首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We investigated (1) the effect of constant and altered inorganic phosphate (Pi) supply (1–100 mmol m–3) on proteoid root production by white lupin ( Lupinus albus L.); and (2) the variation in citrate efflux, enzyme activity and phosphate uptake along the proteoid root axis in solution culture. Proteoid root formation was greatest at Pi solution concentrations of 1–10 mmol m–3 and was suppressed at 25 mmol m–3 Pi and higher. Except at 1 mmol m–3 Pi, the formation of proteoid roots did not affect plant dry matter yields or shoot to root dry matter ratios, indicating that proteoid roots can form under conditions of adequate P supply and not at the expense of dry matter production. Plants with over 50% of the root system as proteoid roots had tissue P concentrations considered adequate for maximum growth, providing additional evidence that proteoid roots can form on P-sufficient plants. There was an inverse relationship between the Pi concentration in the youngest mature leaf and proteoid root formation. Citrate efflux and the activities of enzymes associated with citric acid synthesis (phosphoenolpyruvate carboxylase and malate dehydrogenase) varied along the proteoid root axis, being greatest in young proteoid rootlets of the 1–3 cm region from the root tip. Citrate release from the 0–1 and 5–9 cm regions of the proteoid root was only 7% (per unit root length) of that from the 1–3 cm segment. Electrical potential and 32Pi uptake measurements showed that Pi uptake was more uniform along the proteoid root than citrate efflux.  相似文献   

4.
Abstract: Bradykinin receptors have been subdivided into at least two major pharmacological subtypes, B1 and B2. The cDNAs encoding functional B2 receptors have recently been cloned, but no molecular information exists at present on the B1 receptor. In this article, we describe experiments examining the possible relationship between the mRNAs encoding the B1 and B2 types of receptor. We showed previously that the Human fibroblast cell line W138 expresses both B1 and B2 receptors. In this report, we describe oocyte expression experiments showing that the B1 receptor in W138 human fibroblast cells is encoded by a distinct mRNA ∼2 kb shorter than that encoding the B2 receptor. We have used an antisense approach in conjunction with the oocyte expression system to demonstrate that the two messages differ in sequence at several locations throughout the length of the B2 sequence. Taken together with the mixed pharmacology exhibited in some expression systems by the cloned mouse receptor, the data indicate that B1-type pharmacology may arise from two independent molecular mechanisms.  相似文献   

5.
Effects of salinity and phosphate on ion distribution in lupin leaflets   总被引:1,自引:0,他引:1  
Lupin ( Lupinus luteus L. cv. Weiko III) were grown in nutrient solution over a range of inorganic phosphate (Pi) concentrations, with or without 50 m M NaCl. Plants with high Pi (2 m M ) and salt showed progressive leaf necrosis and had higher concentrations of total phosphate than plants grown with high Pi alone. Most of the extra total phosphate in salt treated plants was in the Pi form. Pi supply did not influence Na+, K+ or Cl concentrations in epidermal vacuoles or mesophyll cells. However, epidermal vacuoles accumulated more monovalent cations (Na+ and K+) than Cl, and in vacuoles of plants grown with 0.1 m M Pi additional Pi was accumulated, possibly to maintain charge balance. Plants grown with 2 m M Pi did not accumulate additional Pi in epidermal vacuoles, but showed higher phosphorus levels in cell walls. It is suggested that at moderate phosphorus concentrations Pi plays a role in epidermal osmotic adjustment, possibly explaining the beneficial role of additional phosphorus on salt stressed plants. At high Pi supply with salt, Pi does not contribute to osmotic adjustment and instead accumulates in cell walls. However, the cause of leaf damage under conditions of high phosphorus supply and salinity is still not entirely clear.  相似文献   

6.
Abstract: Inorganic phosphate (Pi) plays a vital role in intracellular energy metabolism. Its many effects include stimulation of glucose use, enhancement of high-energy phosphate concentrations, and modulation of cytosolic free [Ca2+]. Cultured fetal rat cortical neurons constitutively import Pi, and cytosolic levels positively correlate with [ATP], [NADPH], and energy charge. In the present study, we demonstrate that the concentration of intracellular Pi is an important determinant of acute neuronal survival after an excitotoxic or oxidative insult to cultured fetal rat cortical neurons. Extracellular Pi dose-dependently enhanced survival of cortical neurons after exposure to NMDA at early (≤6 h) time points after termination of the insult. Pi similarly increased neuronal survival after exposure to kainic acid or H2O2. Pi-exposed neurons had higher basal intracellular [Pi], [ATP], and [GSH], and slightly lower cytosolic free [Ca2+], compared with Pi-deprived neurons. Pi-exposed neurons maintained increased [ATP] after exposure to NMDA and displayed reduced formation of reactive oxygen species after exposure to kainic acid or H2O2, compared with Pi-deprived neurons. These findings demonstrate that changes in extracellular and intracellular Pi can affect neuronal survival after excitotoxic or oxidative insults.  相似文献   

7.
Bean ( Phaseolus vulgaris L.) seedlings were cultured on complete or phosphate-deficient nutrient medium. After 14 days of culture on phosphate-deficient medium the visible symptoms of Pi deficiency were observed only in the shoot, the fresh and dry weights of the roots were slightly higher than in control plants. The decreased Pi content in the roots had little effect on total respiration rate but had an effect on the level of inhibition of respiration by cyanide. The high resistance of respiration to cyanide observed in Pi-deficient roots was the result of the suppression of cytochrome path activity and an increased participation of the alternative, cyanide-resistant pathway. The cytochrome pathway activity increased when inorganic phosphate was supplied to Pi-deficient roots for 1 or 3.5 h. It is speculated that the suppression of cytochrome pathway in Pi-deficient roots may result from restriction of the phosphorylating capacity or a partial inhibition of cytochrome oxidase activity.  相似文献   

8.
1. The external mycelia of the ectomycorrhizal fungi Thelephora terrestris and Suillus luteus , associated with Pinus sylvestris roots, exhibited a substantial extracellular acid phosphatase activity. The activity was positively correlated with the ergosterol concentration in the growth substratum and decreased with an increasing P nutrition.
2. The pioneer species T. terrestris grew best at a high Pi nutrition level whereas S. luteus , a 'late-stage' mycobiont, produced more active biomass at a low Pi nutrition level.
3. The phytase activity of the external mycelia could not be detected; at the root surface a phytase activity was observed. Mycorrhizas had significantly higher activities than uninfected roots.
4. The addition of a relatively high concentration of a soluble phytate to the growth substratum resulted in an increased relative growth rate (RGR) in both mycorrhizal and non-mycorrhizal plants. The influence of the mycorrhizal fungi on the use of the phytate-P was small, despite the phytase activity of the mycorrhizal feeder roots.
5. The addition of phytate fixed on a HPLC resin did not result in an increase of the RGR and P uptake neither in the non-mycorrhizal nor in the mycorrhizal Pines. The experiment did not support the hypothesis that phytate, which has a low solubility in soils, is a useful P source for ectomycorrhizal plants.  相似文献   

9.
The role of acid phosphatases in plant phosphorus metabolism   总被引:18,自引:0,他引:18  
Hydrolysis of phosphate esters is a critical process in the energy metabolism and metabolic regulation of plant cells. This review summarizes the characteristics and putative roles of plant acid phosphatase (APase). Although immunologically closely related, plant APases display remarkable heterogeneity with regards to their kinetic and molecular properties, and subcellular location. The secreted APases of roots and cell cultures are relatively non-specific enzymes that appear to be important in the hydrolysis and mobilization of Pi from extracellular phosphomonoesters for plant nutrition. Intracellular APases are undoubtedly involved in the routine utilization of Pi reserves or other Pi-containing compounds. A special class of intracellular APase exists that demonstrate a clear-cut (but generally nonabsolute) substrate selectivity. These APases are hypothesized to have distinct metabolic functions and include: phytase, phosphoglycolate phosphatase, 3-phosphoglycerate phosphatase, phosphoenolpyruvate phosphatase, and phosphotyrosyl-protein phosphatase. APase expression is regulated by a variety of developmental and environmental factors. Pi starvation induces de novo synthesis of extra- and intracellular APases in cell cultures as well as in whole plants. Recommendations are made to achieve uniformity in the analyses of the different APase isoforms normally encountered within and between different plant tissues.  相似文献   

10.
Treeby, M. T. and van Steveninck, R. F. M. 1988. The influence of salinity on phosphate uptake and distribution in lupin roots. - Physiol. Plant. 72: 617–622.
The uptake and distribution of phosphate in lupin ( Lupinus luteus L. cv. Weiko III) roots under moderate salt (NaCl) stress was studied. Vacuolar inorganic phosphate (PJ concentrations in high phosphate plants were decreased by salt, although whole root P| was unaffected. In low phosphate plants, vacuolar Pi was unaffected by salt while whole root Pi was increased. Phosphate uptake was not altered by salt in high phosphate plants, but was depressed in low phosphate plants. These observations lead to the conclusion that in high phosphate plants Pi accumulates in cytoplasm and/or stele, ultimately giving rise to phosphate toxicity in shoots. Increasing phosphate supply had no effect on Na+ accumulation in root cell vacuoles in the epidermis or cortex, but the concentration of Cl in endodermal vacuoles was lowered.  相似文献   

11.
Bean plants ( Phaseolus vulgaris ) were grown for 16–20 days with or without phosphate in Knop nutrient medium. It was found in previous experiments that for roots grown on a Pi-deficient medium respiration is mainly carried out by the cyanide-insensitive pathway. Mitochondria isolated from—Pi, roots had poor respiratory control and their respiration exhibited 62% inhibition by cyanide and was inhibited (30%) by salicylhydroxamic acid (SHAM). In contrast, mitochondria obtained with control (+Pi) roots had respiratory control and ADP/O ratios typical for succinate as the substrate; their respiration was inhibited to 95% by cyanide and insensitive to SHAM. The integrity of mitochondrial membranes was similar in both types of mitochondria. Cytochrome oxidase activity, however, was about 20% lower in -Pi mitochondria, but the cytochrome composition was the same in both types of mitochondria. The cytochrorae pathway was not operating at full capacity in mitochondria isolated from—Pi roots but the alternative oxidation pathway participated in a great part in mitochondrial respiration, similar to in vivo whole roots. The participation of the non-phosphorylating., alternative pathway decreased the respiratory control ratio in mitochondria and had an effect on the total adenine nucleotide pool and energy charge values which were lower (16 and 13% respectively) in -Pi roots. About 50% lower ADP and 20% lower ATP levels were observed whereas AMP levels were several times higher.  相似文献   

12.
The relationship between CO2 assimilation rate, growth and partitioning of carbon among starch, sucrose, glucose and fructose were studied in phosphorus (Pi)-limited Lemna gibba L. G3. Two experimental models were used: 1) Cultures were grown at various stable, suboptimal rates regulated by the supply of Pi; 2) cultures growing at optimal rates were transferred to Pi-free medium. The response to a Pi deficiency can be divided into two phases. Phase I is characterized by hyperactivity of the sucrose synthesis pathway, leading to high levels of glucose and fructose. Phase II is characterized by starch accumulation associated with a decrease in the cytoplasmic pools of soluble sugars owing to inhibition of carbon export from the chloroplast. A strong negative correlation was found between the CO2 assimilation rate and starch levels. No significant correlation was found between assimilation and ATP levels and decrease in relative growth rate did not significantly affect the adenylate energy charge (EC). The regulatory aspects of the partitioning of carbon among soluble sugars and starch as well as the negative correlation between carbohydrate levels and CO2 assimilation at Pi-limited growth are discussed.  相似文献   

13.
We investigated the influence of elevated CO2 and soil N availability on the growth of arbuscular mycorrhizal and non-mycorrhizal fungi, and on the number of mycophagous soil microarthropods associated with the roots of Populus tremuloides . CO2 concentration did not significantly affect percentage infection of Populus roots by mycorrhizal or non-mycorrhizal fungi. However, the extra-radical hyphal network was altered both qualitatively and quantitatively, and there was a strong interaction between CO2 and soil N availability. Under N-poor soil conditions, elevated CO2 stimulated hyphal length by arbuscular mycorrhizal fungi, but depressed growth by non-mycorrhizal fungi. There was no CO2 effect at high N availability. High N availability stimulated growth by opportunistic saprobic/pathogenic fungi. Soil mites were not affected by any treatment, but collembolan numbers were positively correlated with the increase in non-mycorrhizal fungi. Results indicate a strong interaction between CO2 concentration and soil N availability on mycorrhizal functioning and on fungal-based soil food webs.  相似文献   

14.
15.
Abstract: We describe the molecular cloning of a cDNA encoding a human brain Na+-dependent inorganic phosphate (Pi) cotransporter (hBNPI). The nucleotide and deduced amino acid sequences of hBNPI reveal a protein of 560 amino acids with six to eight putative transmembrane segments. hBNPI shares a high degree of homology with other Na+-dependent inorganic Pi cotransporters, including those found in rat brain and human and rabbit kidney. Expression of hBNPI in COS-1 cells results in Na+-dependent Pi uptake. Northern blot analysis demonstrates that hBNPI mRNA is expressed predominantly in brain and most abundantly in neuron-enriched regions such as the amygdala and hippocampus. Moderate levels of expression are also observed in glia-enriched areas such as the corpus callosum, and low levels are observed in the substantia nigra, subthalamic nuclei, and thalamus. In situ hybridization histochemistry reveals relatively high levels of hBNPI mRNA in pyramidal neurons of the cerebral cortex and hippocampus and in granule neurons of dentate gyrus. The level of hBNPI mRNA is quite low in fetal compared with adult human brain, suggesting developmental regulation of hBNPI gene expression. Southern analyses of nine eukaryotic genomic DNAs probed under stringent conditions with hBNPI cDNA revealed that the hBNPI gene is highly conserved during vertebrate evolution and that each gene is most likely present as a single copy. Using fluorescent in situ hybridization, we localized hBNPI to the long arm of chromosome 19 (19q13) in close proximity to the late-onset familial Alzheimer's disease locus.  相似文献   

16.
Abstract We examined phosphate (Pi) uptake by two well-characterized microorganisms: a green alga ( Selenastrum capricornutum ) and a heterotrophic yeast ( Rhodotorula rubra ). Phosphate uptake was measured in dual- and single-species continuous cultures after perturbation of a phosphorus (P)-limited steady-state culture by additions of varying concentrations of Pi. We found that, under these conditions, both organisms had very high transport rates for Pi. The yeast was able to attain higher internal P concentrations than predicted from either steady-state or from P-starved batch culture data. Because the yeast was able to sequester and store Pi more efficiently than the alga under dilute Pi continuous culture conditions, co-existence of the two organisms was ultimately controlled by the concentration of carbon available for growth of the yeast.  相似文献   

17.
This work tests two models to account for the effects of depletion of stromal inorganic phosphate (Pi), which results in down-regulation of light capture via the exciton quenching (qE) mechanism and has been proposed to act in feedback regulation of the light reactions. In both models, antenna down-regulation is activated by acidification of the lumen, despite the fact that linear electron flow (LEF) (and associated proton flux) is decreased upon Pi depletion. In one model, an imbalance of ATP or NADPH activates cyclic electron transfer around photosystem I (CEF1), increasing proton influx to the lumen. In the second, the effective conductivity of the CFO-CF1 ATP synthase to protons ( g H+) is decreased, retarding proton efflux from the lumen. Sequestering of Pi by mannose infiltration increased sensitivities of qE and pmf to LEF. The effects were attributable to decreases in g H+, but not to CEF1 and were largely reversed by subsequent Pi feeding. Rapid recovery of g H+ in the dark suggested that dark-labile metabolic pools are responsible for regulation of the ATP synthase. Overall, these results support models where accumulation of Benson–Calvin cycle intermediates or lowering of stromal Pi below its K Mat the ATP synthase, retards proton efflux from the lumen, leading to build-up of pmf and subsequent down-regulation of photosynthetic light capture.  相似文献   

18.
19.
Phosphorus-deficient Gracilaria tenuistipitata Zhang et Xia was cultured for 15 days at two different inorganic phosphate (Pi) concentrations: 3 μM (low Pi treatmenl) or 30 μM phosphate (high Pi treatment). The amount of ribulose-l,5-bisphosphate carboxy-lase/oxygenase (Rubisco), phycobiliproteins, Chl a and total soluble proteins were higher in the high Pi than in the low Pi treatment. The total N content of the low Pi plants was lower than in plants grown at high Pi concentrations whereas the amount of total C was highest in low Pi plants. The increase of Rubisco content in the high Pi treatment (3-fold) was parallel to the enhancement of the maximum photosynthetic rate which increased 5-fold. This correspondence was also found in the low Pi treatment in which Rubisco content and maximum photosynthesis did not change significantly from the initial values. The photosynthetic efficiency was also higher at high than at low Pi. The high Pi plants also showed higher dark respiration and growth rates. The data presented here suggest that marine macroalgae submitted to Pi deficiency exhibit a decrease in growth caused not only by Pi implication on energy transfer in photosynthesis and respiration, but also by the diminution of the amount of photosynthetic pigments and Rubisco.  相似文献   

20.
Plantago lanceolata L. and Trifolium repens L. were grown for 16 wk in ambient (360 μmol mol−1) and elevated (610 μmol mol−1) atmospheric CO2. Plants were inoculated with the arbuscular mycorrhizal (AM) fungus Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe and given a phosphorus supply in the form of bonemeal, which would not be immediately available to the plants. Seven sequential harvests were taken to determine whether the effect of elevated CO2 on mycorrhizal colonization was independent of the effect of CO2 on plant growth. Plant growth analysis showed that both species grew faster in elevated CO2 and that P. lanceolata had increased carbon allocation towards the roots. Elevated CO2 did not affect the percentage of root length colonized (RLC); although total colonized root length was greater, when plant size was taken into account this effect disappeared. This finding was also true for root length colonized by arbuscules. No CO2 effect was found on hyphal density (colonization intensity) in roots. The P content of plants was increased at elevated CO2, although both shoot and root tissue P concentration were unchanged. This was again as a result of bigger plants at elevated CO2. Phosphorus inflow was unaffected by CO2 concentrations. It is concluded that there is no direct permanent effect of elevated CO2 on mycorrhizal functioning, as internal mycorrhizal development and the mycorrhizal P uptake mechanism are unaffected. The importance of sequential harvests in experiments is discussed. The direction for future research is highlighted, especially in relation to C storage in the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号