首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pleometrosis (colony founding by multiple queens) may improve life history characteristics that are important for early colony survival. When queens unite their initial brood, the number of workers present when incipient colonies open may be higher than for single queen colonies. Further, the time until the first worker emerges may shorten. For territorial species and species that rob brood from neighbouring colonies, a faster production of more workers may improve the chance of surviving intraspecific competition. In this study, the time from the nuptial flight to the emergence of the first worker in incipient Oecophylla smaragdina Fabr. colonies founded by 1–5 queens was compared and the production of brood during the first 68 days after the nuptial flight was assessed. Compared to haplometrotic colonies, pleometrotic colonies produced 3.2 times more workers, their first worker emerged on average 4.3 days (8%) earlier and the queen’s per capita egg production almost doubled. Further, colony production was positively, correlated with the number of founding queens and time to worker emergence was negatively correlated. These results indicate that pleometrotic O. smaragdina colo-nies are competitively superior to haplometrotic colonies as they produce more workers faster and shorten the claustral phase, leading to increased queen fecundity.  相似文献   

2.
Summary In ants, there are two main processes of colony founding, the independent and the dependent modes. In the first case young queens start colony founding without the help of workers, whereas in the second case they are accompanied by workers. To determine the relation between the mode of colony founding and the physiology of queens, we collected mature gynes of 24 ant species. Mature gynes of species utilizing independent colony founding had a far higher relative fat content than gynes of species employing dependent colony founding. These fat reserves are stored during the period of maturation, i.e. between the time of emergence and mating, and serve as fuel during the time of colony founding to nurture the queen and the brood. Gynes of species founding independently but non claustrally were found to have a relative fat content intermediate between the values found for gynes founding independently and those founding dependently. This suggests that such gynes rely partially on their fat reserves and partially on the energy provided by prey they collect to nurture themselves and the first brood during the time of colony founding. Study of the fat content of mature gynes of all species has shown that it gives a good indication of the mode of colony founding.  相似文献   

3.
The role of the ant colony largely consists of non-reproductive tasks, such as foraging, tending brood, and defense. However, workers are vitally linked to reproduction through their provisioning of sexual offspring, which are produced annually to mate and initiate new colonies. Gynes (future queens) have size-associated variation in colony founding strategy (claustrality), with each strategy requiring different energetic investments from their natal colony. We compared the per capita production cost required for semi-claustral, facultative, and claustral gynes across four species of Pogonomyrmex harvester ants. We found that the claustral founding strategy is markedly expensive, costing approximately 70% more energy than that of the semi-claustral strategy. Relative to males, claustral gynes also had the largest differential investment and smallest size variation. We applied these investment costs to a model by Brown and Bonhoeffer (2003) that predicts founding strategy based on investment cost and foraging survivorship. The model predicts that non-claustral foundresses must survive the foraging period with a probability of 30–36% in order for a foraging strategy to be selectively favored. These results highlight the importance of incorporating resource investment at the colony level when investigating the evolution of colony founding strategies in ants.  相似文献   

4.
Summary Queen ants start new colonies either unassisted by workers (independent founding), assisted by workers from their natal nest (dependent founding), or assisted by the workers of other species (dependent, socially parasitic). The monogyne form of the fire ant,Solenopsis invicta, founds independently in summer, but in the fall it also produces a few sexuals some of which overwinter, then fly and mate in early spring. These overwintered queens lack the nutritional reserves and behaviors for independent colony founding. Rather, they seek out unrelated, mature, orphaned colonies, enter them and exploit the worker force to found their own colony through intraspecific social parasitism. Success in entering orphaned colonies is higher when these lack overwintered female alates of their own. When such alates are present, orphaning causes some to dealate and become uninseminated replacement queens, usually preventing entry of unrelated, inseminated replacement queens. Such colonies produce large, all-male broods. Successful entry of a parasitic queen robs the host colony of this last chance at reproductive success. Only overwintered sexuals take part in this mode of founding.  相似文献   

5.
Incipient ant colonies are often under fierce competition, making fast growth crucial for survival. To increase production, colonies can adopt multiple queens (pleometrosis), fuse with other colonies or rob brood from neighboring colonies. However, different adoption strategies might have different impacts such as future queen fecundity or future colony size. O. smaragdina queen production was measured in incipient colonies with 2, 3 or 4 founding queens, following the transplantation of 0, 30 or 60 pupae from a donor colony. Pupae developed into mature workers, resulting in increased worker/queen ratios in pupae transplanted treatments and leading to increases in the per capita queen production. Conversely, more queens did not induce increased per capita fecundity. Thus, brood robbing added individuals to the worker force and increased future production of resident queens, whereas queen adoption increased the colony’s future production, but not the production of individual queens.  相似文献   

6.
Aron S  Passera L 《Animal behaviour》1999,57(2):325-329
In ants, young queens can found new colonies independently (without the help of workers) or dependently (with the help of workers). It has been suggested that differences in the mode of colony founding strongly influence queen survival and colony development. This is because independent queens are constrained to produce a worker force rapidly, before they deplete their body reserves and to resist the intense intercolony competition during the founding stage. By contrast, queens that found colonies dependently remain with the workers, which probably results in a lower mortality rate and earlier production of reproductive offspring. Consequently, in species that found independently, queens of incipient colonies are expected to produce mostly worker brood by laying a lower fraction of haploid (male) eggs than queens in mature colonies; such a difference would not occur in species founding dependently. We compared the primary sex ratio (proportion of male-determined eggs) laid by queens in incipient and mature colonies of two ant species Lasius nigerLinepithema humile, showing independent and dependent modes of colony founding, respectively. As predicted L. niger queens of incipient colonies laid a lower proportion of haploid eggs than queens from mature colonies. By contrast, queens of L. humile laid a similar proportion of haploid eggs in both incipient and mature colonies. These results provide the first evidence that (1) the primary sex ratio varies according to the mode of colony foundation, and (2) queens can adjust the primary sex ratio according to the life history stage of the colony in ants. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

7.
Summary The most dangerous time for an ant colony is during the founding stage when the small colony is vulnerable to predation and competition. Colonies can grow more rapidly when multiple queens cooperate in raising the first worker brood (pleometrosis) or by raiding other incipient colonies for their brood. This brood raiding has been proposed to be the primary force selecting for pleometrosis, i.e. multiple-queen colonies may have a considerable advantage in destroying neighbours by aggressively stealing their brood. An alternative hypothesis is that incipient nests are part of a larger, interconnected population structure and that brood raiding reflects cooperative pleometrosis with subdivided colonies. A simple mathematical model supports the second hypothesis: workers of incipient colonies are especially favoured to peaceably abandon their nest and join with other colonies if the queens are related or queens from raided colonies can infiltrate the raiding colony. The latter condition is often met in ant species that brood raid and particularly exemplified in fire ants (Solenopsis invicta), where brood raiding involves little mortal combat and combines with pleometrosis to rapidly increase colony size. It is proposed that the term nest consolidation should replace brood raiding to more accurately reflect the relatively non-aggressive and potentially apparently cooperative nature of interactions between incipient ant colonies.  相似文献   

8.
1. Fungus‐growing ants are obligate mutualists. Their nutrient‐rich fungus garden provides a valuable food store that sustains the ant hosts, but can also attract social parasites. 2. The ‘guest ant' Megalomyrmex adamsae Longino parasitises the fungus‐growing Trachymyrmex zeteki Weber queen just after nest founding. The parasitic queen infiltrates the incipient nest, builds a cavity in the fungal garden, and lays eggs that develop into workers and reproductive males and females. 3. This study compared young parasitised and non‐parasitised laboratory colonies by measuring garden growth and biomass, and the number of host workers and reproductives. Host queen survival and parasite colony growth were also monitored. 4. Parasitised Trachymyrmex colonies had reduced host worker and alate numbers, as well as lower garden biomass, compared with non‐parasitised control colonies, confirming that M. adamsae is a xenobiotic social parasite. Host queen survival was not significantly different between parasitised and control colonies. 5. This is the first study that experimentally infects host colonies with a xenobiotic social parasite to measure fitness cost to the host. The natural history of M. adamsae and the fungus‐growing ant mutualism are evaluated in the context of three general predictions of (Bronstein, Ecology Letters, 4 , 277–287, 2001a) regarding the cost of mutualism exploiters.  相似文献   

9.
Ability to store resources that will be used for reproduction represents a potential life history adaptation because storage permits feeding and reproduction to be decoupled spatially and/or temporally. The two ends of a continuum involve acquiring all resources prior to reproduction (capital breeding) or acquiring all resources during the reproductive period (income breeding). Traditional life history theory examines tradeoffs between costs and benefits of such strategies, but this theory has not been integrated into life history studies of ants, even though founding queens have the analogous strategies of fully claustral (capital breeding) and semi-claustral (income breeding). This study demonstrates that facultatively semi-claustral queens of the seed-harvester ant Pogonomyrmex desertorum exhibit phenotypic plasticity during colony founding because unfed queens produced few, small minims, whereas ad libitum fed queens produced larger, heavier minims and additional brood. Fed queens also lost less mass than unfed queens despite their producing more brood. Overall, foraging provides queens with a suite of benefits that likely offset potential negative effects of foraging risk. Life history studies across a diverse array of taxa show that capital breeding is consistently associated with low availability and/or unpredictability of food, i.e., environmental conditions that favor prepackaging of reproductive resources. Such a broad and consistent pattern suggests that similar factors favored the evolution of fully claustral (capital breeding) colony founding in ants. Overall, these data suggest that ant researchers should revise their conventional view that fully claustral colony founding evolved because it eliminated the need for queens to leave the nest to forage. Instead, colony founding strategies should be examined from the perspective of environmental variation, i.e., availability and predictability of food. I also provide a functional scenario that could explain the evolution of colony founding strategies in ants. Received 16 November 2005; revised 1 March 2006; accepted 29 March 2006.  相似文献   

10.
The overwintering temperatures of ants might well be elevated due to climate change. We studied whether the overwintering temperature affects the survival of the queens and whole colonies of the black garden ant, Lasius niger (Linnaeus, 1758). In two consecutive years (2009, 2010) we collected mated, colony founding queens (n=280) from the urban area of Turku, Finland. Half of the queens overwintered in +7 to +8 °C and the other half in +2 °C. After the overwintering period, we determined their survival rate and measured the body fat content, body size and immune defence (encapsulation rate) of overwintering queens. Using the same setup, we studied the survival of 1-year-old L. niger colonies (queen & workers). Overwintering at a lower temperature (+2 °C) decreased the survival of workers. The survival of colony founding queens differed between years, but unlike with workers, the overwintering temperature did not affect their survival: neither in the colony experiment nor in the single queen experiment. All of the surviving queens managed to produce their worker offspring at the same rate. The relative amount of body fat of queens was higher for those who overwintered at a lower temperature, which is likely a result of lower energy consumption. We did not detect differences in the encapsulation rate between the temperature treatment groups. The ability of colony founding queens to tolerate wide overwintering temperature variations present in urban environments may explain the success of the colony in urban areas. As the colony grows, the overwintering chambers may extend more deeply into the ground. Thus, workers may not have to cope with such cold conditions as colony founding queens.  相似文献   

11.
The fungal cultivars of fungus‐growing ants are vertically transmitted by queens but not males. Selection would therefore favor cultivars that bias the ants’ sex ratio towards gynes, beyond the gyne bias that is optimal for workers and queens. We measured sex allocation in 190 colonies of six sympatric fungus‐growing ant species. As predicted from relatedness, female bias was greater in four singly mated Sericomyrmex and Trachymyrmex species than in two multiply mated Acromyrmex species. Colonies tended to raise mainly a single sex, which could be partly explained by variation in queen number, colony fecundity, and fungal garden volume for Acromyrmex and Sericomyrmex, but not for Trachymyrmex. Year of collection, worker number and mating frequency of Acromyrmex queens did not affect the colony sex ratios. We used a novel sensitivity analysis to compare the population sex allocation ratios with the theoretical queen and worker optima for a range of values of k, the correction factor for sex differences in metabolic rate and fat content. The results were consistent with either worker or queen control, but never with fungal control for any realistic value of k. We conclude that the fungal symbiont does not distort the ants’ sex ratio in these species.  相似文献   

12.
To date very few studies have addressed the effects of inbreeding in social Hymenoptera, perhaps because the costs of inbreeding are generally considered marginal owing to male haploidy whereby recessive deleterious alleles are strongly exposed to selection in males. Here, we present one of the first studies on the effects of queen and worker homozygosity on colony performance. In a wild population of the ant Formica exsecta, the relative investment of single‐queen colonies in sexual production decreased with increased worker homozygosity. This may either stem from increased homozygosity decreasing the likelihood of diploid brood to develop into queens or a lower efficiency of more homozygous workers at feeding larvae and thus a lower proportion of the female brood developing into queens. There was also a significant negative association between colony age and the level of queen but not worker homozygosity. This association may stem from inbreeding affecting queen lifespan and/or their fecundity, and thus colony survival. However, there was no association between queen homozygosity and colony size, suggesting that inbreeding affects colony survival as a result of inbred queens having a shorter lifespan rather than a lower fecundity. Finally, there was no significant association between either worker or queen homozygosity and the probability of successful colony founding, colony size and colony productivity, the three other traits studied. Overall, these results indicate that inbreeding depression may have important effects on colony fitness by affecting both the parental (queen) and offspring (worker) generations cohabiting within an ant colony.  相似文献   

13.
The evolution of queens that rear their first brood solely using body reserves, i.e. fully claustral, is viewed as a major advance for higher ants because it eliminated the need for queens to leave the nest to forage. In an apparently unusual secondary modification, the seed-harvester ant Pogonomyrmex californicus displays obligate queen foraging, i.e. queens must forage to garner the resources necessary to survive and successfully rear their first brood. I examined the potential benefits of queen foraging by comparing ecological and physiological traits between P. californicus and several congeners in which the queen can rear brood using only body reserves. The primary advantage of foraging appears to lie in providing the queens of P. californicus with the energy to raise significantly more brood than possible by congeners that use only body reserves; the workers reared in the first brood were also heavier in mass than that predicted by their head width. Other correlates of queen foraging in P. californicus relative to tested congeners included a significantly lower total fat content for alate queens, a small queen body size, and a low queen to worker body mass ratio. Queens also forage in several other well-studied species of Pogonomyrmex, suggesting the possibility that queen foraging may be more common than previously thought in higher ants.  相似文献   

14.
Summary. Founding queens of the arboreal ant Polyrhachis moesta aggregate independently of kinship and cooperate in caring for their brood. In field studies, the number of queens in a founding nest varied from 1 to 8. The number of queens in the nests with multiple queens decreased significantly with time after the nuptial flight, resulting in monogynous or oligogynous nests. Single- and multiple-founding queens did not differ in characteristics representing nutritional states or body size immediately after the nuptial flight. Wet body weight decreased as days passed, whereas head width of founding queens who overwintered successfully were relatively larger. In laboratory studies, founding queens performed liquid food exchanges more frequently with queens from other founding nests or immature colonies than with those from the same nests. Queens in founding nests and immature colonies were observed to show no aggression against non-nestmate queens, whereas queens in established colonies showed aggressive behaviours against non-nestmates. This indicates that founding queens change drastically in their aggression levels before and after colony establishment. Multiple-founding queens started laying eggs earlier than single-founding queens under laboratory conditions. Higher brood productivity and lower brood mortality were observed in multiple-queen nests. These potential advantages in multiple-queen founding may support the cooperative association among unrelated founding queens.Received 1 December 2003; revised 25 March and 20 May 2004; accepted 3 June 2004.  相似文献   

15.
Summary In the fire ant,Solenopsis invicta, some winged virgin queens are known to shed their wings (dealate) upon removal of the mated mother queen. These virgin queens then develop their ovaries and begin to lay eggs, thereby foregoing the option of leaving on mating flights and attempting to found their own colonies. Such a response of virgin queens to queenlessness has not been reported for other ants. In order to determine if virgin queens of some other fire ants (subgenusSolenopsis) would respond in the same way, experiments were conducted onS. richteri, hybridS. invicta/richteri andS. geminata, a member of a species complex different from that of the other taxa. Just as inS. invicta, virgin queens ofS. richteri and the hybrid dealated and began to lay eggs within days of the removal of the queen. In addition, workers executed many of the reproductively active virgin queens, a phenomenon also found inS. invicta. In contrast, virgin queens ofS. geminata did not dealate or quickly begin to lay eggs upon separation from the queen. Reasons for the variability in the response of virgin queens of the different species may be 1) higher probability of reproductive success for unmated dealated queens compared to normal claustral founding inS. invicta andS. richteri linked to relatively frequent loss of the mother queen; or 2) phylogenetic constraint.  相似文献   

16.
Ant queens exhibit two primary strategies to initiate nests, independent colony founding (ICF) by solitary queens and dependent colony founding (DCF) when the queen starts a nest with a group of workers that disperse on foot from the parent nest. Numerous ant species have wingless (ergatoid) queens, and it is generally assumed that these species exhibit obligate DCF because their lack of wing musculature provides them with few resources to divert towards producing their first brood of workers. Thus, ICF by ergatoid queens is viewed as maladaptive because these queens need to take additional dangerous foraging trips to garner sufficient food to rear their first brood of workers. Contrary to this prediction, I document ICF by ergatoid queens for three species of harvester ants in the genus Pogonomyrmex (subfamily Myrmicinae), P. cunicularius cunicularius, P. cunicularius pencosensis, and P. huachucanus. Queens of P. huachucanus were obligate foragers, i.e., no minim workers could be produced without external food, and one queen of P. cunicularius pencosensis was observed foraging in the field. Abundant and/or predictable food resources likely select for the evolution of semi-claustral nest founding and ICF by these ergatoid queens. Under these conditions, foraging time would be minimized and the number and size of minim workers would be maximized. These benefits should increase founding success, which could compensate for loss of long-range dispersal. Overall, this study demonstrates that care should be taken before concluding that ant colonies employ DCF based solely on queen morphology.  相似文献   

17.
Lasioglossum malachurum, a bee species common across much of Europe, is obligately eusocial across its range but exhibits clear geographic variation in demography and social behaviour. This variation suggests that social interactions between queens and workers, opportunities for worker oviposition, and patterns of relatedness among nest mates may vary considerably, both within and among regions. In this study, we used three microsatellite loci with 12-18 alleles each to examine the sociogenetic structure of colonies from a population at Agios Nikolaos Monemvasias in southern Greece. These analyses reveal that the majority of colonies exhibit classical eusocial colony structure in which a single queen mated to a single male monopolizes oviposition. Nevertheless, we also detect low rates of multiqueen nest founding, occasional caste switching by worker-destined females, and worker oviposition of both gyne and male-producing eggs in the final brood. Previous evidence that the majority of workers show some ovarian development and a minority (17%) have at least one large oocyte contrasts with the observation that only 2-3% of gynes and males (the so-called reproductive brood) are produced by workers. An evaluation of the parameters of Hamilton's Rule suggests that queens benefit greatly from the help provided by workers but that workers achieve greater fitness by provisioning and laying their own eggs rather than by tending to the queen's eggs. This conflict of interest between the queen and her workers suggests that the discrepancy between potential and achieved worker oviposition is due to queen interference. Comparison of relatedness and maternity patterns in the Agios Nikolaos Monemvasias population with those from a northern population near Tübingen, Germany, points to a north-south cline of increasingly effective queen control of worker behaviour.  相似文献   

18.
In black cotton uplands in East Africa, four symbiotic acacia-ant species compete for possession of a single swollen thorn tree species, Acacia drepanolobium, and yet coexist at fine spatial scales. Three of the four ant species produce independent foundress queens that establish colonies claustrally within swollen thorns, most often on small saplings. We conducted surveys of such saplings at two sites in 2001 and 2004, and examined foundresses and incipient colonies within their swollen thorns to determine what factors influence their success. Competition among foundresses for nest initiation sites was intense, with an average of over one founding attempt per swollen thorn in all samples, and with living and dead queens significantly hyper-dispersed among available thorns. Combat with other foundresses was the most common cause of death among claustral queens, especially for Tetraponera penzigi. In interspecific battles for nest initiation sites, T. penzigi was dominant over Crematogaster nigriceps and C. mimosae, and C. nigriceps won over 80% of its contests with C. mimosae foundresses. For singleton foundresses, brood parasitism by the braconid wasp Trigastrotheca laikipiensis typically results in the death of the entire ant brood. Host queens defend parasite larvae, pupae and eclosed adults, apparently unable to distinguish the wasps from legitimate offspring. Rates of brood parasitism were as high as 15–20% for incipient colonies of both Crematogaster species, but were extremely low for T. nigriceps in all samples. Although T. penzigi and C. nigriceps foundresses are always solitary, approximately 18% of claustral C. mimosae colonies contain cooperating pleometrotic queens. For unparasitized, claustral C. mimosae colonies, brood production per queen did not differ between solitary and cooperating foundresses. However, the per-capita risks associated with parastitism were reduced for pleometrotic queens. Received 8 March 2005; revised 23 May 2005; accepted 3 June 2005.  相似文献   

19.
Because queens of claustral colony-founding ants raise their first workers without foraging outside the nest, the number of first workers produced depends on the nutrient reserves of the queen when she begins to establish the colony. Although a low mortality rate of queens may be expected because they seal themselves off in the nest chambers, they do face a risk of starvation. Therefore, the queens must allocate nutrients for somatic maintenance and worker production, including the feeding of larvae. However, there are few reports on the nutrient consumption of queens. To clarify the nutrient resource utilization of claustral colony-founding queens, newly mated queens of the Japanese black carpenter ant, Camponotus japonicus (Mayr), were collected just after the nuptial flight and reared in an incubator at 25 °C in the dark. The non-lipid mass and lipid mass of the queens were measured at 0, 10, 20, 30, 40, and 52 days after the nuptial flight. A significant decline in the non-lipid mass was found in the queens after hatching of larvae. In contrast, the lipid mass of the queen decreased soon after the nuptial flight. The results indicate that the somatic maintenance of the founding queens relies exclusively on lipids, while other nutrients, such as protein, may be used for feeding the larvae.  相似文献   

20.
In the Found or Fly (FoF) hypothesis ant queens experience reproduction-dispersal tradeoffs such that queens with heavier abdomens are better at founding colonies but are worse flyers. We tested predictions of FoF in two globally invasive fire ants, Solenopsis geminata (Fabricius, 1804) and S. invicta (Buren, 1972). Colonies of these species may produce two different monogyne queen types—claustral queens with heavy abdomens that found colonies independently, and parasitic queens with small abdomens that enter conspecific nests. Claustral and parasitic queens were similarly sized, but the abdomens of claustral queens weighed twice as much as those of their parasitic counterparts. Their heavier abdomens adversely impacted morphological predictors of flight ability, resulting in 32–38% lower flight muscle ratios, 55–63% higher wing loading, and 32–33% higher abdomen drag. In lab experiments maximum flight durations in claustral S. invicta queens decreased by about 18 minutes for every milligram of abdomen mass. Combining our results into a simple fitness tradeoff model, we calculated that an average parasitic S. invicta queen could produce only 1/3 as many worker offspring as a claustral queen, but could fly 4 times as long and have a 17- to 36-fold larger potential colonization area. Investigations of dispersal polymorphisms and their associated tradeoffs promises to shed light on range expansions in invasive species, the evolution of alternative reproductive strategies, and the selective forces driving the recurrent evolution of parasitism in ants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号