首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Mycobacterium tuberculosis, the stringent response to amino acid starvation is mediated by the M. tuberculosis Rel (RelMtb) enzyme, which transfers a pyrophosphate from ATP to GDP or GTP to synthesize ppGpp and pppGpp, respectively. (p)ppGpp then influences numerous metabolic processes. RelMtb also encodes a second, distinct catalytic domain that hydrolyzes (p)ppGpp into pyrophosphate and GDP or GTP. RelMtb is required for chronic M. tuberculosis infection in mice; however, it is unknown which catalytic activity of RelMtb mediates pathogenesis and whether (p)ppGpp itself is necessary. In order to individually investigate the roles of (p)ppGpp synthesis and hydrolysis during M. tuberculosis pathogenesis, we generated RelMtb point mutants that were either synthetase dead (RelMtbH344Y) or hydrolase dead (RelMtbH80A). M. tuberculosis strains expressing the synthetase-dead RelMtbH344Y mutant did not persist in mice, demonstrating that the RelMtb (p)ppGpp synthetase activity is required for maintaining bacterial titers during chronic infection. Deletion of a second predicted (p)ppGpp synthetase had no effect on pathogenesis, demonstrating that RelMtb was the major contributor to (p)ppGpp production during infection. Interestingly, expression of an allele encoding the hydrolase-dead RelMtb mutant, RelMtbH80A, that is incapable of hydrolyzing (p)ppGpp but still able to synthesize (p)ppGpp decreased the growth rate of M. tuberculosis and changed the colony morphology of the bacteria. In addition, RelMtbH80A expression during acute or chronic M. tuberculosis infection in mice was lethal to the infecting bacteria. These findings highlight a distinct role for RelMtb-mediated (p)ppGpp hydrolysis that is essential for M. tuberculosis pathogenesis.  相似文献   

2.
In the Gram-positive Firmicute bacterium Bacillus subtilis, amino acid starvation induces synthesis of the alarmone (p)ppGpp by the RelA/SpoT Homolog factor Rel. This bifunctional enzyme is capable of both synthesizing and hydrolysing (p)ppGpp. To detect amino acid deficiency, Rel monitors the aminoacylation status of the ribosomal A-site tRNA by directly inspecting the tRNA’s CCA end. Here we dissect the molecular mechanism of B. subtilis Rel. Off the ribosome, Rel predominantly assumes a ‘closed’ conformation with dominant (p)ppGpp hydrolysis activity. This state does not specifically select deacylated tRNA since the interaction is only moderately affected by tRNA aminoacylation. Once bound to the vacant ribosomal A-site, Rel assumes an ‘open’ conformation, which primes its TGS and Helical domains for specific recognition and stabilization of cognate deacylated tRNA on the ribosome. The tRNA locks Rel on the ribosome in a hyperactivated state that processively synthesises (p)ppGpp while the hydrolysis is suppressed. In stark contrast to non-specific tRNA interactions off the ribosome, tRNA-dependent Rel locking on the ribosome and activation of (p)ppGpp synthesis are highly specific and completely abrogated by tRNA aminoacylation. Binding pppGpp to a dedicated allosteric site located in the N-terminal catalytic domain region of the enzyme further enhances its synthetase activity.  相似文献   

3.
Catalytic and regulatory domains of the Rel/Spo homolog of Streptococcus equisimilis affecting (p)ppGpp synthesis and degradation activities have been defined, and opposing activities of the purified protein and its fragments have been compared. Two major domains of the 739-residue Rel(Seq) protein are defined by limited proteolytic digestion. In vitro assays of the purified N-terminal half-protein reveal synthesis of (p)ppGpp by an ATP-GTP 3'-pyrophosphotransferase as well as an ability to degrade (p)ppGpp by a Mn(2+)-dependent 3'-pyrophosphohydrolase. Removal of the C-terminal half-protein has reciprocal regulatory effects on the activities of the N-terminal half-protein. Compared to the full-length protein, deletion activates (p)ppGpp synthesis specific activity about 12-fold and simultaneously inhibits (p)ppGpp degradation specific activity about 150-fold to shift the balance of the two activities in favor of synthesis. Cellular (p)ppGpp accumulation behavior is consistent with these changes. The bifunctional N-terminal half-protein can be further dissected into overlapping monofunctional subdomains, since purified peptides display either degradation activity (residues 1 to 224) or synthetic activity (residues 79 to 385) in vitro. These assignments can also apply to RelA and SpoT. The ability of Rel(Seq) to mediate (p)ppGpp accumulation during amino acid starvation in S. equisimilis is absent when the protein is expressed ectopically in Escherichia coli. Fusing the N-terminal half of Rel(Seq) with the C-terminal domain of RelA creates a chimeric protein that restores the stringent response in E. coli by inhibiting unregulated degradation and restoring regulated synthetic activity. Reciprocal intramolecular regulation of the dual activities may be a general intrinsic feature of Rel/Spo homolog proteins.  相似文献   

4.
RelMtb, a GTP pyrophosphokinase encoded by the Mycobacterium tuberculosis (Mtb) genome, catalyzes synthesis of (p)ppGpp from ATP and GDP(GTP) and its hydrolysis to GDP(GTP) and pyrophosphate to mediate stringent response, which helps bacteria to survive during nutrient limitation. Like other members of Rel_Spo homologs, RelMtb has four distinct domains: HD, Rel_Spo (RSD), TGS and ACT. The N-terminal HD and RSD are responsible for (p)ppGpp hydrolysis and synthesis, respectively. In this study, we have dissected the rel Mtb gene function and determined the minimal region essential for (p)ppGpp synthetic activity. The RelMtb and its truncated derivatives were expressed from an arabinose inducible promoter (P BAD ), and in vivo functional analyses were done in a (p)ppGpp null Escherichia coli strain. Our results indicate that only 243 amino acids (188–430 residues) containing fragment are sufficient for RelMtb (p)ppGpp synthetic activity. The results were further confirmed by in vitro assays using purified proteins. We further characterized the RSD of RelMtb by substituting several conserved amino acids with structurally related residues and identified six such residues, which appeared to be critical for maintaining its catalytic activity. Furthermore, we have also extended our analysis to an RSD encoding gene rv1366 of Mtb, and experimental results indicated that the encoded protein Rv1366 is unable to synthesize (p)ppGpp.  相似文献   

5.
In recent years, emerging and reemerging pathogens resistant to nearly all available antibiotics are on the rise. This limits the availability of effective antibiotics to treat infections, thus it is imperative to develop new drugs. The accumulation of alarmones guanosine tetraphosphate and guanosine pentaphosphate, collectively known as (p)ppGpp, is a global response of bacteria to environmental stress. (p)ppGpp has been documented to be involved in the resistance to β‐lactam and peptide antibiotics. Proposed mechanisms of action include occupation of drug targets, regulation of the expression of virulence determinants, and modification of protein activities. (p)ppGpp analogs might counteract these actions. Several such entities are being tested as new antibiotics. Further insights into the mechanisms of (p)ppGpp‐mediated drug resistance might facilitate the discovery and development of novel antibiotics. J. Cell. Physiol. 224: 300–304, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
7.
Salt-washed ribosomes from Escherichia coli, plus stringent protein, form more ppGpp than pppGpp from GTP at all times, but unwashed ribosomes are shown to synthesize primarily pppGpp as the initial product.  相似文献   

8.
9.
Summary The conjugative behaviour of nopaline and agropine Ti-plasmids has been investigated. Using a technique which avoids enrichment of transconjugants on a mating medium we have shown that preculture in the presence of agrocinopines A or B of donor strains harbouring nopaline Ti plasmids promotes plasmid transfer whereas preculture of the same strains in the presence of nopaline has no such effect. Similarly, preculture in the presence of agrocinopines C or D promotes Ti-plasmid transfer from strains harbouring agropine Ti-plasmids.  相似文献   

10.
11.
Summary The effect of (p)ppGpp on the accuracy of translation in vitro was studied with a system that has a missense error frequency similar to that of living bacteria. When poly (U)1 is translated, limiation of the system in Phe increases the Leu missense error frequency. The introduction of (p)ppGpp to the Phelimited mixtures reduces significantly the missense errors as well as reduces the rate of translation. The introduction of (p)ppGpp to a full system has no effect on the accuracy of translation but does reduce its rate. The effects of (p)ppGpp on rate and accuracy of translation can be simulated in part by other inhibitors of translation such as GDPCP, fusidic acid and tetracycline. Furthermore, the presence of ppGpp or GDPCP in a Phe-limited system leads to an accumulation of Phe-tRNA, while a Phe-limited system that contains only GTP has negligibly small concentrations of Phe-tRNA. We conclude that one way in which (p)ppGpp improves the accuracy of translation is by permitting the system to maintain a favorable Phe-tRNA/Leu-tRNA ratio.  相似文献   

12.
13.
14.
15.
Enterococcus faecalis strain OG1RF and its (p)ppGpp-deficient ΔrelA, ΔrelQ, and ΔrelA ΔrelQ mutants were grown in biofilms and evaluated for growth profiles, biofilm morphology, cell viability, and proteolytic activity. E. faecalis lacking (p)ppGpp had a diminished capacity to sustain biofilm formation over an extended period of time and expressed abundant proteolytic activity.  相似文献   

16.
The current dogma implicating RelA as the sole enzyme controlling (p)ppGpp production and degradation in Gram-positive bacteria does not apply to Streptococcus mutans. We have now identified and characterized two genes, designated as relP and relQ, encoding novel enzymes that are directly involved in (p)ppGpp synthesis. Additionally, relP is co-transcribed with a two-component signal transduction system (TCS). Analysis of the (p)ppGpp synthetic capacity of various mutants and the behaviour of strains lacking combinations of the synthetase enzymes have revealed a complex regulon and fundamental differences in the way S. mutans manages alarmone production compared with bacterial paradigms. The functionality of the RelP and RelQ enzymes was further confirmed by demonstrating that expression of relP and relQ restored growth of a (p)ppGpp(0) Escherichia coli strain in minimal medium, SMG and on medium containing 3-amino-1,2,4-triazole, and by demonstrating (p)ppGpp production in various complemented mutant strains of E. coli and S. mutans. Notably, RelQ, and RelP and the associated TCS, are harboured in some, but not all, pathogenic streptococci and related Gram-positive organisms, opening a new avenue to explore the variety of strategies employed by human and animal pathogens to survive in adverse conditions that are peculiar to environments in their hosts.  相似文献   

17.
18.
19.
Primase is an essential component of the DNA replication machinery, responsible for synthesizing RNA primers that initiate leading and lagging strand DNA synthesis. Bacterial primase activity can be regulated by the starvation-inducible nucleotide (p)ppGpp. This regulation contributes to a timely inhibition of DNA replication upon amino acid starvation in the Gram-positive bacterium Bacillus subtilis. Here, we characterize the effect of (p)ppGpp on B. subtilis DnaG primase activity in vitro. Using a single-nucleotide resolution primase assay, we dissected the effect of ppGpp on the initiation, extension, and fidelity of B. subtilis primase. We found that ppGpp has a mild effect on initiation, but strongly inhibits primer extension and reduces primase processivity, promoting termination of primer extension. High (p)ppGpp concentration, together with low GTP concentration, additively inhibit primase activity. This explains the strong inhibition of replication elongation during starvation which induces high levels of (p)ppGpp and depletion of GTP in B. subtilis. Finally, we found that lowering GTP concentration results in mismatches in primer base pairing that allow priming readthrough, and that ppGpp reduces readthrough to protect priming fidelity. These results highlight the importance of (p)ppGpp in protecting replisome integrity and genome stability in fluctuating nucleotide concentrations upon onset of environmental stress.  相似文献   

20.
Wang JD  Sanders GM  Grossman AD 《Cell》2007,128(5):865-875
DNA replication is highly regulated in most organisms. Although much research has focused on mechanisms that regulate initiation of replication, mechanisms that regulate elongation of replication are less well understood. We characterized a mechanism that regulates replication elongation in the bacterium Bacillus subtilis. Replication elongation was inhibited within minutes after amino acid starvation, regardless of where the replication forks were located on the chromosome. We found that small nucleotides ppGpp and pppGpp, which are induced upon starvation, appeared to inhibit replication directly by inhibiting primase, an essential component of the replication machinery. The replication forks arrested with (p)ppGpp did not recruit the recombination protein RecA, indicating that the forks are not disrupted. (p)ppGpp appear to be part of a surveillance mechanism that links nutrient availability to replication by rapidly inhibiting replication in starved cells, thereby preventing replication-fork disruption. This control may be important for cells to maintain genomic integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号