首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The addition of the Ca2+ ionophore A23187 to rabbit neutrophils stimulated [14C]arachidonic acid incorporation into phosphatidylinositol and lysosomal enzyme secretion. A significant increase in phosphatidylinositol labelling was observed after a 2 min exposure to 0.1 microM-ionophore A23187. Maximum increases in rate of labelling were obtained with 1 microM-ionophore A23187 within 1 min, declining to basal rates after 15 min. Similarly, maximum rate of enzyme release occurred during the first 2 min of exposure to ionophore and release was essentially complete by 15 min. Threshold and peak ionophore A23187 concentrations for stimulating both processes were identical. In contrast with the specificity of phosphatidylinositol labelling induced by 1 microM-ionophore A23187 in the absence of cytochalasin B, ionophore also significantly stimulated labelling of phosphatidylserine and phosphatidylethanolamine in the presence of cytochalasin B. With a threshold ionophore concentration (0.1 microM), the enhanced incorporation of arachidonate was relatively specific for phosphatidylinositol in cytochalasin-treated cells. Ionophore A23187 did not accelerate labelling of phosphatidylinositol by [14C]acetate or [14C]glycerol, indicating that ionophore A23187 does not stimulate phosphatidylinositol synthesis de novo, although it did promote [14C]palmitate and [32P]Pi incorporation into neutrophil phosphatidylinositol. However, the increase in phosphatidylinositol labelling with these latter precursors was generally slower in onset and much more modest in magnitude than that observed with arachidonic acid. These results support the hypothesis that a Ca2+-dependent phospholipase, which acts on the arachidonate moiety of phosphatidylinositol, is responsible for initiating at least certain of the membrane events coupled to the release of secretory product from the neutrophil.  相似文献   

2.
1. Addition of the bivalent ionophore A23187 to synaptosomes isolated from guinea-pig brain cortex and labelled with [(32)P]phosphate in vitro or in vivo caused a marked loss of radioactivity from phosphatidyl-myo-inositol 4-phosphate (diphosphoinositide) and phosphatidyl-myo-inositol 4,5-bisphosphate (triphosphoinositide) and stimulated labelling of phosphatidate. No change occurred in the labelling of other phospholipids. 2. In conditions that minimized changes in internal Mg(2+) concentrations, the effect of ionophore A23187 on labelling of synaptosomal di- and tri-phosphoinositide was dependent on Ca(2+) and was apparent at Ca(2+) concentrations in the medium as low as 10(-5)m. 3. An increase in internal Mg(2+) concentration stimulated incorporation of [(32)P]phosphate into di- and tri-phosphoinositide, whereas lowering internal Mg(2+) decreased labelling. 4. Increased labelling of phosphatidate was independent of medium Mg(2+) concentration and apparently only partly dependent on medium Ca(2+) concentration. 5. The loss of label from di- and tri-phosphoinositide caused by ionophore A23187 was accompanied by losses in the amounts of both lipids. 6. Addition of excess of EGTA to synaptosomes treated with ionophore A23187 in the presence of Ca(2+) caused a rapid resynthesis of di- and tri-phosphoinositide and a further stimulation of phosphatidate labelling. 7. Addition of ionophore A23187 to synaptosomes labelled in vivo with [(3)H]inositol caused a significant loss of label from di- and tri-phosphoinositide, but not from phosphatidylinositol. There was a considerable rise in labelling of inositol diphosphate, a small increase in that of inositol phosphate, but no significant production of inositol triphosphate. 8. (32)P-labelled di- and tri-phosphoinositides appeared to be located in the synaptosomal plasma membrane. 9. The results indicate that increased Ca(2+) influx into synaptosomes markedly activates triphosphoinositide phosphatase and diphosphoinositide phosphodiesterase, but has little or no effect on phosphatidylinositol phosphodiesterase.  相似文献   

3.
The effect of divalent cation ionophore, A23187, on the incorporation of [1-14C]palmitic acid, [1-14C]linoleic acid and [U-14C]glycerol into glycerolipids of polymorphonulcear leukocytes was examined. Ionophore A23187 stimulated the labeling of phosphatidic acid, phosphatidylglycerol, phosphatidylinositol, and diacylglycerol by both labeled fatty acids and glycerol. [1-14C]Palmitic acid and [1-14C]linoleic acid incorporation into phosphatidylcholine and triacylglycerol was reduced by the presence of the ionophore in the incubation medium, while [U-14C]glycerol labeling of these lipids was not significantly changed under identical conditions. These data reflect that the acylation of sn-glycerol 3-phosphate is activated, and the acylations of lysophosphatidyl-choline and endogenous diacylglycerol are inhibited in cells incubated with ionophore A23187. External calcium was not required for the ionophore effect on the incorporation of labeled fatty acids and glycerol. It is suggested that the ionophore alters the metabolism of the fatty acid and glycerol moieties of glycerolipids by changing the distribution of intracellular calcium of leukocytes.  相似文献   

4.
The role of Ca2+ in phospholipid metabolism and arachidonic acid release was studied in guinea pig neutrophils. The chemotactic peptide formylmethionyl-leucyl-phenyl-alanine (fMLP) activated [32P]Pi incorporation into phosphatidylinositol (PI) and phosphatidic acid (PA) without any effects on the labeling of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS). This activation was observed in Ca2+-free medium. Even in the neutrophils severely deprived of Ca2+ with EGTA and Ca2+ ionophore A23187, the stimulated labeling was not inhibited. When [3H]arachidonic acid-labeled neutrophils were stimulated by fMLP, a loss of [3H]arachidonic acid moiety in PI and the resultant increase in [3H]arachidonyl-diacylglycerol (DG), -PA, and free [3H]arachidonic acid was marked within 3 min. With further incubation, a loss of [3H]arachidonic acid in PC and PE became significant. These results suggest the activation of phospholipase C preceded the activation of phospholipase A2. In Ca2+-free medium, the decrease in [3H]arachidonyl-PI and the increase in [3H]arachidonyl-PA were only partially inhibited, although the release of [3H]arachidonic acid and a loss of [3H]arachidonyl-PC and -PE was completely blocked. These results show that PI-specific phospholipase C was not as sensitive to Ca2+ deprivation as arachidonic acid cleaving enzymes, phospholipase A2, and diacylglycerol lipase. Ca2+ ionophore A23187, which is known as an inducer of secretion, also stimulated [32P]Pi incorporation into PI and PA, although the incorporation into other phospholipids, such as PC and PE, was inhibited. This stimulated incorporation seemed to be caused by the activation of de novo synthesis of these lipids, because the incorporation of [3H]glycerol into PA and PI was also markedly stimulated by Ca2+ ionophore. But the chemotactic peptide did not increase the incorporation of [3H]glycerol into any glycerolipids including PI and PA. Thus, it is clear that fMLP mainly activates the pathway, PI leads to DG leads to PA, whereas Ca2+ ionophore activates the de novo synthesis of acidic phospholipids. When [3H]arachidonic acid-labeled neutrophils were treated with Ca2+ ionophore, the enhanced release of arachidonic acid and the accumulation of [3H]arachidonyl-DG, -PA with a concomitant decrease in [3H]arachidonyl-PC, -PE, and -PI were observed. Furthermore, the Ca2+ ionophore stimulated the formation of lysophospholipids, such as LPC, LPE, LPI, and LPA nonspecifically. These data suggest that Ca2+ ionophore releases arachidonic acid, unlike fMLP, directly from PC, PE, and PI, mainly by phospholipase A2. When neutrophils were stimulated by fMLP, the formation of LPC and LPE was observed by incubation for more than 3 min. Because a loss of arachidonic acid from PI occurred rapidly in response to fMLP, it seems likely the activation of PI-specific phospholipase C occurred first and was followed by the activation of phospholipase A2 when neutrophils are activated by fMLP...  相似文献   

5.
Treatment of human or sheep erythrocytes with PMA (phorbol myristate acetate) enhanced [32P]phosphate labelling of membrane polypeptides of approx. 100, 80 and 46 kDa. The 80 kDa and 46 kDa polypeptides coincided with bands 4.1 and 4.9 respectively on Coomassie-Blue-stained gels. Similar but smaller effects were obtained by treating human cells with 1-oleoyl-2-acetyl-rac-glycerol (OAG), exogenous bacterial phospholipase C or ionophore A23187 + Ca2+, each of which treatments would be expected to raise the concentration of membrane diacylglycerol. In contrast, sheep cells, which do not increase their content of diacylglycerol when treated with phospholipase C or A23187 + Ca2+, only showed enhanced phosphorylation with OAG. Neither human nor sheep cells showed any enhanced [32P]phosphate labelling of phosphoproteins when treated with 1-mono-oleoyl-rac-glycerol. It is concluded that diacylglycerol from a variety of sources can activate erythrocyte protein kinase C, but that the most effective diacylglycerol is that derived from endogenous polyphosphoinositides. In contrast with bacterial phospholipase C and A23187, which stimulate synthesis of phosphatidate by increasing the cell-membrane content of diacylglycerol in human erythrocytes, PMA, OAG or 1-mono-oleoyl-rac-glycerol caused no change in phospholipid metabolism.  相似文献   

6.
Rabbit iris smooth muscle was prelabelled with myo-[3H]inositol for 90 min and the effect of carbachol on the accumulation of inositol phosphates from phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol (PtdIns) was monitored with anion-exchange chromatography. Carbachol stimulated the accumulation of inositol phosphates and this was blocked by atropine, a muscarinic antagonist, and it was unaffected by 2-deoxyglucose. The data presented demonstrate that, in the iris, carbachol (50 microM) stimulates the rapid breakdown of PtdIns(4,5)P2 into [3H]inositol trisphosphate (InsP3) and diacylglycerol, measured as phosphatidate, and that the accumulation of InsP3 precedes that of [3H]inositol bisphosphate (InsP2) and [3H]inositol phosphate (InsP). This conclusion is based on the following findings. Time course experiments with myo-[3H]inositol revealed that carbachol increased the accumulation of InsP3 by 12% in 15s and by 23% in 30s; in contrast, a significant increase in InsP release was not observed until about 2 min. Time-course experiments with 32P revealed a 10% loss of radioactivity from PtdIns(4,5)P2 and a corresponding 10% increase in phosphatidate labelling by carbachol in 15s; in contrast a significant increase in PtdIns labelling occurred in 5 min. Dose-response studies revealed that 5 microM-carbachol significantly increased (16%) the accumulation of InsP3 whereas a significant increase in accumulation of InsP2 and InsP was observed only at agonist concentrations greater than 10 microM. Studies on the involvement of Ca2+ in the agonist-stimulated breakdown of PtdIns(4,5)P2 in the iris revealed the following. Marked stimulation (58-78%) of inositol phosphates accumulation by carbachol in 10 min was observed in the absence of extracellular Ca2+. Like the stimulatory effect of noradrenaline, the ionophore A23187-stimulated accumulation of InsP3 was inhibited by prazosin, an alpha 1-adrenergic blocker, thus suggesting that the ionophore stimulation of PtdIns(4,5)P2 breakdown we reported previously [Akhtar & Abdel-Latif (1978) J. Pharmacol. Exp. Ther. 204, 655-688; Akhtar & Abdel-Latif (1980) Biochem. J. 192, 783-791] was secondary to the release of noradrenaline by the ionophore. The carbachol-stimulated accumulation of inositol phosphates was inhibited by EGTA (0.25 mM) and this inhibition was reversed by excess Ca2+ (1.5 mM), suggesting that EGTA treatment of the tissue chelates extracellular Ca2+ required for polyphosphoinositide phosphodiesterase activity. K+ depolarization, which causes influx of extracellular Ca2+ in smooth muscle, did not change the level of InsP3.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
In hepatocytes pre-labelled with [3H]glycerol, vasopressin increased by 20% the amount of radioactivity present in diacylglycerols. The effect of vasopressin was partially dependent on Ca2+. The magnitude of the increase in [3H]diacylglycerol was 5-times the sum of the radioactivity present in phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. No stimulation by vasopressin of the initial rate of incorporation of radioactivity into diacylglycerols was observed in cells incubated in the presence of 10 mM [3H]glycerol. Treatment of hepatocytes labelled with either [3H]ethanolamine or [3H]choline with vasopressin, ionophore A23187 or phospholipase C increased the amount of radioactivity present in trichloroacetic acid extracts of the cells. The effect of vasopressin was dependent on extracellular Ca2+. It is concluded that in hepatocytes vasopressin increases diacylglycerols by a process which does not principally involve the conversion of phosphoinositides to diacylglycerol or the de novo synthesis of diacylglycerol from glycerol 3-phosphate, but does involve the Ca2+-dependent conversion of phosphatidylethanolamine and phosphatidylcholine to diacylglycerol.  相似文献   

8.
Erythrocytes from several different species were exposed to Ca2+ and the bivalent-cation ionophore A23187. The lipid composition, morphology and K+ permeability of the treated cells were investigated. Erythrocytes from human, rat, guinea pig and rabbit (a) showed an increased concentration of 1,2-diacyl-sn-glycerol and enhanced labelling of phosphatidate with 32P, (b) underwent echinocytosis and outward vesiculation, and (c) rapidly released much of their intracellular K+. Pig cells showed only the K+ loss, and ox and sheep (high-K+) cells showed none of these Ca2+-evoked effects. All of the cells underwent stomatocytosis and inward vesiculation when treated externally with Clostridium perfringens phospholipase C. These results support the idea that there is a correlation between the asymmetric insertion of diacylglycerol (or ceramide) into the membrane and the shape-changes leading to microvesiculation, but they indicate that Ca2+-triggered K+ efflux and diacylglycerol production are unrelated events. Erythrocytes of chicken and turkey showed no Ca2+-stimulated K+ efflux. They showed slight ionophore A23187-stimulated vesiculation, but this appeared to be associated with the appearance in the membrane of ceramide rather than of diacylglycerol. Phospholipase C treatment caused very similar changes in morphology and phosphatidate labelling to those seen in mammalian erythrocytes.  相似文献   

9.
The possibility that Ca2+ ions are involved in the control of the increased phosphatidylinositol turnover which is provoked by alpha-adrenergic or muscarinic cholinergic stimulation of rat parotid-gland fragments has been investigated. Both types of stimulation provoked phosphatidylinositol breakdown, which was detected either chemically or radiochemically, and provoked a compensatory synthesis of the lipid, detected as an increased rate of incorporation of 32Pi into phosphatidylinositol. Acetylcholine had little effect on the incorporation of labelled glycerol, whereas adrenaline stimulated it significantly, but to a much lower extent than 32P incorporation: this suggests that the response to acetylcholine was entirely accounted for by renewal of the phosphorylinositol head-group of the lipid, but that some synthesis de novo was involved in the response to adrenaline. The responses to both types of stimulation, whether measured as phosphatidylinositol breakdown or as phosphatidylinositol labelling, occurred equally well in incubation media containing 2.5 mm-Ca2+ or 0.2 mm-EGTA [ethanedioxybis(ethylamine)-tetra-acetic acid]. Incubation with a bivalent cation ionophore (A23187) led to a small and more variable increase in phosphatidylinositol labelling with 32Pi, which occurred whether or not Ca2+ was available in the extracellular medium: this was not accompanied by significant phosphatidylinositol breakdown. Cinchocaine, a local anaesthetic, produced parallel increases in the incorporation of Pi and glycerol into phosphatidylinositol. This is compatible with its known ability to inhibit phosphatidate phosphohydrolase (EC 3.1.3.4) and increase phosphatidylinositol synthesis de novo in other cells. These results indicate that the phosphatidylinositol turnover evoked by alpha-adrenergic or muscarinic cholinergic stimuli in rat parotid gland probably does not depend on an influx of Ca2+ into the cells in response to stimulation. This is in marked contrast with the K+ efflux from this tissue, which is controlled by the same receptors, but is strictly dependent on the presence of extracellular Ca2+. The Ca2+-independence of stimulated phosphatidylinositol metabolism may mean that it is controlled through a mode of receptor function different from that which controls other cell responses. Alternatively, it can be interpreted as indicating that stimulated phosphatidylinositol breakdown is intimately involved in the mechanisms of action of alpha-adrenergic and muscarinic cholinergic receptor systems.  相似文献   

10.
Exposure to phospholipase C increased the incorporation of [32P]Pi into phosphatidate, CMP-phosphatidate and phosphatidylinositol in rat adipose tissue and isolated adipocytes. A similar effect was observed in response to insulin and oxytocin. Theophylline, 3-isobutyl-1-methylxanthine and adenosine deaminase decreased [32P]Pi incorporation, and adenosine and N6-phenylisopropyladenosine reversed these effects. As with insulin, exposure of adipose tissue to phospholipase C stimulated oxidation of glucose, pyruvate and leucine and activated pyruvate dehydrogenase. Oxytocin and adenosine also mimicked the effects of insulin on leucine oxidation and pyruvate dehydrogenase. However, only insulin stimulated glycogen synthase activity, indicating that the regulation of synthase may be achieved by intracellular events distinct from those regulating changes in phospholipid metabolism, sugar transport and mitochondrial enzyme activities. It is postulated that exposure to phospholipase C forms diacylglycerol, which is phosphorylated to yield phosphatidate. The increased labelling of CMP-phosphatidate and phosphatidylinositol results from the conversion of phosphatidate into these lipids. The correlation between the effects of phospholipase C on phosphatidate synthesis and changes in adipose-tissue metabolism suggests the possibility that increased phosphatidate may directly or indirectly produce changes in membrane transport and enzyme activities. The pattern of phospholipid labelling produced by insulin, adenosine and oxytocin suggests that these stimuli may also increase phosphatidate synthesis, and, if so, changes in phospholipid metabolism could account for some of the metabolic actions of these stimuli.  相似文献   

11.
3H]Inositol incorporation into phosphoinositides of pig reticulocytes   总被引:1,自引:0,他引:1  
Phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) of pig reticulocytes were extensively labelled when these cells were incubated with [3H]inositol. In marked contrast, a total lack of [3H]inositol labelling of phosphoinositides was observed in mature erythrocytes. Phosphoinositides of both reticulocytes and mature erythrocytes were labelled with 32P but the labelling in reticulocytes was several-fold higher than in mature erythrocytes. Inclusion of Ca2+ (2 mM)+ ionophore A23187 (2 micrograms/ml) during the labelling experiments substantially reduced the radioactivity incorporation into phosphoinositides of reticulocytes. When [3H]inositol-prelabelled reticulocytes were treated with Ca2+ + A23187 the levels of radioactive PI and PIP2 did not change significantly. However, the PIP pool exhibited a remarkable sensitivity to Ca2+ as shown by a 75% increase in its radioactivity over the control. The ability to incorporate [3H]inositol into phosphoinositides remains transitorily intact in the reticulocyte stage. Thus, pig reticulocytes offer a suitable model in which to explore the physiological role of phosphoinositides in relation to cellular maturation process.  相似文献   

12.
Cultured endothelial cells from human umbilical vein were incubated for 20 h at 37 degrees C in the presence of [U-14C]arachidonic acid. Around 60-70% of the radioactive fatty acid was incorporated into cell lipids and was predominantly found in phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and triacylglycerol (39%, 33%, 13% and 6.5% of total incorporated radioactivity, respectively). Stimulation of the cells with human thrombin (2 U/ml) or calcium ionophore A23187 (5 microM) promoted the release into supernatants of arachidonic acid, 6-ketoprostaglandin F1 alpha, prostaglandins E2 and F2 alpha, in decreasing order of importance. The amount of secreted material was 4-fold higher with A23187, compared to thrombin. Parallel to the liberation process, phosphatidylcholine underwent a rapid decrease of radioactivity with both agonists, suggesting the involvement of a Ca2+-dependent phospholipase A2. Phosphatidylethanolamine displayed a minor decrease with A23187, whereas some reacylation was observed at 10 min with thrombin. Phosphatidylinositol was non-significantly affected in thrombin-stimulated cells, whereas A23187 promoted an early but minor decrease, followed by resynthesis. In contrast to A23187, thrombin was also able to promote a significant hydrolysis of triacylglycerol, which might thus be implicated in the process of arachidonate liberation. Finally, radioactive phosphatidic acid and diacylglycerol appeared in endothelial cells, in response to the two agonists. However, diacylglycerol formation did not parallel that of phosphatidic acid, especially with A23187. Determination of the 14C/3H ratio of the different lipids upon cell labelling with both [14C]arachidonic acid and [3H]palmitic acid revealed that diacylglycerol and phosphatidic acid are hardly derived from inositol-phospholipid breakdown by phospholipase C. Other possible pathways involving for instance phospholipase C splitting of phosphatidylcholine are discussed.  相似文献   

13.
A variety of amphiphilic cations caused very large increases in the rates of incorporation of Pi and glycerol into phosphatidylinositol in pig mesenteric small lymphocytes. This synthesis de novo of phosphatidylinositol led to a doubling of the phosphatidylinositol concentration in the cells within 3.5 h. The increase in synthesis of phosphatidylinositol labelled with [3H]- or [14C]-glycerol was matched by an approximately equivalent decrease in incorporation of glycerol into phosphatidylcholine, phosphatidylethanolamine and triacylglycerol. Amphilic cations which produced these effects included, in order of decreasing effectiveness, trifluoperazine (half-maximal effect at about 70 mum) greater than chlorpromazine approximately promethazine approximately imipramine greater than cinchocaine greater than amethocaine approximately cetyltrimethylammonium greater than fenfluramine greater than amphetamine greater than 2-phenethylamine greater than cocaine approximately procaine; the most effective compounds were those with the largest and most hydrophobic non-polar substituents. The response to cations was not changed by varying the extracellular Ca2+ concentration in the range 10 nm-1mm. The active amphiphilic cations interacted with anionic phospholipids causing aggregation of aqueous dispersions and/or changes in chromatographic behaviour. These results indicate that amphiphilic cations redirect glycerolipid synthesis de novo, probably owing to inhibition of phosphatidate phosphohydrolase, so that phosphatidylinositol synthesis is increased at the expense of other glycerolipids.  相似文献   

14.
1. When the ionophore A23187 and Ca2+ were added to normal human erythrocytes, the incorporation of 32P into phosphatidate was enhanced within 1 min, but there was only slight labelling of other phospholipids. 2. Labelling of phosphatidate in these cells did not continue to increase after about 20min at 37 degrees C; by this time, radioactivity in phosphatidate was about ten times higher inionophore A23187-treated cells than in controls. A net synthesis of phosphatidate was measured in response to the increase in intracellular Ca2+ concentration; the content of this phospholipid in the cell was increased by approximately 50%. 3. In the presence of 2.5 mM-Ca2+ a maximum effect was seen with about 0.5 mug of ionophore/ml. 4. The concentration of Ca2+ giving half-maximal labelling of phosphatidate in the presence of 10 mug of ionophore A23187/ml was about 10 muM. 5. A rapid decrease of ATP content in the cell occurred in ionophore-treated cells. 6. Labelling of phosphatidate appeared to be secondary to the production of 1,2-diacylglycerol in the cells; accumulation of 1,2-diacylglycerol was only seen after about 15 min. After 60 min, the 1,2-diacylglycerol content of the cells was five to seven times that of untreated control cells. 7. The change in the shape of erythrocytes treated with Ca2+ and ionophore appeared to be related to accumulation of 1,2-diacylglycerol. 8. The source of 1,2-diacylglycerol has not been definitely identified, but its fatty acid compositon was similar to that of phosphatidylcholine. However, it has an unusually high content of hexadecenoic acid, a fatty acid not common in the major erythrocyte phospholipids. 9. Accumulation of 1,2-diacyglycerol also occurred in energy-starved cells, even in the absence of calcium; in this case it appeared to be produced by phosphatidate breakdown.  相似文献   

15.
The effects of carbachol on catecholamine secretion and [32P]Pi incorporation into phospholipids was studied in perfused bovine adrenal medulla. After a labelling period, the gland was stimulated with carbachol in the absence of 32P. Subcellular fractions were then prepared from the medulla. Carbachol roughly halved the specific radioactivities of phosphatidylinositol and phosphatidate in microsomal, chromaffin-granule, mitochondrial and plasma-membrane fractions. With Ca2+-free perfusion medium, catecholamine secretion was abolished but the phospholipid changes remained. Stimulation of secretion by KCl was not accompanied by phospholipid changes. The results are not consistent with the theory relating phosphatidylinositol hydrolysis and Ca2+ gating.  相似文献   

16.
The divalent cation ionophore, A23187, at a concentration of 0.25 microgram/ml, enhanced influx of Ca2+, activity of ornithine decarboxylase and incorporation of [3H]thymidine into DNA of guinea pig lymphocytes. Combined treatment of cells with A23187 and dibutyryladenosine 3',5'-monophosphate (Bt2cAMP) augmented these three events. A23187 at a concentration of 0.06 microgram/ml was insufficient for induction of ornithine decarboxylase stimulated neither Ca2+ influx nor [3H]thymidine incorporation, but stimulated Ca2+ efflux. A23187 (0.06 microgram/ml) in combination with Bt2cAMP caused a marked induction of ornithine decarboxylase and stimulation of [3H]thymidine incorporation into DNA. When the time of Bt2cAMP addition was delayed after A23187, the stimulation of ornithine decarboxylase activity decreased. Washout of Bt2cAMP from cell culture earlier than 4 h of incubation caused a reduction in the stimulatory effect of Bt2cAMP. These results suggest that raising concentrations of cytoplasmic Ca2+ and cellular cAMP are important to some initial events leading to induction of ornithine decarboxylase and these biochemical changes are obligatory sequential steps for stimulation of DNA synthesis.  相似文献   

17.
Treatment of chicken erythrocytes with ionophore A23187 and Ca2+ caused the breakdown of a large proportion of the cellular polyphosphoinositides. Since no diacylglycerol or phosphatidate was generated, but there was a small increase in the level of phosphatidylinositol, it was concluded that breakdown occurred as a result of phosphomonoesterase activation. Experiments with subcellular fractions showed that the phosphomonoesterase activity was present in the cytosolic fraction of the cells.  相似文献   

18.
Glycerolipid synthesis was studied in isolated hepatocytes by using 177 microM [14C]oleate and 1 mM [3H]glycerol. Chlorpromazine (25-400 microM) inhibited the synthesis of phosphatidylcholine and triacylglycerol. This was accompanied by an average increase of 12-fold in the accumulation of the labelled precursors in phosphatidate at 200 microM chlorpromazine and a decrease in the conversion of phosphatidate to diacylglycerol of 76%. These results indicate that part of the inhibition of the synthesis of phosphatidylcholine and triacylglycerol occurs at the level of phosphatidate phosphohydrolase. The relative rate of triacylglycerol synthesis at different concentrations of chlorpromazine was approximately proportional to the rate of conversion of phosphatidate to diacylglycerol. Phosphatidylcholine synthesis increased at higher rates of conversion of phosphatidate to diacylglycerol, but it was relatively independent of the latter rate when this was inhibited by more than about 30% with chlorpromazine. The addition of oleate to the hepatocytes caused a translocation of phosphatidate phosphohydrolase from the cytosol to the membrane-associated compartment. Chlorpromazine had the opposite effect and displaced the phosphohydrolase from the membranes in the presence or absence of oleate. There was a highly significant correlation between the activity of phosphatidate phosphohydrolase that was associated with the membranes of the hepatocytes and the calculated conversion of [3H]phosphatidate to diacylglycerol. Chlorpromazine also antagonized the association of the phosphohydrolase with microsomal membranes when cell-free preparations were incubated with combinations of oleate and spermine. Furthermore, it inhibited the transfer of the soluble phosphohydrolase to microsomal membranes that were labelled with [14C]phosphatidate and thereby decreased diacylglycerol production. It is concluded that part of the action of chlorpromazine in inhibiting the synthesis of triacylglycerol and phosphatidylcholine occurs because it prevents the interaction of the soluble phosphatidate phosphohydrolase with the membranes on which glycerolipid synthesis occurs. This in turn prevents the conversion of phosphatidate to diacylglycerol.  相似文献   

19.
Treatment of lymphocytes with exogenous phospholipase C (phosphatidylcholine cholinephosphohydrolase, EC 3.1.4.3.) derived from Clostridium perfringens at concentrations similar to those which induced ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) activity produced diacylglycerol and phosphatidate. A divalent cation ionophore, A23187, and phytohemagglutinin induced not only diacylglycerol formation, but also ornithine decarboxylase activity. Dibutyryl cAMP inhibited both diacylglycerol formation and ornithine decarboxylase induction to a similar extent in phytohemagglutinin-stimulated lymphocytes, but stimulated them somewhat in ionophore A23187-activated lymphocytes. This suggests that the activation of intracellular phospholipase C and the formation of diacylglycerol is involved in ornithine decarboxylase induction in lymphocytes.  相似文献   

20.
Rabbit lymphocytes from the mesenteric lymph nodes were stimulated with concanavalin A, goat anti-rabbit immunoglobulin, or the Ca2+ ionophore A 23187. The stimulated incorporation of labeled uridine into RNA as well as of labeled thymidine into DNA was suppressed within a dose range of 40-1000 ng/ml cyclosporin A in both Con A-stimulated T lymphocytes and in anti-immunoglobulin-stimulated B lymphocytes, without affecting the resting cells. A 23187-stimulated rabbit lymphocytes proved to be more sensitive to cyclosporin A. At 40 ng/ml the immunosuppressive drug was effective in inhibiting elevated incorporation of labeled nucleosides into macromolecules in ionophore-stimulated cells. Cyclosporin A, at the same concentrations that were effective in inhibiting stimulated RNA and DNA synthesis, suppressed one of the earliest events occurring in stimulated lymphocytes, i.e., enhanced incorporation of unsaturated fatty acids into membrane phospholipids. Whereas cyclosporin A significantly inhibited the incorporation of arachidonic acid into phosphatidylcholine and phosphatidylethanolamine in concanavalin A-, anti-immunoglobulin-, and A 23187-stimulated cells, it proved to be ineffective in inhibiting the incorporation of arachidonate into phosphatidylinositol. The data indicate that cyclosporin A inhibits both T- and B-cell stimulation by interfering with a common target, e.g., the early activation of membrane phospholipid metabolism of rabbit lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号