable but grew slowly in minimal medium. This slow growth phenotype was accompanied by a reduction in the amount of polyribosomes engaged in translation and was complemented by expression of human Int-6 protein. These findings support the idea that human and Schizosaccharomyces pombe Int-6 homologs are involved in translation. Interestingly, haploid int6Delta cells showed unequal nuclear partitioning, possibly because of a defect in tubulin function, and diploid int6Delta cells formed abnormal spores. We propose that Int6 is not an essential subunit of eIF3 but might be involved in regulating the activity of eIF3 for translation of specific mRNAs in S. pombe.  相似文献   

2.
Reconstitution reveals the functional core of mammalian eIF3   总被引:6,自引:0,他引:6  
Eukaryotic translation initiation factor (eIF)3 is the largest eIF ( approximately 650 kDa), consisting of 10-13 different polypeptide subunits in mammalian cells. To understand the role of each subunit, we successfully reconstituted a human eIF3 complex consisting of 11 subunits that promoted the recruitment of the 40S ribosomal subunit to mRNA. Strikingly, the eIF3g and eIF3i subunits, which are evolutionarily conserved between human and the yeast Saccharomyces cerevisiae are dispensable for active mammalian eIF3 complex formation. Extensive deletion analyses suggest that three evolutionarily conserved subunits (eIF3a, eIF3b, and eIF3c) and three non-conserved subunits (eIF3e, eIF3f, and eIF3h) comprise the functional core of mammalian eIF3.  相似文献   

3.
Eukaryotic translation initiation factor 3 (eIF3) is a large multisubunit protein complex that plays an essential role in the binding of the initiator methionyl-tRNA and mRNA to the 40S ribosomal subunit to form the 40S initiation complex. cDNAs encoding all the subunits of mammalian eIF3 except the p42 subunit have been cloned in several laboratories. Here we report the cloning and characterization of a human cDNA encoding the p42 subunit of mammalian eIF3. The open reading frame of the cDNA, which encodes a protein of 320 amino acids (calculated Mr35 614) has been expressed in Escherichia coli and the recombinant protein has been purified to homogeneity. The purified protein binds RNA in agreement with the presence of a putative RNA binding motif in the deduced amino acid sequence. The protein shows 33% identity and 53% similarity with the Tif35p subunit (YDR 429C) of yeast eIF3. Transfection experiments demonstrated that polyhistidine-tagged p42 protein, transiently expressed in human U20S cells, was incorporated into endogenous eIF3. Furthermore, eIF3 isolated from transfected cell lysates contains bound eIF5 indicating that a specific physical interaction between eIF5 and eIF3 may play an important role in the function of eIF5 during translation initiation in eukaryotic cells.  相似文献   

4.
Moe1 is a conserved fission yeast protein that negatively affects microtubule stability/assembly. We conducted a two-hybrid screen to search for Moe1-binding proteins and isolated Mal3, a homologue of human EB1. We show that Moe1 and Mal3 expressed in bacteria form a complex and that Moe1 and Mal3 expressed in fission yeast cosediment with microtubules. Deletion of either moe1 or mal3 does not result in lethality; however, deletion of both moe1 and mal3 leads to cell death in the cold. The resulting cells appear to die of chromosome missegregation, which correlates with the presence of abnormal spindles. We investigated the cause for the formation of monopolar spindles and found that only one of the two spindle pole bodies (SPBs) contains gamma-tubulin, although both SPBs appear to be equal in size and properly inserted in the nuclear membrane. Moreover, the moe1 mal3 double null mutant in the cold contains abnormally short and abundant interphase microtubule bundles. These data suggest that Moe1 and Mal3 play a role in maintaining proper microtubule dynamics/integrity and distribution of gamma-tubulin to the SPBs during mitosis. Finally, we show that human Moe1 and EB1 can each rescue the phenotype of the moe1 mal3 double null mutant and form a complex, suggesting that these proteins are part of a well-conserved mechanism for regulating spindle functioning.  相似文献   

5.
6.
eIF3 in mammals is the largest translation initiation factor ( approximately 800 kDa) and is composed of 13 nonidentical subunits designated eIF3a-m. The role of mammalian eIF3 in assembly of the 48 S complex occurs through high affinity binding to eIF4G. Interactions of eIF4G with eIF4E, eIF4A, eIF3, poly(A)-binding protein, and Mnk1/2 have been mapped to discrete domains on eIF4G, and conversely, the eIF4G-binding sites on all but one of these ligands have been determined. The only eIF4G ligand for which this has not been determined is eIF3. In this study, we have sought to identify the mammalian eIF3 subunit(s) that directly interact(s) with eIF4G. Established procedures for detecting protein-protein interactions gave ambiguous results. However, binding of partially proteolyzed HeLa eIF3 to the eIF3-binding domain of human eIF4G-1, followed by high throughput analysis of mass spectrometric data with a novel peptide matching algorithm, identified a single subunit, eIF3e (p48/Int-6). In addition, recombinant FLAG-eIF3e specifically competed with HeLa eIF3 for binding to eIF4G in vitro. Adding FLAG-eIF3e to a cell-free translation system (i) inhibited protein synthesis, (ii) caused a shift of mRNA from heavy to light polysomes, (iii) inhibited cap-dependent translation more severely than translation dependent on the HCV or CSFV internal ribosome entry sites, which do not require eIF4G, and (iv) caused a dramatic loss of eIF4G and eIF2alpha from complexes sedimenting at approximately 40 S. These data suggest a specific, direct, and functional interaction of eIF3e with eIF4G during the process of cap-dependent translation initiation, although they do not rule out participation of other eIF3 subunits.  相似文献   

7.
Recruitment of the eukaryotic translation initiation factor 2 (eIF2)-GTP-Met-tRNAiMet ternary complex to the 40S ribosome is stimulated by multiple initiation factors in vitro, including eIF3, eIF1, eIF5, and eIF1A. Recruitment of mRNA is thought to require the functions of eIF4F and eIF3, with the latter serving as an adaptor between the ribosome and the 4G subunit of eIF4F. To define the factor requirements for these reactions in vivo, we examined the effects of depleting eIF2, eIF3, eIF5, or eIF4G in Saccharomyces cerevisiae cells on binding of the ternary complex, other initiation factors, and RPL41A mRNA to native 43S and 48S preinitiation complexes. Depleting eIF2, eIF3, or eIF5 reduced 40S binding of all constituents of the multifactor complex (MFC), comprised of these three factors and eIF1, supporting a mechanism of coupled 40S binding by MFC components. 40S-bound mRNA strongly accumulated in eIF5-depleted cells, even though MFC binding to 40S subunits was reduced by eIF5 depletion. Hence, stimulation of the GTPase activity of the ternary complex, a prerequisite for 60S subunit joining in vitro, is likely the rate-limiting function of eIF5 in vivo. Depleting eIF2 or eIF3 impaired mRNA binding to free 40S subunits, but depleting eIF4G led unexpectedly to accumulation of mRNA on 40S subunits. Thus, it appears that eIF3 and eIF2 are more critically required than eIF4G for stable binding of at least some mRNAs to native preinitiation complexes and that eIF4G has a rate-limiting function at a step downstream of 48S complex assembly in vivo.  相似文献   

8.
Eukaryotic initiation factor 3 (eIF3) is a 12-subunit protein complex that plays a central role in binding of initiator methionyl-tRNA and mRNA to the 40 S ribosomal subunit to form the 40 S initiation complex. The molecular mechanisms by which eIF3 exerts these functions are poorly understood. To learn more about the structure and function of eIF3 we have expressed and purified individual human eIF3 subunits or complexes of eIF3 subunits using baculovirus-infected Sf9 cells. The results indicate that the subunits of human eIF3 that have homologs in Saccharomyces cerevisiae form subcomplexes that reflect the subunit interactions seen in the yeast eIF3 core complex. In addition, we have used an in vitro 40 S ribosomal subunit binding assay to investigate subunit requirements for efficient association of the eIF3 subcomplexes to the 40 S ribosomal subunit. eIF3j alone binds to the 40 S ribosomal subunit, and its presence is required for stable 40 S binding of an eIF3bgi subcomplex. Furthermore, purified eIF3 lacking eIF3j binds 40 S ribosomal subunits weakly, but binds tightly when eIF3j is added. Cleavage of a 16-residue C-terminal peptide from eIF3j by caspase-3 significantly reduces the affinity of eIF3j for the 40 S ribosomal subunit, and the cleaved form provides substantially less stabilization of purified eIF3-40S complexes. These results indicate that eIF3j, and especially its C terminus, play an important role in the recruitment of eIF3 to the 40 S ribosomal subunit.  相似文献   

9.
Int6/eIF3e is implicated in tumorigenesis, but its molecular functions remain unclear. We have studied its fission yeast homolog Yin6, reporting that it regulates proteolysis by controlling the assembly/localization of proteasomes, and binds directly to another conserved protein, Moe1. In the present study, we isolated Cdc48 as a Moe1-binding protein from a yeast two-hybrid screen, and confirmed biochemically that they form a stable complex in fission yeast. Overexpressing Moe1 or Yin6 partially rescued phenotypes of cdc48 mutants; conversely, overexpressing Cdc48 partially rescued phenotypes of moe1 or yin6 mutants. Mutants defective in both Cdc48 and the Yin6-Moe1 complex showed growth defects that were far more severe than either alone. These double mutants were severely deficient in endoplasmic reticulum associated degradation (ERAD), as they were hypersensitive to accumulation of misfolded proteins. In addition, their chromosomes showed frequent defects in spindle attachment and segregation — these mitotic defects correlated with Ase1 and Bir1/survivin mislocalization. These results suggest that Cdc48, Yin6, and Moe1 act in the same protein complex to concertedly control ERAD and chromosome segregation. Many of these properties are evolutionarily conserved in humans, since human Cdc48 rescued the lethality of the yeast cdc48? mutant, and Int6 and Moe1/eIF3d bind Cdc48 in human cells.  相似文献   

10.
真核翻译起始因子3(Eukaryotic translation factor 3,eIF3)是由多个亚单位组成的复合因子,其中eIF3a是其最大的亚单位。很多研究表明在酵母和哺乳动物细胞中,eIF3都参与了m RNA翻译起始,并对蛋白质的合成有很好的调控作用。值得一提的是eIF3a通过调控一系列与肿瘤的生成、细胞周期的调控DNA修复等过程相关的m RNA的翻译从而在肿瘤的发生、演进和干预中发挥重要作用。此外,研究发现eIF3a对RAF-MEK-ERK信号通路有抑制作用。eIF3a对蛋白质翻译的调节及其对RAF-MEK-ERK信号通路的影响使其有望成为肿瘤治疗的新靶点。本文将着重围绕eIF3a在肿瘤发生、演进和干预中的作用进行概述。  相似文献   

11.
eIF3k, the smallest subunit of eukaryotic initiation factor 3 (eIF3), interacts with several other subunits of eIF3 and the 40 S ribosomal subunit. eIF3k is conserved among high eukaryotes, including mammals, insects, and plants, and it is ubiquitously expressed in human tissues. Interestingly, eIF3k does not exist in some species of yeast. Thus, eIF3k may play a unique regulatory role in higher organisms. Here we report the crystal structure of human eIF3k, the first high-resolution structure of an eIF3 component. This novel structure contains two distinct domains, a HEAT (named for Huntington, elongation factor 3, A subunit of protein phosphatase 2A, target of rapamycin) repeat-like HAM (HEAT analogous motif) domain and a winged-helix-like WH domain. Through structural comparison and sequence conservation analysis, we show that eIF3k has three putative protein-binding surfaces and has potential RNA binding activity. The structure provides key information for understanding the structure and function of the eIF3 complex.  相似文献   

12.
eIF3 binds to 40S ribosomal subunits and stimulates recruitment of Met-tRNAiMet and mRNA to the pre-initiation complex. Saccharomyces cerevisiae contains an ortholog of human eIF3 subunit p35, HCR1, whose interactions with yeast eIF3 are not well defined. We found that HCR1 has a dual function in translation initiation: it binds to, and stabilizes, the eIF3-eIF5- eIF1-eIF2 multifactor complex and is required for the normal level of 40S ribosomes. The RNA recognition motif (RRM) of eIF3 subunit PRT1 interacted simultaneously with HCR1 and with an internal domain of eIF3 subunit TIF32 that has sequence and functional similarity to HCR1. PRT1, HCR1 and TIF32 were also functionally linked by genetic suppressor analysis. We propose that HCR1 stabilizes or modulates interaction between TIF32 and the PRT1 RRM. Removal of the PRT1 RRM resulted in dissociation of TIF32, NIP1, HCR1 and eIF5 from eIF3 in vivo, and destroyed 40S ribosome binding by the residual PRT1-TIF34-TIF35 subcomplex. Hence, the PRT1 RRM is crucial for the integrity and ribosome-binding activity of eIF3.  相似文献   

13.
eIF3j/Hcr1p, a protein associated with eIF3, was shown to bind to, and stabilize, the multifactor complex containing eIFs 1, 2, 3, and 5 and Met-tRNA(i)(Met), whose formation is required for an optimal rate of translation initiation. Here we present evidence that eIF3j/Hcr1p is an RNA binding protein that enhances a late step in 40 S ribosome maturation involving cleavage of the 20 S precursor of 18 S rRNA in the cytoplasm. Immunofluorescence staining shows that eIF3j/Hcr1p is localized predominantly in the cytoplasm. The hcr1Delta mutant exhibits a decreased amount of 40 S subunits, hypersensitivity to paromomycin, and increased levels of 20 S pre-rRNA. Combining the hcr1Delta mutation with drs2Delta or rps0aDelta, deletions of two other genes involved in the same step of 40 S subunit biogenesis, produced a synthetic growth defect. p35, the human ortholog of eIF3j/Hcr1p, partially complemented the slow growth phenotype conferred by hcr1Delta when overexpressed in yeast. heIF3j/p35 was found physically associated with yeast eIF3 and 43 S initiation complexes in vitro and in vivo. Because it did not complement the 40 S biogenesis defect of hcr1Delta, it appears that heIF3j can substitute for eIF3j/Hcr1p only in translation initiation. We conclude that eIF3j/Hcr1p is required for rapid processing of 20 S to 18 S rRNA besides its role in translation initiation, providing an intriguing link between ribosome biogenesis and translation.  相似文献   

14.
p27(BBP/eIF6) is an evolutionarily conserved protein that was originally identified as p27(BBP), an interactor of the cytoplasmic domain of integrin beta4 and, independently, as the putative translation initiation factor eIF6. To establish the in vivo function of p27(BBP/eIF6), its topographical distribution was investigated in mammalian cells and the effects of disrupting the corresponding gene was studied in the budding yeast, Saccharomyces cerevisiae. In epithelial cells containing beta4 integrin, p27(BBP/eIF6) is present in the cytoplasm and enriched at hemidesmosomes with a pattern similar to that of beta4 integrin. Surprisingly, in the absence and in the presence of the beta4 integrin subunit, p27(BBP/eIF6) is in the nucleolus and associated with the nuclear matrix. Deletion of the IIH S. cerevisiae gene, encoding the yeast p27(BBP/eIF6) homologue, is lethal, and depletion of the corresponding gene product is associated with a dramatic decrease of the level of free ribosomal 60S subunit. Furthermore, human p27(BBP/eIF6) can rescue the lethal effect of the iihDelta yeast mutation. The data obtained in vivo suggest an evolutionarily conserved function of p27(BBP/eIF6) in ribosome biogenesis or assembly rather than in translation. A further function related to the beta4 integrin subunit may have evolved specifically in higher eukaryotic cells.  相似文献   

15.
The complex eukaryotic initiation factor 3 (eIF3) was shown to promote the formation of the 43 S preinitiation complex by dissociating 40 S and 60 S ribosomal subunits, stabilizing the ternary complex, and aiding mRNA binding to 40 S ribosomal subunits. Recently, we described the identification of RPG1 (TIF32), the p110 subunit of the eIF3 core complex in yeast. In a screen for Saccharomyces cerevisiae multicopy suppressors of the rpg1-1 temperature-sensitive mutant, an unknown gene corresponding to the open reading frame YLR192C was identified. When overexpressed, the 30-kDa gene product, named Hcr1p, was able to support, under restrictive conditions, growth of the rpg1-1 temperature-sensitive mutant, but not of a Rpg1p-depleted mutant. An hcr1 null mutant was viable, but showed slight reduction of growth when compared with the wild-type strain. Physical interaction between the Hcr1 and Rpg1 proteins was shown by co-immunoprecipitation analysis. The combination of Deltahcr1 and rpg1-1 mutations resulted in a synthetic enhancement of the slow growth phenotype at a semipermissive temperature. In a computer search, a significant homology to the human p35 subunit of the eIF3 complex was found. We assume that the yeast Hcr1 protein participates in translation initiation likely as a protein associated with the eIF3 complex.  相似文献   

16.
Mammalian translation initiation factor 3 (eIF3) is a multisubunit complex containing at least 12 subunits with an apparent aggregate mass of approximately 700 kDa. eIF3 binds to the 40S ribosomal subunit, promotes the binding of methionyl-tRNAi and mRNA, and interacts with several other initiation factors to form the 40S initiation complex. Human cDNAs encoding 11 of the 12 subunits have been isolated previously; here we report the cloning and characterization of a twelfth subunit, a 28-kDa protein named eIF3k. Evidence that eIF3k is present in the eIF3 complex was obtained. A monoclonal anti-eIF3a (p170) Ig coimmunoprecipitates eIF3k with the eIF3 complex. Affinity purification of histidine-tagged eIF3k from transiently transfected COS cells copurifies other eIF3 subunits. eIF3k colocalizes with eIF3 on 40S ribosomal subunits. eIF3k coexpressed with five other 'core' eIF3 subunits in baculovirus-infected insect cells, forms a stable, immunoprecipitatable, complex with the 'core'. eIF3k interacts directly with eIF3c, eIF3g and eIF3j by glutathione S-transferase pull-down assays. Sequences homologous with eIF3k are found in the genomes of Caenorhabitis elegans, Arabidopsis thaliana and Drosophila melanogaster, and a homologous protein has been reported to be present in wheat eIF3. Its ubiquitous expression in human tissues, yet its apparent absence in Saccharomyces cerevisiae and Schizosaccharomyces pombe, suggest a unique regulatory role for eIF3k in higher organisms. The studies of eIF3k complete the characterization of mammalian eIF3 subunits.  相似文献   

17.
Only five of the nine subunits of human eukaryotic translation initiation factor 3 (eIF3) have recognizable homologs encoded in the Saccharomyces cerevisiae genome, and only two of these (Prt1p and Tif34p) were identified previously as subunits of yeast eIF3. We purified a polyhistidine-tagged form of Prt1p (His-Prt1p) by Ni2+ affinity and gel filtration chromatography and obtained a complex of ≈600 kDa composed of six polypeptides whose copurification was completely dependent on the polyhistidine tag on His-Prt1p. All five polypeptides associated with His-Prt1p were identified by mass spectrometry, and four were found to be the other putative homologs of human eIF3 subunits encoded in S. cerevisiae: YBR079c/Tif32p, Nip1p, Tif34p, and YDR429c/Tif35p. The fifth Prt1p-associated protein was eIF5, an initiation factor not previously known to interact with eIF3. The purified complex could rescue Met-tRNAiMet binding to 40S ribosomes in defective extracts from a prt1 mutant or extracts from which Nip1p had been depleted, indicating that it possesses a known biochemical activity of eIF3. These findings suggest that Tif32p, Nip1p, Prt1p, Tif34p, and Tif35p comprise an eIF3 core complex, conserved between yeast and mammals, that stably interacts with eIF5. Nip1p bound to eIF5 in yeast two-hybrid and in vitro protein binding assays. Interestingly, Sui1p also interacts with Nip1p, and both eIF5 and Sui1p have been implicated in accurate recognition of the AUG start codon. Thus, eIF5 and Sui1p may be recruited to the 40S ribosomes through physical interactions with the Nip1p subunit of eIF3.  相似文献   

18.
Eukaryotic translation initiation factor 3 (eIF3) is a multisubunit complex that plays a central role in translation initiation. We show that fission yeast Sum1, which is structurally related to known eIF3 subunits in other species, is essential for translation initiation, whereas its overexpression results in reduced global translation. Sum1 is associated with the 40S ribosome and interacts stably with Int6, an eIF3 component, in vivo, suggesting that Sum1 is a component of the eIF3 complex. Sum1 is cytoplasmic under normal growth conditions. Surprisingly, Sum1 is rapidly relocalized to cytoplasmic foci after osmotic and thermal stress. Int6 and p116, another putative eIF3 subunit, behave similarly, suggesting that eIF3 is a dynamic complex. These cytoplasmic foci, which additionally comprise eIF4E and RNA components, may function as translation centers during environmental stress. After heat shock, Sum1 additionally colocalizes stably with the 26S proteasome at the nuclear periphery. The relationship between Sum1 and the 26S proteasome was further investigated, and we find cytoplasmic Sum1 localization to be dependent on the 26S proteasome. Furthermore, Sum1 interacts with the Mts2 and Mts4 components of the 26S proteasome. These data indicate a functional link between components of the structurally related eIF3 translation initiation and 26S proteasome complexes.  相似文献   

19.
The binding of eIF2-GTP-tRNA(i)(Met) ternary complex (TC) to 40S subunits is impaired in yeast prt1-1 (eIF3b) mutant extracts, but evidence is lacking that TC recruitment is a critical function of eIF3 in vivo. If TC binding was rate-limiting in prt1-1 cells, overexpressing TC should suppress the temperature-sensitive phenotype and GCN4 translation should be strongly derepressed in this mutant, but neither was observed. Rather, GCN4 translation is noninducible in prt1-1 cells, and genetic analysis indicates defective ribosomal scanning between the upstream open reading frames that mediate translational control. prt1-1 cells also show reduced utilization of a near-cognate start codon, implicating eIF3 in AUG selection. Using in vivo cross-linking, we observed accumulation of TC and mRNA/eIF4G on 40S subunits and a 48S 'halfmer' in prt1-1 cells. Genetic evidence suggests that 40S-60S subunit joining is not rate-limiting in the prt1-1 mutant. Thus, eIF3b functions between 48S assembly and subunit joining to influence AUG recognition and reinitiation on GCN4 mRNA. Other mutations that disrupt eIF2-eIF3 contacts in the multifactor complex (MFC) diminished 40S-bound TC, indicating that MFC formation enhances 43S assembly in vivo.  相似文献   

20.
Translation initiation factor eIF3 is a multisubunit protein complex required for initiation of protein biosynthesis in eukaryotic cells. The complex promotes ribosome dissociation, the binding of the initiator methionyl-tRNA to the 40 S ribosomal subunit, and mRNA recruitment to the ribosome. In the yeast Saccharomyces cerevisiae eIF3 comprises up to 8 subunits. Using partial peptide sequences generated from proteins in purified eIF3, we cloned the TIF31 and TIF32 genes encoding 135- (p135) and 110-kDa (p110) proteins. Deletion/disruption of TIF31 results in no change in growth rate, whereas deletion of TIF32 is lethal. Depletion of p110 causes a severe reduction in cell growth and protein synthesis rates as well as runoff of ribosomes from polysomes, indicative of inhibition of the initiation phase. In addition, p110 depletion leads to p90 co-depletion, whereas other eIF3 subunit levels are not affected. Immunoprecipitation or nickel affinity chromatography from strains expressing (His)6-tagged p110 or p33 results in the co-purification of the well characterized p39 and p90 subunits of eIF3 as well as p110 and p33. This establishes p110 as an authentic subunit of eIF3. In similar experiments, p135 and other eIF3 subunits sometimes, but not always, co-purify, making assignment of p135 as an eIF3 subunit uncertain. Far Western blotting and two-hybrid analyses detect a direct interaction of p110 with p90, p135 with p33, and p33 with eIF4B. Our results, together with those from other laboratories, complete the cloning and characterization of all of the yeast eIF3 subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号