首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims: To evaluate the probiotic properties of strains isolated from boza, a traditional beverage produced from cereals. Methods and Results: The strains survived low pH conditions (pH 3·0), grew well at pH 9·0 and were not inhibited by the presence of 0·3% (w/v) oxbile. Cytotoxicity levels of the bacteriocins, expressed as CC50, ranged from 38 to 3776 μg ml?1. Bacteriocin bacST284BZ revealed high activity (EC50 = 735 μg ml?1) against herpes simplex virus type 1. Growth of Mycobacterium tuberculosis was 69% repressed after 5 days in the presence of bacST194BZ. Various levels of auto‐cell aggregation and co‐aggregation with Listeria innocua LMG 13568 were observed. Adhesion of the probiotic strains to HT‐29 cells ranged from 18 to 22%. Conclusions: Boza is a rich source of probiotic lactic acid bacteria. All strains survived conditions simulating the gastrointestinal tract and produced bacteriocins active against a number of pathogens. Adherence to HT‐29 and Caco‐2 cells was within the range reported for Lactobacillus rhamnosus GG, a well‐known probiotic. In addition, the high hydrophobicity readings recorded define the strains as good probiotics. Significance and Impact of the Study: Boza contains a number of different probiotic lactic acid bacteria and could be marketed as a functional food product.  相似文献   

2.
Bacteriocins ST414BZ and ST664BZ, produced by Lactobacillus plantarum, inhibited the growth of a number of lactic acid bacteria, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Enterobacter cloacae. Optimal production of bacteriocin ST664BZ (12 800 AU/mL) was recorded in MRS broth with an initial pH of 6.0 and 6.5. Bacteriocin ST414BZ was produced in MRS broth at lower pH values, ranging from 6.5 to 5.0. Low levels of bacteriocin activity were produced in BHI, M17, 10% (w/v) soy flour and 10% (w/v) molasses, suggesting that specific nutrients are required for optimal production. Bacteriocin ST414BZ production doubled (from 12 800 to 25 600 AU/mL) in MRS broth with tryptone as sole nitrogen source, or when glucose was replaced with maltose. Bacteriocin ST664BZ production, on the other hand, was less influenced by changes in nitrogen content, but increased two-fold (to 25 600 AU/mL) when glucose was replaced with sucrose, maltose or mannose, or when MRS broth was supplemented with 2.0 g/L KH2 PO4. Enrichment of MRS broth with vitamins B12, B1 or C did not stimulate production of the two bacteriocins. Growth in the presence of DL-6,8-thioctic acid increased bacteriocin ST664BZ production to 25 600 AU/mL. Concluded from these results, optimal levels of bacteriocins ST414BZ and ST664BZ will be produced in boza enriched with tryptone and maltose.  相似文献   

3.
Striking differences in the production of specific inhibitory agents affecting other strains of the same (or of related) species were found between genera of the family Enterobacteriaceae. We tested 50–163 strains each of the potentially pathogenic genera: Escherichia, Citrobacter, Enterobacter, Kluyvera, and Leclercia for their ability to produce bacteriophages, high-molecular-weight (HMW) and low-molecular-weight (LMW) bacteriocins and siderophores against the same sets of strains, using the cross-test method. The genus Escherichia differs substantially from all other Enterobacteriaceae, harboring a notable proportion of lysogenic (36.6%) and colicinogenic (13.9%) strains. Only 18.2% of the Citrobacter strains are lysogenic and only rarely are they colicinogenic, although in 7.3%, they produce phage tail-like bacteriocins. On the other hand, Kluyvera strains were only in 1.8% lysogenic, no colicinogenic strains were found, but in 7.3%, they produced siderophores causing zones of growth inhibition in agar cultures of strains of the same genus. In Leclercia, 10.0% of the strains were lysogenic, 2.0% produced HMW bacteriocins, no colicinogenic strains were found and 2.0% produced siderophores. Enterobacter has shown 23.1% of strains producing siderophores, whereas merely 7.7% were lysogenic, 1.9% colicinogenic and 3.8% formed phage tail-like bacteriocins. HMW bacteriocins of Enterobacter strains disposed of an unusually wide spectrum of activity. The siderophore activity spectrum was rather wide in any genus, but the siderophores were usually not produced by strains producing phages or colicins.  相似文献   

4.
Leuconostoc (Lc.) mesenteroides TA33a produced three bacteriocins with different inhibitory activity spectra. Bacteriocins were purified by adsorption/desorption from producer cells and reverse phase high-performance liquid chromatography. Leucocin C-TA33a, a novel bacteriocin with a predicted molecular mass of 4598 Da, inhibited Listeria and other lactic acid bacteria (LAB). Leucocin B-TA33a has a predicted molecular mass of 3466 Da, with activity against Leuconostoc/Weissella (W.) strains, and appears similar to mesenterocin 52B and dextranicin 24, while leucocin A-TA33a, which also inhibited Listeria and other LAB strains, is identical to leucocin A-UAL 187. A survey of other known bacteriocin-producing Leuconostoc/Weissella strains for the presence of the three different bacteriocins revealed that production of leucocin A-, B- and C-type bacteriocins was widespread. Lc. carnosum LA54a, W. paramesenteroides LA7a, and Lc. gelidum UAL 187-22 produced all three bacteriocins, whereas W. paramesenteroides OX and Lc. carnosum TA11a produced only leucocin A- and B-type bacteriocins. Received: 11 April 1997 / Accepted: 10 June 1997  相似文献   

5.
Lactic acid bacteria (LAB) isolated from different sources (dairy products, fruits, fresh and fermented vegetables, fermented cereals) were screened for antimicrobial activity against other bacteria, including potential pathogens and food spoiling bacteria. Six strains have been shown to produce bacteriocins: Lactococcus lactis 19.3, Lactobacillus plantarum 26.1, Enterococcus durans 41.2, isolated from dairy products and Lactobacillus amylolyticus P40 and P50, and Lactobacillus oris P49, isolated from bors. Among the six bacteriocins, there were both heat stable, low molecular mass polypeptides, with a broad inhibitory spectrum, probably belonging to class II bacteriocins, and heat labile, high molecular mass proteins, with a very narrow inhibitory spectrum, most probably belonging to class III bacteriocins. A synergistic effect of some bacteriocins mixtures was observed. We can conclude that fermented foods are still important sources of new functional LAB. Among the six characterized bacteriocins, there might be some novel compounds with interesting features. Moreover, the bacteriocin-producing strains isolated in our study may find applications as protective cultures.  相似文献   

6.
Aims:  To isolate bacteriocin-producing lactic acid bacteria (LAB) with high wide spectrum antibacterial activity and to characterize their inhibitory peptides.
Method and Results:  Seven LAB strains [ Lactobacillus casei ssp. rhamnosus (PC5), Lactobacillus delbrueckii ssp. bulgaricus (BB18), Lactococcus lactis ssp. lactis (BCM5, BK15), Enterococcus faecium (MH3), Lactobacillus plantarum (BR12), Lactobacillus casei ssp. casei (BCZ2)], isolated from authentic Bulgarian dairy products were capable of producing bacteriocins, inhibiting the widest range of pathogenic bacteria. The bacteriocins were resistant to heating at 121°C for 15 min, stable at pH 2–10, sensitive to protease, insensitive to α-amylase and lipase. Two of bacteriocins produced by Lact. bulgaricus BB18 (bulgaricin BB18) and E. faecium MH3 (enterocin MH3) were purified and the molecular masses were determined. The N -terminal amino acid sequence of bulgaricin BB18 did not show strong homology to other known bacteriocins.
Conclusions:  Lactobacillus bulgaricus BB18 and E. faecium MH3 produce two novel bacteriocins highly similar to the pediocin-like nonlantibiotics.
Significance and Impact of the Study:  The two bacteriocins are potential antimicrobial agents and, in conjunction with their producers, may have use in applications to contribute a positive effect on the balance of intestinal microflora. Furthermore, bulgaricin BB18 strongly inhibits Helicobacter pylori .  相似文献   

7.
A new group of anaerobic thermophilic bacteria was isolated from enrichment cultures obtained from deep sea sediments of Peru Margin collected during Leg 201 of the Ocean Drilling Program. A total of ten isolates were obtained from cores of 1–2 m below seafloor (mbsf) incubated at 60°C: three isolates came from the sediment 426 m below sea level with a surface temperature of 9°C (Site 1227), one from 252 m below sea level with a temperature of 12°C (Site 1228), and six isolates under sulfate-reducing condition from the lower slope of the Peru Trench (Site 1230). Strain JW/IW-1228P from the Site 1228 and strain JW/YJL-1230-7/2 from the Site 1230 were chosen as representatives of the two identified clades. Based on the 16S rDNA sequence analysis, these isolates represent a novel group with Thermovenabulum and Caldanaerobacter as their closest relatives. The temperature range for growth was 52–76°C with an optimum at around 68°C for JW/IW-1228P and 43–76°C with an optimum at around 64°C for JW/YJL-1230-7/2. The pH25C range for growth was from 6.3 to 9.3 with an optimum at 7.5 for JW/IW-1228P and from 5 to 9.5 with an optimum at 7.9–8.4 for JW/YJL-1230-7/2. The salinity range for growth was from 0% to 6% (w/v) for JW/IW-1228P and from 0% to 4.5% (w/v) for JW/YJL-1230-7/2. The G+C content of the DNA was 50 mol% for both JW/IW-1228P and JW/YJL-1230-7/2. DNA–DNA hybridization yielded 52% similarity between the two strains. According to 16S rRNA gene sequence analysis, the isolates are located within the family, Thermoanaerobacteriaceae. Based on their morphological and physiological properties and phylogenetic analysis, it is proposed that strain JW/IW-1228PT is placed into a novel taxa, Thermosediminibacter oceani, gen. nov., sp. nov. (DSM 16646T=ATCC BAA-1034T), and JW/YJL-1230-7/2T into Thermosediminibacter litoriperuensis sp. nov. (DSM 16647T =ATCC BAA-1035T).An erratum to this article can be found at  相似文献   

8.
The aim of this work was to study the antifungal properties of durancins isolated from Enterococcus durans A5‐11 and of their chemically synthesized fragments. Enterococcus durans A5‐11 is a lactic acid bacteria strain isolated from traditional Mongolian airag cheese. This strain inhibits the growth of several fungi including Fusarium culmorum, Penicillium roqueforti and Debaryomyces hansenii. It produces two bacteriocins: durancin A5‐11a and durancin A5‐11b, which have similar antimicrobial properties. The whole durancins A5‐11a and A5‐11b, as well as their N‐ and C‐terminal fragments were synthesized, and their antifungal properties were studied. C‐terminal fragments of both durancins showed stronger antifungal activities than other tested peptides. Treatment of D. hansenii LMSA2.11.003 strain with 2 mmol l?1 of the synthetic peptides led to the loss of the membrane integrity and to several changes in the ultra‐structure of the yeast cells. Chemically synthesized durancins and their synthetic fragments showed different antimicrobial properties from each other. N‐terminal peptides show activities against both bacterial and fungal strains tested. C‐terminal peptides have specific activities against tested fungal strain and do not show antibacterial activity. However, the C‐terminal fragment enhances the activity of the N‐terminal fragment in the whole bacteriocins against bacteria.

Significance and Impact of the Study

Antifungal properties of durancins isolated from Enterococcus durans A5‐11 and of their chemically synthesized fragments were determined. Treatment of D. hansenii LMSA2.11.003 strain with 2 mmol l?1 of the synthetic peptides led to the loss of the membrane integrity and to several changes in the ultra‐structure of the yeast cells. This work contributes to improve understanding of molecular causes of antimicrobial activities of bacteriocins and their fragments. It may be proposed that the studied peptides affect all the yeast cellular and intramembranes including cytoplasmatic reticulum and nuclear and vacuolar membranes.  相似文献   

9.
Lactic acid bacteria (LAB) are known to produce various types of bacteriocins, ribosomally synthesized polypeptides, which have antibacterial spectrum against many food borne pathogens. Listeria monocytogenes, a pathogenic bacterium, is of particular concern to the food industry because of its ability to grow even at refrigeration temperatures and its tolerance to preservative agents. Some of the bacteriocins of LAB are known to have anti-listerial property. In the present study, the bacteriocin produced by vancomycin sensitive Enterococcus faecium El and J4 isolated from idli batter samples was characterized. The isolates were found to tolerate high temperatures of 60°C for 15 and 30 min and 70°C for 15 min. The bacteriocin was found to be heat stable and had anti-listerial activity. The bacteriocin did not lost anti-listerial activity when treated at 100°C for 30 min or at 121°C for 15 min. The bacteriocin lost its antimicrobial activity after treating with trypsin, protinase-K, protease and peptidase.  相似文献   

10.

Aims

To isolate and characterize bacteriocins produced by predominant species of lactic acid bacteria from faeces of elderly subjects.

Methods and Results

Screening over 70 000 colonies, from faecal samples collected from 266 subjects, using the indicator organisms Lactobacillus bulgaricus LMG 6901 and Listeria innocua DPC 3572, identified 55 antimicrobial‐producing bacteria. Genomic fingerprinting following ApaI digestion revealed 15 distinct strains. The antimicrobial activities associated with 13 of the 15 strains were sensitive to protease treatment. The predominant antimicrobial‐producing species were identified as Lactobacillus salivarius, Lactobacillus gasseri, Lactobacillus acidophilus, Lactobacillus crispatus and Enterococcus spp. A number of previously characterized bacteriocins, including ABP‐118 and salivaricin B (from Lact. salivarius), enterocin B (Enterococcus faecium), lactacin B (Lact. acidophilus), gassericin T and a variant of gassericin A (Lact. gasseri), were identified. Interestingly, two antimicrobial‐producing species, not generally associated with intestinally derived microorganisms were also isolated: Lactococcus lactis producing nisin Z and Streptococcus mutans producing mutacin II.

Conclusion

These data suggest that bacteriocin production by intestinal isolates against our chosen targets under the screening conditions used was not frequent (0·08%).

Significance and Impact of the Study

The results presented are important due to growing evidence indicating bacteriocin production as a potential probiotic trait by virtue of strain dominance and/or pathogen inhibition in the mammalian intestine.  相似文献   

11.
Aims: To evaluate the probiotic properties of strains isolated from smoked salmon and previously identified as bacteriocin producers. Methods and Results: Strains Lactobacillus curvatus ET06, ET30 and ET31, Lactobacillus fermentum ET35, Lactobacillus delbrueckii ET32, Pediococcus acidilactici ET34 and Enterococcus faecium ET05, ET12 and ET88 survived conditions simulating the gastrointestinal tract (GIT) and produced bacteriocins active against several strains of Listeria monocytogenes, but presented very low activity against other lactic acid bacteria (LAB). Cell‐free supernatants containing bacteriocins, added to 3‐h‐old cultures of L. monocytogenes 603, suppressed growth over 12 h. Auto‐aggregation was strain‐specific, and values ranged from 7·2% for ET35 to 12·1% for ET05. Various degrees of co‐aggregation with L. monocytogenes 603, Lactobacillus sakei ATCC 15521 and Enterococcus faecalis ATCC 19443 were observed. Adherence of the bacteriocinogenic strains to Caco‐2 cells was within the range reported for Lactobacillus rhamnosus GG, a well‐known probiotic. The highest levels of hydrophobicity were recorded for Lact. curvatus (61·9–64·6%), Lact. fermentum (78·9%), Lact. delbrueckii (43·7%) and Ped. acidilactici (51·3%), which are higher than the one recorded for Lact. rhamnosus GG (53·3%). These strains were highly sensitive to several antibiotics and affected by several drugs from different generic groups in a strain‐dependent manner. Conclusions: Smoked salmon is a rich source of probiotic LAB. All strains survived conditions simulating the GIT and produced bacteriocins active against various pathogens. Adherence to Caco‐2 cells was within the range reported for Lact. rhamnosus GG, a well‐known probiotic. In addition, the high hydrophobicity readings recorded define the strains as good probiotics. Significance and Impact of the Study: Smoked salmon contains a number of different probiotic LAB and could be marketed as having a potential beneficial effect.  相似文献   

12.
This study aimed at characterizing two novel bacteriocin-producing enterococcal strains isolated from human intestine. A total of 200 lactic acid bacteria were isolated from a woman stool sample. Two of them were selected for characterization due to their high antimicrobial activity against five strains of Listeria monocytogenes. The selected bacteria were identified as two different strains of Enterococcus faecium and designated MT 104 and MT 162. The bacteriocins produced by MT 104 and MT 162 were stable at different pH ranging from 2 to 11 and were active after different treatments such as heat, enzymes, detergents, and γ-irradiation. The two isolated strains exhibited some probiotic properties such as survival in simulated gastric fluid and intestinal fluid, lack of expression of bile salt hydrolase or hemolytic activity, adhesion to Caco-2 cells efficiently, and sensitivity to clinical antimicrobial agents. Thus, the two isolated strains of E. faecium could become new probiotic bacteria and their bacteriocins could be used for controlling L. monocytogenes in combination with irradiation for food preservation.  相似文献   

13.
Five strains of Listeria monocytogenes, four strains of Listeria innocua and a strain of Listeria seeligeri showed different sensitivities to lactocin 705 (17 000 AU ml–1), enterocin CRL35 (8500 AU ml–1) and nisin (2500 IU ml–1) at different pHs (5, 6 and 7). The susceptibility of Listeria strains to bacteriocins at each pH was strain dependent, and it was enhanced at the low pH. L. monocytogenes had enhanced nisin tolerance while the non-nisin bacteriocins were more inhibitory with viability losses of 3–3.4 in contrast with 1.5–1.8 log cycles, respectively. Lower viability loss values were obtained with L. innocua strains with all three bacteriocins while L. seeligeri was more sensitive to nisin than to lactocin 705 or enterocin CRL35.  相似文献   

14.
Potential of Lactic Streptococci to Produce Bacteriocin   总被引:34,自引:15,他引:19       下载免费PDF全文
A survey was made on the bacteriocin-producing potential of lactic streptococci. Bacteriocin-like activities were isolated and partially purified from about 5% of the 280 strains investigated. The frequency of production varied from about 1% in Streptococcus lactis subsp. diacetylactis to 9 and 7.5% in S. lactis and Streptococcus cremoris, respectively. Eight strains of S. cremoris produced bacteriocins which, on the basis of heat stability at different pH values and inhibitory spectrum, could be divided into four types. From 54 S. lactis strains, 5 strains produced inhibitory substances, namely, three nisin-like antibiotics and two different bacteriocins. Only 1 of 93 S. lactis subsp. diacetylactis strains produced a bacteriocin which was very similar to bacteriocins of type I in S. cremoris. All of the bacteriocins that were partially purified by ammonium sulfate precipitation showed very limited inhibitory spectra. Most of the lactic streptococci and a few members of the genera Clostridium, Leuconostoc, and Pediococcus were inhibited. None of the bacteriocins acted on gram-negative bacteria. The bacteriocinogenic strains were also characterized on the basis of plasmid content. All strains possessed between one and nine plasmids ranging from 1 to 50 megadaltons.  相似文献   

15.
The interaction of four different bacteriocins produced byKlebsiella pneumoniae andCitrobacter freundii strains with cells ofKlebsiella edwardsii var.edwardsii has been studied. All four bacteriocins have different activity spectra. The existence of multi-tolerant and multi-receptor-negative mutants supports the hypothesis that the specific receptor sites for these bacteriocins on sensitive bacteria have some components in common.Bacteriocins S6 and S8, produced byKlebsiella pneumoniae strains inhibit protein biosynthesis. Colicin A, produced byCitrobacter freundii inhibits all macromolecular synthesis, but pre-treatment of sensitive cells with colicin A had no influence on the production of ATP by oxidative phosphorylation in cell homogenates. Bacteriocin G196, also produced byCitrobacter freundii inhibits protein and RNA synthesis, with little effect on DNA synthesis. Homogenates of cells pre-treated with bacteriocin G196, show a substantial phosphorylating activity.The authors wish to thank Dr. W. de Vries for performing P:O measurements. The skilful technical assistance of Miss E. A. Spanjaerdt Speckman and Miss W. M. C. Kapteijn is gratefully acknowledged.The investigations were supported (in part) by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for the Advancement of Pure Research (ZWO).  相似文献   

16.
Conjugated linoleic acid (CLA) and conjugated linolenic acid (CLNA) isomers have attracted great interest because of their potential health benefits. Formation of CLA and CLNA takes place in the rumen during biohydrogenation. Several studies have indicated that certain types of intestinal bacteria, including bifidobacteria, are able to convert linoleic acid (LA) to CLA. The role of intestinal bacteria in the formation of CLNA isomers is largely unknown. In the present study, a screening of 36 different Bifidobacterium strains for their ability to produce CLA and CLNA from free LA and α-linolenic acid (LNA), respectively, was performed. The strains were grown in MRS broth, to which LA or LNA (0.5 mg ml−1) were added after 7 h of bacterial growth. Cultures were further incubated at 37°C for 72 h. Six strains (four Bifidobacterium breve strains, a Bifidobacterium bifidum strain and a Bifidobacterium pseudolongum strain) were able to produce different CLA and CLNA isomers. Conversion percentages varied from 19.5% to 53.5% for CLA production and from 55.6% to 78.4% for CLNA production among these strains. The CLA isomers produced were further identified with Ag+-HPLC. LA was mainly converted to t9t11-CLA and c9t11-CLA. The main CLNA isomers were identified with GC-MS as c9t11c15-CLNA and t9t11c15-CLNA.  相似文献   

17.
AIMS: The aim of this study was to perform a detailed characterization of bacteriocins produced by lactic acid bacteria (LAB) isolated from malted barley. METHODS AND RESULTS: Bacteriocin activities produced by eight LAB, isolated from various types of malted barley, were purified to homogeneity by ammonium sulphate precipitation, cation exchange, hydrophobic interaction and reverse-phase liquid chromatography. Molecular mass analysis and N-terminal amino acid sequencing of the purified bacteriocins showed that four non-identical Lactobacillus sakei strains produced sakacin P, while four Leuconostoc mesenteroides strains were shown to produce bacteriocins highly similar or identical to leucocin A, leucocin C or mesenterocin Y105. Two of these bacteriocin-producing strains, Lb. sakei 5 and Leuc. mesenteroides 6, were shown to produce more than one bacteriocin. Lactobacillus sakei 5 produced sakacin P as well as two novel bacteriocins, which were termed sakacin 5X and sakacin 5T. The inhibitory spectrum of each purified bacteriocin was analysed and demonstrated that sakacin 5X was capable of inhibiting the widest range of beer spoilage organisms. CONCLUSION: All bacteriocins purified in this study were class II bacteriocins. Two of the bacteriocins have not been described previously in the literature while the remaining purified bacteriocins have been isolated from environments other than malted barley. SIGNIFICANCE AND IMPACT OF THE STUDY: This study represents a thorough analysis of bacteriocin-producing LAB from malt and demonstrates, for the first time, the variety of previously identified and novel inhibitory peptides produced by isolates from this environment. It also highlights the potential of these LAB cultures to be used as biological controlling agents in the brewing industry.  相似文献   

18.
Two moderately halophilic low G + C Gram-positive bacteria were isolated from a sample of salted skate (Class Chondrychthyes, Genus Raja). Phylogenetic analysis of the 16S rRNA gene sequence of strains RH1T and RH4 showed that these organisms represented a novel species of the genus Salinicoccus. The new isolates formed pink–red colonies and flocculated in liquid media, with optimum growth in media containing 4% NaCl and pH of about 8.0. These organisms are aerobic but reduce nitrate to nitrite under anaerobic conditions. Acid is produced from several carbohydrates. Oxidase and catalase were detected. Menaquinone 6 was the major respiratory quinone. The major fatty acids of strains RH1T and RH4 were 15:0 anteiso and 15:0 iso. The G + C contents of DNA were 46.2 and 46.0 mol%, respectively. The peptidoglycan was of A3alpha L-Lys-Gly5–6 type. On the basis of the phylogenetic analyses, physiological and biochemical characteristics, we suggest that strain RH1T (=LMG 22840 = CIP 108576) represents a new species of the genus Salinicoccus, for which we propose the name Salinicoccus salsiraiae.  相似文献   

19.
Six Selenomonas ruminantium strains (132c, JW13, SRK1, 179f, 5521c1, and 5934e), Streptococcus bovis JB1, and Bacteroides ovatus V975 were examined for nuclease activity as well as the ability to utilize nucleic acids, ribose, and 2-deoxyribose. Nuclease activity was detected in sonicated cells and culture supernatants for all bacteria except S. ruminantium JW13 and 179f sonicated cells. S. ruminantium strains were able to utilize several deoxyribonucleosides, while S. bovis JB1 and B. ovatus V975 showed little or no growth on all deoxyribonucleosides. When S. ruminantium strains 5934e, 132c, JW13, and SRK1 were incubated in medium that contained 15 mm ribose, the major end products were acetate, propionate, and lactate. S. ruminantium 5521c1 and S. bovis JB1 did not grow on ribose, and none of the S. ruminantium strains or S. bovis JB1 grew on 15 mm 2-deoxyribose. In contrast, B. ovatus V975 was able to grow on ribose and 2-deoxyribose. In conclusion, all S. ruminantium strains, S. bovis JB1, and B. ovatus V975 had nuclease activity. However, not all bacteria were able to utilize deoxyribonucleosides, ribose, or 2-deoxyribose. Received: 9 February 2000 / Accepted: 27 March 2000  相似文献   

20.
Aim: To characterize novel multiple bacteriocins produced by Leuconostoc pseudomesenteroides QU 15. Methods and Results: Leuconostoc pseudomesenteroides QU 15 isolated from Nukadoko (rice bran bed) produced novel bacteriocins. By using three purification steps, four antimicrobial peptides termed leucocin A (ΔC7), leucocin A‐QU 15, leucocin Q and leucocin N were purified from the culture supernatant. The amino acid sequences of leucocin A (ΔC7) and leucocin A‐QU 15 were identical to that of leucocin A‐UAL 187 belonging to class IIa bacteriocins, but leucocin A (ΔC7) was deficient in seven C‐terminal residues. Leucocin Q and leucocin N are novel class IId bacteriocins. Moreover, the DNA sequences encoding three bacteriocins, leucocin A‐QU 15, leucocin Q and leucocin N were obtained. Conclusions: These bacteriocins including two novel bacteriocins were identified from Leuc. pseudomesenteroides QU 15. They showed similar antimicrobial spectra, but their intensities differed. The C‐terminal region of leucocin A‐QU 15 was important for its antimicrobial activity. Leucocins Q and N were encoded by adjacent open reading frames (ORFs) in the same operon, but leucocin A‐QU 15 was not. Significance and Impact of Study: These leucocins were produced concomitantly by the same strain. Although the two novel bacteriocins were encoded by adjacent ORFs, a characteristic of class IIb bacteriocins, they did not show synergistic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号