首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Separation of the complementary strands of adenovirus type 2 DNA by poly(U,G)-CsCl density gradient centrifugation permitted studies of Ad23 DNA renaturation with independently variable concentrations of each complementary strand. Single-stranded DNA was isolated by hydroxylapatite chromatography following exhaustive incubation under such conditions, and was found to selectively represent sequences of the complement present in excess during the incubation. This result was exploited in a general method for isolation of complementary strand-specific sequences of radioactively labeled Ad2 DNA or restriction enzyme fragments of Ad2 DNA. Liquid phase saturation-hybridization experiments were carried out with labeled DNA representing each complementary strand of the six endo R.EcoRI cleavage fragments of Ad2 DNA and unlabeled messenger RNA prepared from HeLa cells late after productive infections with Ad2. The results were combined with the known endo R.EcoRI cleavage map of Ad2 DNA to construct a low-resolution map showing physically separated regions, on both complementary strands of Ad2 DNA, represented in mRNA late after infection.  相似文献   

2.
The break in the complementary DNA strand of early G4 replicative form II DNA (RFII) and in the viral DNA strand of late RFII DNA was located using two single cleavage restriction enzymes (EcoRI and PstI) and by limited nick translation of the break using DNA polymerase I and 32P-labelled deoxyribonucleotides followed by digestion with the restriction enzymes HaeIII and HindII. The break in the complementary DNA strand was unique and in HaeIII Z5 close to the EcoRI cleavage site whereas the break in the viral DNA strand was on the other side of the molecule in HaeIII Z2 approxiately 50% away from the EcoRI cleavage site. Distribution of a short 3H pulse in early G4 replicating intermediates that were synthesising both DNA strands at the same time showed that synthesis of the strands started on opposite sides of the molecule and proceeded in opposite convergent directions, suggesting that initiation of synthesis of the two strands was independent and not unified in a single growing fork.  相似文献   

3.
Specific fragments of adenovirus type 2 DNA, generated by cleavage with restriction endonucleases endoR.EcoRI, endoR.HpaI and endoR.HindIII were used in hybridization-mapping experiments. The complementary strands of individual cleavage fragments were separated by the method of Tibbetts &; Pettersson (1974). Liquid hybridizations were performed with 32P-labeled separated strands of cleavage fragments and messenger RNA extracted from cells early and late after adenovirus infection. The fraction of each fragment strand which was represented in “early” and “late” messenger RNA was determined by chromatography on hydroxylapatite. Early messenger RNA was found to be derived from four widely separated regions, two on the 1- and two on the h-strand (h- and l- refer to the strand with heavy and light buoyant density in CsCl when complexed with poly(U, G)). Messenger RNA, present exclusively late after infection, is derived from several locations, predominantly from the l-strand with a major block of continuous sequences extending between positions 0.25 and 0.65 on the unit map of the adenovirus type 2 genome.  相似文献   

4.
The complementary strands of fragments of 32P-labelled adenovirus 2 DNA generated by cleavage with restriction endonucleases EcoRI or Hpa1 were separated by electrophoresis. Saturation hybridization reactions were performed between these fragment strands and unlabelled RNA extracted from the cytoplasm of adenovirus 2-transformed rat embryo cells or from human cells early after adenovirus 2 infection. The fraction of each fragment strand complementary to RNA from these sources was measured by chromatography on hydroxylapatite. Maps of the viral DNA sequences complementary to messenger RNA in different lines of transformed cells and early during lytic infection of human cells were constructed.Five lines of adenovirus 2-transformed cells were examined. All contained the same RNA sequences, complementary to about 10% of the light strand of EcoRI fragment A. DNA sequences coding for this RNA were more precisely located using Hpa1 fragments E and C and mapped at the left-hand end of the genome. Thus any viral function expressed in all adenovirus 2-transformed cells, tumour antigen, for example, must be coded by this region of the viral genome. Two lines, F17 and F18, express only these sequences; two others, 8617 and REM, also contain mRNA complementary to about 7% of the heavy strand of the right-hand end of adenovirus 2 DNA; a fifth line, T2C4, contains these and many additional viral RNA sequences in its cytoplasm.The viral RNA sequences found in all lines of transformed cells are also present in the cytoplasm of human cells during the early phase of a lytic adenovirus infection. The additional cytoplasmic sequences in the 8617 and REM cell lines also correspond to “early” RNA sequences.  相似文献   

5.
Restriction ondonuclease EcoRI was used to study the structure of the free ribosomal DNA molecules from Tetrahymena pyriformis, strain GL. From the following observations we conclude that the free rDNA molecules from Tetrahymena are giant palindromes3, each containing two genes for preribosomal RNA arranged in rotational symmetry as inverted repeating sequences. Analyses of the sizes of products of partial or complete digestion and quantitative analyses of the products of complete digestion of uniformly 32P-labeled rDNA yielded an RI endonucleolytic cleavage map which showed that the EcoRI recognition sites are arranged symmetrically about the center of the rDNA molecule.When heat-denatured rDNA was rapidly cooled under conditions in which no renaturation would occur between separated complementary strands of DNA, molecules of half the size of the original rDNA molecule were produced. These were double-stranded DNA molecules as evidenced by their resistance to digestion with S1 nuclease. Moreover, they could be digested with EcoRI to produce fragments of sizes which would be predicted from the assumption that each single strand of the original rDNA molecule had folded back on itself to form a “hair-pin” double-stranded DNA structure. Hybridization experiments between ribosomal RNA and purified rDNA showed that each rDNA molecule contains two genes for rDNA. Hybridization of the isolated EcoRI fragments of rDNA with 25 S or 17 S rRNA suggested that the two structural genes for 17 S rRNA are located near the center of the rDNA molecule and the two genes for 25 S rRNA are found in distal positions.  相似文献   

6.
7.
8.
9.
Six different synthetic deoxyhexadecamers complementary to the origin of bacteriophage φX174, corresponding to nucleotides 4299 to 4314, except for one preselected nucleotide change were used as primers for DNA synthesis on wild-type φX2 DNA as a template. DNA synthesis was performed with Escherichia coli DNA polymerase I (Klenow fragment) in the presence of DNA ligase. Heteroduplex RFIV DNA was isolated and, after limited digestion with DNAase I, complementary strands containing the mutant primers were isolated. The biological activity of these complementary strands was assayed in spheroplasts. Spheroplasts were made from E. coli K58 ung? (uracil N-glycosylase) to prevent degradation of the complementary strands caused by uracil incorporation (Baas et al., 1980a).Using (5′-32P) end-labeled primers, it was shown that all tested DNA polymerase preparations, including phage T4 DNA polymerase, contained variable amounts of 5′ → 3′ exonuclease activity. This nick translation activity may result in removal of the mutation in the primers, and therefore in isolation of wild-type complementary DNA instead of mutant complementary DNA.Restriction enzyme analysis of completed RFIV DNA showed that the primers can initiate DNA synthesis at more than one place on the φX174 genome. These complications result in a mixed population of complementary strand DNAs synthesized in vitro. Nevertheless, the desired mutants were picked up with high frequency using a selection test that is based on the difference in ultraviolet light sensitivity of homoduplex and heteroduplex φX174 RF DNA. Heteroduplex φX174 RF DNA is two to three times more sensitive to ultraviolet light irradiation than is homoduplex φX174 RF DNA (Baas &; Jansz, 1971,1972). Phage DNA derived from single plaque lysates of two of the six mutant complementary strand DNA preparations yielded, after annealing with wild-type complementary strand DNA, heteroduplex DNA with high frequency. DNA sequence analysis in the origin region of RF DNA obtained from these two phage preparations revealed the presence of the expected mutation. RFI DNA of these two origin mutants was nicked by φX174 gene A protein in the same way as wild-type φX174 RFI DNA.Phage DNA derived from single plaque lysates of the other four mutant complementary strand DNA preparations yielded exclusively homoduplex DNA after annealing with wild-type complementary strand DNA. It is concluded that priming with these deoxyhexadecamers resulted in the synthesis of complementary φX174 DNA with lethal mutations. The implications of these results, the construction of two silent, viable φX174 origin mutants and the failure to detect four others, for the initiation mechanism of φX174 RF DNA replication are discussed.  相似文献   

10.
One of the products of bacteriophage G4 DNA replication late in the infectious process is an open-circular, duplex replicative form DNA, RFII. These molecules contain a single discontinuity located at a specific site in the viral strand. Limited enzymatic repair of such RFII molecules with 32P-labeled deoxyribonucleoside triphosphates specifically labels restriction fragments HpaII A, HaeIII Z2, Hind(II and III) A and Hind(II and III) D2 and places the 3′OH terminus of the viral strand at a point approximately half-way round the genome from the single EcoRI site.These results taken together with the in vitro localization of the origin of the complementary strand at a point close to the EcoRI site (Zechel et al., 1975) suggest that G4 replicates by a mechanism involving distinct and widely separated origins of the individual strands (e.g., a displacement-loop mechanism).  相似文献   

11.
Secondary structure maps of long single strands of amplified ribosomal DNA from two closely related species of frogs, Xenopus laevis and X. mulleri, have been compared. The secondary structure pattern of the gene region is identical in both ribosomal DNAs while the patterns in the non-transcribed spacers2 differ. In X. mulleri, the spacer shows an extended region without any secondary structure adjacent to the 28 S ribosomal RNA sequence. In contrast, the same region in the X. laevis spacer has extensive secondary structure. A comparison of secondary structure maps and denaturation maps of these two ribosomal DNAs (Brown et al., 1972) reveals that the portion without secondary structure in the X. mulleri spacer corresponds to an early melting A + T-rich region. As in X. laevis ribosomal DNA, Escherichia coli restriction endonuclease (EcoRI) makes two cuts in each repeating unit of amplified ribosomal DNA from X. mulleri. The position of the cleavage sites is identical in the two species as judged from secondary structure mapping of the two classes of EcoRI fragments generated. The small fragments of X. mulleri ribosomal DNA are homogeneous in size with a duplex molecular weight of 3.0 × 106, and contain about 85% of the 28 S ribosomal RNA gene and about 17% of the 18 S ribosomal RNA gene. The large fragments are heterogeneous in size with molecular weights ranging from 4.2 to 4.9 × 106, and contain the remaining portions of the gene regions and the nontranscribed spacer. Heteroduplexes made between large fragments of different lengths show only deletion loops. The position of these loops indicates that the length heterogeneity resides in the non-transcribed spacer region. Electrophoretic analysis of EcoRI digests of chromosomal ribosomal DNA from X. mulleri demonstrates that this DNA is heterogeneous in length as well.  相似文献   

12.
The distribution of sites hybridizing with mitochondrial 4 S RNA molecules on mitochondrial DNA of Xenopus laevis has been mapped in relation to the ribosomal RNA genes and EcoRI restriction endonuclease sites. RNA molecules linked to ferritin were employed for this purpose. We have obtained evidence for 15 4 S RNA sites on the H-strand and six sites on the L-strand of X. laevis mtDNA. An indication of the possible existence of one additional site on the H-strand and four additional sites on the L-strand has been obtained. One 4 S RNA site is located in the gap between the two rRNA genes, and one site flanks each outside end of the rRNA genes. The other 4 S RNA sites are distributed almost evenly throughout both strands of the mtDNA. A comparison with the map of 4 S RNA sites on the mtDNA of HeLa cells (Angerer et al., 1976) suggests considerable evolutionary conservation of site organization.  相似文献   

13.
A 203 base-pair fragment containing the lac operator/promoter region of Escherichia coli was inserted into the EcoRI site of the plasmid vector pKC7. Rates of restriction endonuclease cleavage of the flanking EcoRI sites and of several other restriction sites on the DNA molecule were then compared in the presence and absence of bound RNA polymerase or lac repressor. The rates were identical whether or not protein had been bound, even for sites as close as 40 base-pairs from a protein binding site. No difference was detected using supercoiled, nicked circular, or linear DNA substrates. No apparent change in the rates of methylation of EcoRI sites by EcoRI methylase was produced by binding the regulatory proteins.  相似文献   

14.
15.
EcoRI analysis of bacteriophage P22 DNA packaging.   总被引:20,自引:0,他引:20  
Bacteriophage P22 linear DNA molecules are a set of circularly permuted sequences with ends located in a limited region of the physical map. This mature form of the viral chromosome is cut in headful lengths from a concatemeric precursor during DNA encapsulation. Packaging of P22 DNA begins at a specific site, which we have termed pac, and then proceeds sequentially to cut lengths of DNA slightly longer than one complete set of P22 genes (Tye et al., 1974b). The sites of DNA maturation events have been located on the physical map of EcoRI cleavage sites in P22 DNA. EcoRI digestion products of mature P22 wild-type DNA were compared with EcoRI fragments of two deletion and two insertion mutant DNAs. These mutations decrease or increase the length of the genome, but do not alter the DNA encapsulation mechanism. Thus the position of mature molecular ends relative to EcoRI restriction sites is different in each mutant, and comparison of the digests shows which fragments come from the ends of linear molecules. From the positions of the ends of molecules processed in sequential headfuls, the location of pac and the direction of encapsulation relative to the P22 map were deduced. The pac site lies in EcoRI fragment A, 4.1 × 103 base-pairs from EcoRI cleavage site 1. Sequential packaging of the concatemer is initiated at pac and proceeds in the counterclockwise direction relative to the circular map of P22. One-third of the linears in a population are cut from the concatemer at pac, and most packaging sequences do not extend beyond four headfuls.Fragment D is produced by EcoRI cleavage at a site near the end of a linear chromosome which has been encapsulated starting at pac. The position of the pac site is therefore defined by one end of fragment D. The pac site is not located near genes 12 and 18, the only known site for initiation of P22 DNA replication, but lies among late genes at a position on the physical gene map approximately analogous to the cohesive end site (cos) of bacteriophage λ at which λ DNA is cleaved during encapsulation. Our results suggest that P22 and λ DNA maturation mechanisms have many common properties.  相似文献   

16.
Despite the fact that its DNA carries six EcoRI cleavage sites, bacteriophage T5 is able to grow on an EcoRI restricting host, suggesting that it specifies a restriction protection system. In the hope of identifying this protection system, mutants of T5 have been isolated which are unable to grow on an EcoRI restricting host. Analysis of the DNA of such mutants shows that they have each acquired two new EcoRI sites per molecule as a consequence of a single EcoRI site (ris) mutation located in the terminally repetitious, first step transfer (FST) region of the genome. The EcoRI sites generated by the ris mutations differ from the natural EcoRI sites in that the latter are situated on the second step transfer (SST) DNA, which suggests that the in vivo sensitivity of ris mutants is a consequence of having an EcoRI site on the FST DNA. This is understandable, if the hypothetical restriction protection genes are also located on the FST DNA. While expression of these genes would protect natural sites on the SST DNA, the ris sites would, on the contrary, enter an environment in which the protection, products had not yet been synthesized.Construction of double and triple ris mutants has allowed the ordering of the ris sites and the construction of an EcoRI restriction map of the FST region. In addition, the ris mutants allow estimation of the size of the terminal repetition of T5 DNA as 5.9 × 106 to 6.0 × 106 daltons. Correlation of the physical map of the FST region with the already established genetic map of this region allows orientation of the pre-early genes on the genetic and physical maps, and approximate localization of two amber mutations on the physical map.  相似文献   

17.
A method for mapping transfer RNA genes on single strands of DNA is described. tRNA is covalently coupled to the electron-opaque label, ferritin. The ferritinlabeled tRNA, Fer-tRNA, is hybridized to a single strand of DNA, or to a single- strand region of a DNA in a heteroduplex. The sites where the Fer-RNA binds to the complementary sequence on the DNA are then mapped by electron microscopy. Several alternative coupling procedures are described (see Fig. 1). In HzI a — COCH2Br group is attached to ferritin by acylation. 3'-Oxidized tRNA is joined to HSRCONHNH2 by hydrazone formation. Ferritin is then coupled to tRNA by reaction of the CBr and SH bonds. In the BI procedure a lysine amino group of ferritin is coupled by Schiff base formation with 3'-oxidized RNA. The conjugate is stabilized by borohydride reduction. In the BII procedure, a —COCH2Br group is attached to ferritin. (H2NCH2CH2S—)2 is coupled to oxidized tRNA by Schiff base formation and borohydride reduction. An SH group is exposed by reduction. This HS-tRNA is coupled to a —COCH2Br group attached to ferritin. All the procedures work but BII is recommended. Methods for purifying the Fer-tRNA and the Fer-tRNA-DNA hybrid are described. For the transducing phages, φ80hpsu+,?III and φ80hpsu?III, the DNA molecules each carry a piece of bacterial DNA of length 0·066±0·007 λ unit (3100 nucleotide pairs; we find the length of λ is 8·99 φX174 units) replacing a piece of phage DNA of φ80h of length 0·045±0·005 λ unit. The left junction of this bacterial DNA with phage DNA (referred to as P-B′) is at or close to the att site. The two tandem tyrosine genes of φ80hpsu+,?III and the single tRNA gene of φ80hpsu?III have been mapped at a position 1100 nucleotides to the right of the left (P·B′) junction of phage DNA and bacterial DNA, by hybridizing Escherichia coli Fer-tRNA to φ80hpsuIII/φ80h heteroduplexes. The separation of the two ferritin labels in φ80hpsu+,?III hybrids gives 140±20 nucleotides as the size of a single tyrosine tRNA gene.  相似文献   

18.
One EcoRI-generated fragment (440 basepairs) and two EcoRI/HindIII fragments (220 and 960 basepairs) from the deletion region of T5 phage have been inserted into the phage λ XIII and the plasmid pBR322 as vectors. Recombinant DNA molecules were studied by hybridization with in vivo 32P-labeled T5 4–5 S RNAs on nitrocellulose filters. Two-dimensional polyacrylamide gel electrophoretic fractionation and fingerprint analysis of the RNAs eluted from the filters were carried out to identify RNAs coded by cloned fragments. For the accurate localization of the genes for these RNAs, RNA-DNA hybrids were treated with T1 and pancreatic RNAases, and the eluted RNA fragments stable against RNAase action were electrophoresed. It was shown that the EcoRI1440 fragment contains the gene for tRNA 10 (tRNAAsp), the EcoRI/HindIII1220 fragment contains the gene for RNA III (107 bases) and parts of the genes for RNA I (107 bases) and tRNA 12 (tRNAHis), and the EcoRI/HindIII1960 fragment contains only a part of the gene for tRNA 9 (tRNAGln). The arrangement of these genes on the physical map of T5 phage was as follows: -tRNAGln-tRNAHis-RNA III-RNA I-…-tRNAAsp.  相似文献   

19.
The periodicities of the restriction enzyme cleavage sites in highly repetitive DNAs of six mammalian species (monkey, mouse, sheep, human, calf and rat) appear related to the length of DNA contained in the nucleosome subunit of chromatin. We suggest that the nucleosome structure is an essential element in the generation and evolution of repeated DNA sequences in mammals (Brown et al., 1978; Maio et al., 1977). The possibility of a phase relation between DNA repeat sequences and associated nucleosome proteins is consistent with this hypothesis and has been tested by restriction enzyme and micrococcal nuclease digestions of repetitive DNA sequences in isolated, intact nuclei.Sites for four different restriction enzyme activities, EcoRI, EcoRI1, HindIII and HaeIII have been mapped within the repeat unit of component α DNA, a highly repetitive DNA fraction of the African green monkey. The periodicity of cleavage sites for each of the enzymes (176 ± 4 nucleotide base-pairs) corresponds closely to the periodicity (about 185 nucleotide base-pairs) of the sites attacked in the initial stages of micrococcal nuclease digestion of nuclear chromatin. In intact monkey nuclei, EcoRI-RI1 sites are accessible to restriction enzyme cleavage; the HindIII and HaeIII sites are not. The results suggest (1) that, in component α chromatin, the EcoRI-RI1 sites are found at the interstices of adjacent nucleosomes and (2) the HindIII and HaeIII sites are protected from cleavage by their location on the protein core of the nucleosome. This interpretation was confirmed by experiments in which DNA segments of mononucleosomes and nucleosome cores released from CV-1 nuclei by micrococcal nuclease were subsequently treated with EcoRI, EcoRI1 and HindIII. A major secondary segment of component α, about 140 nucleotide base-pairs in length, was released only by treatment with HindIII, in keeping with the location of the HindIII sites in the restriction map and their resistance to cleavage in intact nuclei.EcoRI reduces calf satellite I DNA to a segment of about 1408 nucleotide basepairs. In contrast, restriction of calf satellite I DNA with EcoRI1 produces six prominent segments ranging in size from 176 to 1408 nucleotide base-pairs. Treatment of isolated calf nuclei with either EcoRI or EcoRI1 did not produce segments shorter than 1408 base-pairs, indicating that while canonical EcoRI sites are accessible to attack, the irregularly spaced EcoRI1 sites are specifically blocked. The results are consistent with a phase relation between the repeat sequence of calf satellite I DNA and an octameric array of nucleosomes.  相似文献   

20.
Characterization of cloned rat ribosomal DNA fragments   总被引:4,自引:0,他引:4  
Summary Two Charon 4A lambda bacteriophage clones were characterized which contain all and part of the 18S ribosomal DNA of the rat. One clone contained two Eco RI fragments which include the whole 18S ribosomal RNA region and part of 28S ribosomal RNA region. The other clone contained an Eco RI fragment which covers part of 18S ribosomal RNA region. There were differences between the two clones in the non-transcribed spacer regions suggesting that there is heterogeneity in the non-transcribed spacer regions of rat ribosomal genes. The restriction map of the cloned mouse ribosomal DNA. Eco RI, Hind III, Pst I, and Bam HI sites in 18S ribosomal RNA region were in the same places in mouse and rat DNA but the restriction sites in the 5-spacer regions were different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号