首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The amounts of endogenous mono (ADP ribose)-protein conjugates and their hydroxyl-amine-sensitive and hydroxylamine-resistant subfractions in various tissues of the mouse were determined and compared with poly (ADP-ribose) conjugates. Total mono-(ADP-ribose) conjugates did not correlate with poly (ADP-ribose) residues or the cellularity of a tissue, but were related to the protein content and the amounts of NAD+ +NADH. The hydroxylamine-resistant subfraction, which in liver is mainly associated with the mitochondria [Adamietz, Wielckens, Bredehorst, Lengyel & Hilz (1981) Biochem. Biophys. Res, Commun. 101, 96-103], did not correlate with the tissue content of cytochrome c oxidase. In hypothyroid mice hydroxylamine-resistant mono (ADP-ribose) conjugates of the liver were increased by a factor of two while the hydroxylamine-sensitive conjugates did not change significantly under these conditions. Upon administration of thyroxine the hydroxylamine-resistant subfraction returned to normal.  相似文献   

2.
A procedure has been developed for the quantitation of poly(ADP-ribose) in intact tissues. It is based on the dilution of added [3H]poly(ADP-ribose) by the endogenous polymer. 5 - 6 nanomoles protein-bound ADP-ribose per mg DNA were found in adult and neonatal rat liver, while Zajdela hepatoma cells had significantly lower values. A comparison with mono(ADP-ribose) residues in adult rat liver revealed similar levels of monomeric and polymeric ADP-ribose residues. This means that far more proteins (or acceptor sites on proteins) must be occupied by single ADP-ribose residues than by oligo or poly(ADP-ribose) chains. While the poly(ADP-ribose) levels of the different tissues do not correlate with the corresponding proliferation rates, the amount of mono(ADP-ribose) does show a certain Correlation, being low in rapidly growing tissues.  相似文献   

3.
Normal lymphocytes and lymphocytes from patients with low-grade malignant non-Hodgkin lymphoma were isolated from blood by a Percoll gradient procedure. Absence of cell proliferation in both cell types was indicated by very low [3H]thymidine incorporation rates. Determination of endogenous protein-bound single ADP-ribose residues by a radioimmunoassay revealed that the leukemic cells had 2.5-times lower levels of the NH2OH-sensitive and a 4-fold lower amount of NH2OH-resistant ADP-ribose . protein conjugate subfractions, respectively, than normal lymphocytes. By contrast, "total" ADP-ribose transferase activity, as measured in homogenates or permeabilized cells in the presence of DNase, was two-times higher in leukemic cells, whereas activity determined in permeabilized cells in the absence of added DNase was practically identical in both cell types. The apparent discrepancy between ADP-ribose transferase activity and endogenous levels of protein-bound single ADP-ribose residues may be explained in part by an enzyme inhibitor present in normal human lymphocytes. NAD + NADH levels were decreased 2.5-fold in the leukemic cells. This decrease, however, does not explain the reduced levels of mono(ADP-ribose) . protein conjugates since the ratio of protein-bound single ADP-ribose residues to NAD is distinctly different in leukemic lymphocytes compared to normal lymphocytes.  相似文献   

4.
The ability of rat liver submitochondrial particles to catalyze NAD+ hydrolysis with a transfer of ADP-ribose residues to protein membranes has been demonstrated ADP-ribosylation is directly dependent on NAD+ concentration upon saturation with 1 mM NAD+ and is inhibited by physiological compounds (e.g., ATP, 10 mM; nicotinamide, 10 mM); besides, it is an artificial acceptor of ADP-ribose, arginine methyl ester. It was found that ADP-ribose is accepted by inner mitochondrial membrane protein, whose molecular masses amount to 25-30 kDa. The fact that 5'-AMP is a product of ADP-ribose degradation by snake venom phosphodiesterase suggests that the inner membrane vesiculate proteins are modified by mono(ADP-ribose). Covalent modification of membrane proteins by ADP-ribose leads to citrate transport inhibition in inner membrane vesicles the [14C]citrate uptake is significantly decreased thereby. The ability of ADP-ribosylation inhibitors to restore the citrate transport rate is suggestive of a direct regulatory effect of NAD+-dependent ADP-ribosylation on the activity of citrate-translocating system of inner mitochondrial membranes.  相似文献   

5.
Quantitative studies of inhibitors of ADP-ribosylation in vitro and in vivo   总被引:16,自引:0,他引:16  
The ADP-ribosyl moiety of NAD+ is consumed in reactions catalyzed by three classes of enzymes: poly(ADP-ribose) polymerase, protein mono(ADP-ribosyl)transferases, and NAD+ glycohydrolases. In this study, we have evaluated the selectivity of compounds originally identified as inhibitors of poly(ADP-ribose) polymerase on members of the three classes of enzymes. The 50% inhibitory concentration (IC50) of more than 20 compounds was determined in vitro for both poly(ADP-ribose) polymerase and mono(ADP-ribosyl)transferase A in an assay containing 300 microM NAD+. Of the compounds tested, benzamide was the most potent inhibitor of poly(ADP-ribose) polymerase with an IC50 of 3.3 microM. The IC50 for benzamide for mono(ADP-ribosyl)transferase A was 4.1 mM, and similar values were observed for four additional cellular mono(ADP-ribosyl)transferases. The IC50 for NAD+ glycohydrolase for benzamide was approximately 40 mM. For seven of the best inhibitors, inhibition of poly(ADP-ribose) polymerase in intact C3H1OT1/2 cells was studied as a function of the inhibitor concentration of the culture medium, and the concentration for 50% inhibition (culture medium IC50) was determined. Culture medium IC50 values for benzamide and its derivatives were very similar to in vitro IC50 values. For other inhibitors, such as nicotinamide, 5-methyl-nicotinamide, and 5-bromodeoxyuridine, culture medium IC50 values were 3-5-fold higher than in vitro IC50 values. These results suggest that micromolar levels of the benzamides in the culture medium should allow selective inhibition of poly(ADP-ribose) metabolism in intact cells. Furthermore, comparative quantitative inhibition studies should prove useful for assigning the biological effects of these inhibitors as an effect on either poly(ADP-ribose) or mono(ADP-ribose) metabolism.  相似文献   

6.
Two classes of enzymes, poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferases, catalyze covalent attachment of multiple or single residues, respectively, of the ADP-ribose moiety of NAD+ to various proteins. In order to find good inhibitors of poly(ADP-ribose) synthetase free of side actions and applicable to in vivo studies, we made a large scale survey using an in vitro assay system, and found many potent inhibitors. The four strongest were 4-amino-1,8-naphthalimide, 6(5H)- and 2-nitro-6(5H)-phenanthridinones, and 1,5-dihydroxyisoquinoline. Their 50% inhibitory concentrations, 0.18-0.39 microM, were about two orders of magnitude lower than that of 3-aminobenzamide that is currently most popularly used. A common structural feature among all potent inhibitors, including 1-hydroxyisoquinoline, chlorthenoxazin, 3-hydroxybenzamide, and 4-hydroxyquinazoline, in addition to the four mentioned above, was the presence of a carbonyl group built in a polyaromatic heterocyclic skeleton or a carbamoyl group attached to an aromatic ring. Most of the inhibitors exhibited mixed-type inhibition with respect to NAD+. Comparative studies of the effects on poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferase from hen heterophils revealed high specificity of most of the potent inhibitors for poly(ADP-ribose) synthetase. On the other hand, unsaturated long-chain fatty acids inhibited both enzymes, and saturated long-chain fatty acids and vitamin K1 acted selectively on mono(ADP-ribosyl)transferase. The finding of many inhibitors of ADP-ribosyltransferases, especially poly(ADP-ribose) synthetase, supports the view that ADP-ribosylation of proteins may be regulated by a variety of metabolites or structural constituents in the cell.  相似文献   

7.
Some properties of ADP-ribose transferase, and its reaction product, from BHK-21/C13 cells are described. Enzyme activity was found almost exclusively in nuclei (90%), with the remaining 10% located in the cytosolic fraction. The nuclear enzyme is chromatin-bound and requires bivalent cations, preferably Mg2+, a pH of 8.0 and a temperature of 25 degrees C for optimal activity. Chromatin preparations incorporated radioactivity from [14C]NAD+ into acid-insoluble material for about 60 min. Kinetics for substrate NAD+ utilization were not of Michaelis--Menten type; biphasic kinetics were shown from a double-reciprocal plot (1/reaction velocity against 1/[NAD+]) and from a 'Hofstee' plot (reaction velocity/[NAD+] against reaction velocity). The transferase is unstable in the absence of Mg2+ ions. It is inhibited by thymidine, nicotinamide and nicotinamide analogues, but not by ATP, which stimulates it at concentrations of 5 mM and above. The enzyme requires thiol groups for activity; it is readily inhibited by N-ethylmaleimide at 0.5 mM. The product of the reaction is stable under acid conditions at temperatures up to 25 degrees C, but it is hydrolysed by HClO4 at 70 degrees C. It is resistant to NaOH, but is cleaved from its attachment to protein with alkali into trichloroacetic acid-insoluble and -soluble components. On the basis of Cs2SO4- density-gradient analysis under denaturing conditions (gradients included urea and guanidinium hydrochloride), and analysis of the reaction product directly on hydroxyapatite, we conclude that most of the radioactive ADP-ribose residues are firmly bound to protein, presumably in covalent linkage. Hydroxyapatite-chromatographic analysis of ADP-ribose residues released from protein by alkaline digestion showed a spectrum of molecular sizes including mono-, oligo- and poly-(ADP-ribose), when chromatin was incubated initially with [14C]NAD+ for 10 min and then for a further 30 min after addition of excess non-radioactive NAD+, only about 10% of the radioactive mono-(ADP-ribose) could be 'chased' into longer-chain molecules. Hydroxyapatite analysis was also used to show that, whereas all ADP-ribose residues were released from protein with NaOH, only 50% of them were susceptible to hydroxylamine. These hydroxylamine-sensitive residues included all size classes, although mono-(ADP-ribose) predominated. Finally, there was an approximately equal distribution of ADP-ribose incorporated into HCl-soluble proteins (including the histones) and HCl-insoluble proteins (including the non-histone proteins) when chromatin was incubated with NAD+ up to 0.5 mM, but at higher NAD+ concentrations more ADP-ribose was incorporated into the HCl-soluble fraction (82% at 4.0 mM-NAD+).  相似文献   

8.
9.
Transition of proliferating Ehrlich ascites tumor cells (3 days after transplantation) to the non-proliferating status (8--14 days after transplantation) was associated with an increase in total mono (ADP-ribose) protein conjugates. This increase was largely confined to the NH2OH-resistant subfraction. When the amounts of mono-(ADP-ribose) conjugates from 20% trichloroacetic acid precipitates were compared with those from 5% perchloric acid precipitates, no significant differences were seen. This fact excludes histone H1 as a major mono (ADP-ribose) acceptor in vivo in these cells. Transition to the resting state was also associated with a small decrease in NAD levels, and with no significant changes of total ADP-ribose transferase activity. However intrinsic ADP-ribose transferase activity as expressed in permeabilized cells was increased, being correlated with the changes in the level of the NH2OH-resistant mono (ADP-ribose) protein conjugates. This shows that alterations in intrinsic transferase activity may, in general, indicate similar alterations in major subfractions of ADP-ribose conjugates. Intrinsic ADP-ribose transferase activity exhibited an inverse relationship to ornithine decarboxylase activity.  相似文献   

10.
Calf thymus histones (individually isolated or mixtures) and high mobility group proteins were ADP-ribosylated in vitro using [32P]NAD+ and immobilized purified poly(ADP-ribose) polymerase. The modified histones were then subjected to V8 protease or alpha-chymotrypsin digestion and the resulting peptides were separated by electrophoresis on acetic acid-urea-Triton gels. It was found that in vitro ADP-ribosylated histones were much more resistant to proteases than unmodified histones. A similar approach was applied to histones modified by the endogenous poly(ADP-ribose) polymerase in permeabilized NS-1 mouse myeloma cells in culture. In this case, the proteases could not discriminate between modified and unmodified histones and putative mono(ADP-ribosyl)ated peptides appeared in a digestion frame corresponding to that of bulk peptides. These differences are most probably due to the specificity or number of ADP-ribose groups added to the histones by the endogenous or exogenous poly(ADP-ribose) polymerase. Thus, depending on the size of poly(ADP-ribose) attached to nuclear proteins, these modified proteins might display different degrees of resistance to proteolysis.  相似文献   

11.
W J Iglewski  H Lee  P Muller 《FEBS letters》1984,173(1):113-118
Fragment A of diphtheria toxin and Pseudomonas toxin A intoxicate cells by ADP-ribosylating the diphthamide residue of elongation factor-2 (EF-2) resulting in an inhibition of protein synthesis [1-3]. A cellular enzyme from polyoma virus transformed baby hamster kidney (pyBHK) cells ADP-ribosylates EF-2 in an identical manner [4]. Here we describe a similar cellular enzyme from beef liver which transfers [adenosine-14C]ADP-ribose from NAD to EF-2. The 14C-label can be removed from the EF-2 by snake venom phosphodiesterase as a soluble product which comigrates with AMP on TLC plates, indicating the 14C-label is present on EF-2 as monomeric units of ADP-ribose. Furthermore, the forward transferase reaction catalyzed by the beef liver ADP-ribosyltransferase is reversible by excess diphtheria toxin fragment A, with the formation of 14C-labeled NAD, indicating that both transferases ADP-ribosylate the same site on the diphthamide residue of EF-2. Thus, beef liver and pyBHK mono(ADP-ribosyl)transferases both modify the diphthamide residue of EF-2, in a manner identical to diphtheria toxin fragment A and Pseudomonas toxin A. These results suggest the cellular enzyme is probably ubiquitous among eukaryotic cells.  相似文献   

12.
A homogeneous preparation of an arginine-specific mono(ADP-ribosyl)transferase from turkey erythrocytes effectively utilized 2'-deoxy-NAD+ for the 2'-deoxy(ADP-ribose) modification of arginine methyl ester with an apparent Km of 27.2 microM and a Vmax of 36.4 mumol min-1 (mg of protein)-1. The adduct formed was also used as a substrate by an avian erythrocyte arginine(ADP-ribose)-specific hydrolase that generated free 2'-deoxy(ADP-ribose). In contrast, 2'-deoxy-NAD+ was not a substrate in the initiation or elongation reaction catalyzed by highly purified poly(ADP-ribose) polymerase from calf thymus. However, 2'-deoxy-NAD+ was a potent noncompetitive inhibitor of NAD+ in the elongation reaction catalyzed by the polymerase, with an apparent Ki of 32 microM. These results indicate that 2'-deoxy-NAD+ may be utilized to specifically identify protein acceptors for endogenous mono(ADP-ribosyl)transferases in complex biological systems that may contain a high activity of poly(ADP-ribose) polymerase, i.e., cell nuclei preparations.  相似文献   

13.
Modification of proteins by the addition of poly(ADP-ribose) is carried out by poly(ADP-ribose) polymerases (PARPs). PARPs have been implicated in a wide range of biological processes in eukaryotes, but no universal function has been established. A study of the Aspergillus nidulans PARP ortholog (PrpA) revealed that the protein is essential and involved in DNA repair, reminiscent of findings using mammalian systems. We found that a Neurospora PARP orthologue (NPO) is dispensable for cell survival, DNA repair and epigenetic silencing but that replicative aging of mycelia is accelerated in an npo mutant strain. We propose that PARPs may control aging as proposed for Sirtuins, which also consume NAD+ and function either as mono(ADP-ribose) transferases or protein deacetylases. PARPs may regulate aging by impacting NAD+/NAM availability, thereby influencing Sirtuin activity, or they may function in alternative NAD+-dependent or NAD+-independent aging pathways.  相似文献   

14.
Using subtractive hybridization to identify genes that are androgen regulated in the mouse epididymis, a number of cDNAs were identified that represented mitochondrial genes including cytochrome oxidase c subunits I, II, and III, cytochrome b, NADH dehydrogenase subunit 5, a region of the displacement loop, and the 16S rRNA. Northern blot analysis of RNA from intact, castrate, or testosterone-replaced epididymides confirmed that these mitochondrial mRNAs as well as the rRNA were androgen regulated with a 2- to 5-fold reduction in expression observed after 4 weeks castration with partial to full recovery to precastrate levels upon 4 weeks of testosterone replacement. In contrast to the mitochondrial genes, the expression of the RNA component of the mitochondrial RNA-processing endoribonuclease (RNAase MRP), a nuclear factor which is thought to be involved in the regulation of mitochondrial DNA synthesis, increased in the epididymis upon castration and then returned to precastrate levels after testosterone replacement. An examination of other androgen-responsive tissues showed that mitochondrial gene expression was also regulated by androgens in the kidney. The RNAase MRP RNA levels, however, showed an increase after castration only in the reproductive tissues (epididymis, vas deferens, and seminal vesicle) and not in the kidney. No correlative increase in mitochondrial DNA levels was observed for any of the tissues. Finally, an analysis of various mouse tissues as well as the different regions of the epididymis revealed large differences in mitochondrial mRNA levels. While for most tissues the mRNA levels correlated with the mitochondrial DNA content, the levels of the RNAase MRP RNA did not. Taken together, these findings not only show the large variations in mitochondrial gene expression between tissues but also demonstrate that the expression of mitochondrial genes and ultimately mitochondrial function are androgen regulated in the epididymis and kidney.  相似文献   

15.
The interaction of vasoactive intestinal peptide (VIP) with prostatic epithelial cells was studied after castration and testosterone replacement in pubertal and mature rats. The number of VIP receptors (but not the affinity) decreased 2 days after castration and returned to normal when subsequently treated with testosterone for 4 days. However, the stimulatory effect of VIP upon cyclic AMP accumulation was unaffected by the androgen withdrawal elicited by the surgical procedure. The results suggest the importance of androgens in the biosynthesis of VIP receptors and also in their coupling to adenylate cyclase by affecting the membrane fluidity.  相似文献   

16.
Mono(ADP-ribosylation) in rat liver mitochondria   总被引:3,自引:0,他引:3  
B Frei  C Richter 《Biochemistry》1988,27(2):529-535
This paper investigates protein mono(ADP-ribosylation) in rat liver mitochondria. In isolated inner mitochondrial membranes, in the presence of both ADP-ribose and NAD+, a protein is mono-(ADP-ribosylated) with high specificity. The reaction apparently consists of enzymatic NAD+ glycohydrolysis and subsequent binding of free ADP-ribose to the acceptor protein. In terms of chemical stability, the resulting bond is unique among the ADP-ribose linkages thus far characterized. Formation of a Schiff base adduct between free ADP-ribose and the acceptor protein is excluded. In intact mitochondria at least three classes of proteins are ADP-ribosylated in vivo. One ADP-ribose-protein linkage is of the carboxylate ester type as indicated by its lability in neutral buffer. Another class of ADP-ribosylated proteins requires hydroxylamine for release of ADP-ribose. The third class is stable in hydroxylamine but labile to alkali, similar to the ADP-ribose-cysteine linkage in transducin formed by pertussis toxin.  相似文献   

17.
ADP-ribosylation is a reversible post-translational modification of proteins involving the addition of the ADP-ribose moiety of NAD to an acceptor protein or amino acid. NAD: arginine ADP-ribosyltransferase, purified from numerous animal tissues, catalyzes the transfer of ADP-ribose to an arginine residue in proteins. The reverse reaction, catalyzed by ADP-ribosylarginine hydrolase, removes ADP-ribose, regenerating free arginine. An ADP-ribosylarginine hydrolase, purified extensively from turkey erythrocytes, was a 39-kDa monomeric protein under denaturing and non-denaturing conditions, and was activated by Mg2+ and dithiothreitol. The ADP-ribose moiety was critical for substrate recognition; the enzyme hydrolyzed ADP-ribosylarginine and (2-phospho-ADP-ribosyl)arginine but not phosphoribosylarginine or ribosylarginine. The hydrolase cDNA was cloned from rat and subsequently from mouse and human brain. The rat hydrolase gene contained a 1086-base pair open reading frame, with deduced amino acid sequences identical to those obtained by amino terminal sequencing of the protein or of HPLC-purified tryptic peptides. Deduced amino acid sequences from the mouse and human hydrolase cDNAs were 94% and 83% identical, respectively to the rat. Anti-rat brain hydrolase polyclonal antibodies reacted with turkey erythrocyte, mouse and bovine brain hydrolase. The rat hydrolase, expressed inE. coli, demonstrated enhanced activity in the presence of Mg2+ and thiol, whereas the recombinant human hydrolase was stimulated by Mg2+ but was thiol-independent. In the rat and mouse enzymes, there are five cysteines in identical positions; four of the cysteines are conserved in the human hydrolase. Replacement of cysteine 108 in the rat hydrolase (not present in the human enzyme) resulted in a thiol-independent hydrolase without altering specific activity. Rabbit anti-rat brain hydrolase antibodies reacted on immunoblot with the wild-type rat hydrolase and only weakly with the mutant hydrolase. There was no immunoreactivity with either the wild-type or mutant human enzyme. Cysteine 108 in the rat and mouse hydrolase may be responsible in part for thiol-dependence as wall as antibody recognition. Based on these studies, the mammalian and avian ADP-ribosylarginine hydrolases exhibit considerable conservation in structure and function.  相似文献   

18.
19.
The effects of castration and testosterone propionate on cardiac output, renal blood flow, and blood volume in mice were studied. The cardiac output and renal blood flow were determined by the adaptation of the rubidium-86 method of Sapirstein. Cardiac output also was determined with iodine-131 albumin. Castration decreased the cardiac output, renal rubidium-86 uptake, and renal blood flow. Testosterone propionate was ineffective after 2 days but within 7 days had restored these values to normal. Extension of the androgen treatment did not produce any further changes. The blood volume of the mice was decreased approximately 10% by castration and restored to normal by testosterone propionate. Since the changes in renal blood flow and cardiac output were not observed until after 2 days of androgen treatment, they do not represent or affect any of the earliest physiological actions of androgen. In this respect the mouse kidney is different from the uterus, ovary, and liver, where circulatory changes occur much earlier. It is postulated that the general mechanism of hormone action may involve expansion of the microcirculation of the target organ, as has been suggested for the uterus. The degree of decrease in blood volume after castration is similar to that in the weight of the heart and may represent a general decrease in the circulatory system or possibly vasoconstriction.  相似文献   

20.
Degenerative and regenerative changes in the ductal architecture of the ventral and dorsolateral prostates (VP and DLP) of the adult mouse were investigated in microdissected specimens over a time-course of 14 days following castration and subsequently during 14 days of administration of testosterone propionate. After castration, about 35% of the ductal tips and branch-points were lost in distal regions (usually near the capsule) in both prostatic lobes. By contrast, in more proximal regions of the prostate (closer to the urethra), the ducts survived in an atrophic condition. The ductal morphology that had been lost in the distal regions completely regenerated after testosterone propionate was administered to the castrated males. In the VP, androgen replacement simply returned the gland to its former size with moderate ductal distension; in the DLP, excessive epithelial infoldings and ductal distension were elicited in the distal regions of the ducts after 14 days of treatment with testosterone propionate. These results suggest that androgenic responsiveness and dependency are different in distal versus proximal ducts. Distal ducts are exquisitely androgen-dependent and androgen-sensitive; in proximal regions, androgen-dependency is not as strict.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号