首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
双色荧光杂交芯片在近交系小鼠遗传监测中的应用   总被引:2,自引:0,他引:2  
应用一种新的高通量SNP检测方法-双色荧光杂交芯片技术进行近交系小鼠遗传监测。应用双色荧光杂交芯片技术对4个品系近交系小鼠的多个基因组DNA样本进行SNP分型,整合6个SNP位点的芯片杂交信息,对样本所属品系进行判断。研究结果表明SNP检测方法-双色荧光杂交芯片技术能够对选定的6个SNP位点进行高准确率分型;双色荧光杂交芯片技术是一种高通量SNP检测的良好工具,适合于对少量近交系品系来源的大样本量小鼠进行遗传污染监测和品系鉴定,并具有扩大应用的潜力。  相似文献   

2.
单核苷酸多态性(single nucleotide polymorphism,SNP)在对复杂疾病遗传易感性以及基于群体基因识别等方面的研究中起着非常重要的作用,尤其是对复杂疾病遗传易感性的研究,需要对大量样本进行分型.为了满足这种要求,亟待需要发展一种操作简单、成本较低、适于自动化和高通量的分型技术.利用磁性颗粒"在位"固相PCR(insituMPs-PCR)扩增的靶序列,通过与野生、突变标签探针以及双色荧光(Cy3,Cy5)通用检测子杂交实现对样本的分型.应用该方法,对96个样本的亚甲基四氢叶酸还原酶(MTHFR)基因C677T位点的多态性进行了检测,其野生型和突变型样本的正错配信号比大于4.5,杂合型正错配信号比接近1,分型结果与测序结果一致.  相似文献   

3.
Liu H  Li S  Wang Z  Ji M  Nie L  He N 《Journal of biotechnology》2007,131(3):217-222
Single-nucleotide polymorphisms (SNPs) are one-base variations in DNA sequence that can often be helpful when trying to find genes responsible for inherited diseases. In this paper, a microarray-based method for typing single nucleotide polymorphisms (SNPs) using solid-phase polymerase chain reaction (PCR) on magnetic nanoparticles (MNPs) was developed. One primer with biotin-label was captured by streptavidin coated magnetic nanoparticles (SA-MNPs), and PCR products were directly amplified on the surface of SA-MNPs in a 96-well plate. The samples were interrogated by hybridization with a pair of dual-color probes to determine SNP, and then genotype of each sample can be simultaneously identified by scanning the microarray printed with the denatured fluorescent probes. The C677T polymorphisms of methylenetetrahydrofolate reductase (MTHFR) gene from 126 samples were interrogated using this method. The results showed that three different genotypes were discriminated by three fluorescence patterns on the microarray. Without any purification and reduction procedure, and all reactions can be performed in the same vessel, this approach will be a simple and labor-saving method for SNP genotyping and can be applicable towards the automation system to achieve high-throughput SNP detection.  相似文献   

4.
A high-throughput and cost-effective single-nucleotide polymorphism (SNP) genotyping method based on a gold magnetic nanoparticle (GMNP) array with dual-color hybridization has been designed. Biotinylated single-strand polymerase chain reaction (PCR) products containing the SNP locus were captured by the GMNPs that were coated with streptavidin. The GMNP array was fabricated by immobilizing single-stranded DNA (ssDNA)-GMNP complexes onto a glass slide using a magnetic field, and SNPs were identified with dual-color fluorescence hybridization. Three different SNP loci from 24 samples were genotyped successfully using this platform. This procedure allows the user to directly analyze the bead fluorescence to determine the SNP genotype, and it eliminates the need for background subtraction for signal determination. This method also bypasses tedious PCR purification and concentration procedures, and it facilitates large-scale SNP studies by using a method that is highly sensitive, simple, labor-saving, and potentially automatable.  相似文献   

5.
BACKGROUND: Aberrant DNA methylation of CpG sites is among the earliest and most frequent alterations in cancer. It is of great importance to develop simple, high-throughput and quantitative methods for methylation detection. METHODS: A high-throughput methylation analysis method has been developed based on microarray and dual-color fluorescence hybridization. The genomic DNA was treated with bisulfite, resulting in conversion of non-methylated cytosine, but not methylated cytosine, into uracil within CpG islands of interest. PCR products of the treated genomic templates were spotted and immobilized onto a poly-l-lysine coated glass slide to fabricate a microarray and then interrogated by hybridization with dual-color probes to determine the methylation status. The hybridized signals were obtained with a scanner and the results were analyzed with the software Genepix Pro 3.0. RESULTS: The methylation status of the CpG islands of IGFBP7 gene has been successfully evaluated by the microarray method for twenty-seven samples. All the investigated samples, including twenty human breast tumor tissues, six corresponding normal human breast tissues and one liver cell line, all CpG sites were found completely methylated. CONCLUSIONS: The microarray technology has been proven to have potential for high-throughput detection of the methylation status for a given gene in multi-genomic samples, which could be a novel approach for rapidly screening DNA methylation marker for early stage cancer diagnosis.  相似文献   

6.
目的探讨采用单核苷酸多态性(SNP)检测方法-双色荧光正相杂交芯片技术对近交系小鼠遗传质量监测及相关影响因素。方法运用基于芯片的双色荧光正相杂交检测SNP技术,进行芯片杂交动力学研究,考察信号值(Cy3,Cy5)和ratio值(Cy5/Cy3)与PCR产物点样浓度、PCR产物长度和荧光标记探针长度之间的关系,研究PCR产物点样浓度、PCR产物长度和荧光标记探针长度对SNP分型的影响。结果采用正反标记实验后,Ratio值随着PCR产物点样浓度的增加呈稳定趋势;PCR双链产物长度对信号值影响比较大,点样时其长度不宜太长,最好不超过450 bp;随荧光标记探针长度的增加,基因分型能力明显下降,长度为15 bp最佳,长度超过20 bp时,已基本没有区分能力。结论PCR产物点样浓度、PCR产物长度和荧光标记探针长度是双色荧光正相杂交SNP分型系统的重要影响因素,采取适当的PCR产物点样浓度、PCR产物长度和荧光标记探针长度,并采用正反标记实验,可以取得稳定、准确的基因分型效果。为进一步进行近交系小鼠遗传质量监测的研究奠定基础。  相似文献   

7.
The tagged microarray marker (TAM) method allows high-throughput differentiation between predicted alternative PCR products. Typically, the method is used as a molecular marker approach to determining the allelic states of single nucleotide polymorphisms (SNPs) or insertion-deletion (indel) alleles at genomic loci in multiple individuals. Biotin-labeled PCR products are spotted, unpurified, onto a streptavidin-coated glass slide and the alternative products are differentiated by hybridization to fluorescent detector oligonucleotides that recognize corresponding allele-specific tags on the PCR primers. The main attractions of this method are its high throughput (thousands of PCRs are analyzed per slide), flexibility of scoring (any combination, from a single marker in thousands of samples to thousands of markers in a single sample, can be analyzed) and flexibility of scale (any experimental scale, from a small lab setting up to a large project). This protocol describes an experiment involving 3,072 PCRs scored on a slide. The whole process from the start of PCR setup to receiving the data spreadsheet takes 2 d.  相似文献   

8.
A microarray-based method has been developed for scoring thousands of DNAs for a co-dominant molecular marker on a glass slide. The approach was developed to detect insertional polymorphism of transposons and works well with single nucleotide polymorphism (SNP) markers. Biotin- terminated allele-specific PCR products are spotted unpurified onto streptavidin-coated glass slides and visualised by hybridisation of fluorescent detector oligonucleotides to tags attached to the allele- specific PCR primers. Two tagged primer oligonucleotides are used per locus and each tag is detected by hybridisation to a concatameric DNA probe labelled with multiple fluorochromes.  相似文献   

9.
This study introduces a DNA microarray-based genotyping system for accessing single nucleotide polymorphisms (SNPs) directly from a genomic DNA sample. The described one-step approach combines multiplex amplification and allele-specific solid-phase PCR into an on-chip reaction platform. The multiplex amplification of genomic DNA and the genotyping reaction are both performed directly on the microarray in a single reaction. Oligonucleotides that interrogate single nucleotide positions within multiple genomic regions of interest are covalently tethered to a glass chip, allowing quick analysis of reaction products by fluorescence scanning. Due to a fourfold SNP detection approach employing simultaneous probing of sense and antisense strand information, genotypes can be automatically assigned and validated using a simple computer algorithm. We used the described procedure for parallel genotyping of 10 different polymorphisms in a single reaction and successfully analyzed more than 100 human DNA samples. More than 99% of genotype data were in agreement with data obtained in control experiments with allele-specific oligonucleotide hybridization and capillary sequencing. Our results suggest that this approach might constitute a powerful tool for the analysis of genetic variation.  相似文献   

10.
Liu H  Li S  Wang Z  Hou P  He Q  He N 《Biotechnology journal》2007,2(4):508-511
A novel approach for the genotyping of single nucleotide polymorphisms (SNPs) based on solidphase PCR on magnetic nanoparticles (MNPs) is described. PCR products were amplified directly on MNPs. The genotypes of a given SNP were differentiated by hybridization with a pair of allele-specific probes labeled with dual-color fluorescence (Cy3, Cy5). The results were analyzed by scanning the microarray printed with the denatured fluorescent probes on an unmodified glass slide. Electrophoresis analysis indicated that PCR could proceed successfully when MNPs-bound primers were used. Furthermore, nine different samples were genotyped and their fluorescent signals were quantified. Genotyping results showed that three genotypes for the locus were very easily discriminated. The fluorescent ratios (match probe:mismatch probe signal) of homozygous samples were over 9.3, whereas heterozygous samples had ratios near 1.0. Without any purification and concentration of PCR products, this new MNP-PCR based genotyping assay potentially provides a rapid, labor-saving method for genotyping of a large number of individuals.  相似文献   

11.
Single-nucleotide polymorphisms (SNPs) are considered useful polymorphic markers for genetic studies of polygenic traits. A new practical approach to high-throughput genotyping of SNPs in a large number of individuals is needed in association study and other studies on relationships between genes and diseases. We have developed an accurate and high-throughput method for determining the allele frequencies by pooling the DNA samples and applying a DNA microarray hybridization analysis. In this method, the combination of the microarray, DNA pooling, probe pair hybridization, and fluorescent ratio analysis solves the dual problems of parallel multiple sample analysis, and parallel multiplex SNP genotyping for association study. Multiple DNA samples are immobilized on a slide and a single hybridization is performed with a pool of allele-specific oligonucleotide probes. The results of this study show that hybridization of microarray from pooled DNA samples can accurately obtain estimates of absolute allele frequencies in a sample pool. This method can also be used to identify differences in allele frequencies in distinct populations. It is amenable to automation and is suitable for immediate utilization for high-throughput genotyping of SNP.  相似文献   

12.
目的:研制猪链球菌2型(SS2)全基因组DNA芯片,建立SS2基因表达谱技术平台。方法:利用SS2全基因组序列,挑选出2194条基因,经PCR扩增出2156条基因并将产物纯化,点样制备芯片;将芯片用于表达谱研究,采用实时定量PCR验证表达谱结果,对芯片进行可靠性分析。结果:芯片杂交数据与实时定量PCR验证显示了较高的相关性,二者相关系数r=0.87。结论:研制了一批SS2全基因组DNA芯片,并建立了基于DNA芯片的表达谱技术平台。  相似文献   

13.
Ensuring the genetic homogeneity of the mice used in laboratory experiments contributes to the Reduction aspect of the Three Rs, by maximising the quality of the data obtained from any animals that are used for these purposes, and ultimately reducing the numbers of animals used. Single nucleotide polymorphism (SNP) genotyping is especially suitable for use in the analysis of the genetic purity of model organisms such as the mouse, because bi-allelic markers remain fully informative when used to characterise crosses between inbred strains. Here, we attempted to apply a microarray-based method for a SNP marker to monitor the genetic quality of inbred mouse strains, so as to validate the reliability, stability and applicability of this SNP genotyping panel. The amplified PCR products containing four different SNP loci from four inbred mouse strains were spotted and immobilised onto amino-modified glass slides to generate a microarray. This was then interrogated through hybridisation with dual-colour probes, to determine the SNP genotypes of each sample. The results indicated that this microarray-based method could effectively determine the genotypes of the four selected SNPs with a high degree of accuracy. We have developed a new SNP genotyping technique for effective use in the genetic monitoring of inbred mouse strains.  相似文献   

14.
Wu Z  Luo J  Ge Q  Lu Z 《Biosensors & bioelectronics》2008,23(9):1333-1339
Aberrant DNA methylation of CpG site in the gene promoter region has been confirmed to be closely associated with carcinogenesis. In the present study, a microarray-based methylation-sensitive single-nucleotide primer extension (Ms-SNuPE) for parallel detecting changes of DNA methylation in cancer was developed. After modification by sodium sulfite, the unmethylated cytosine in the genomic DNA is converted to uracil while leaving the 5-methylcytosine unchanged, which can be detected by bifunctional primer carrying a unique sequence tag in addition to a locus-specific sequence. Because each locus has a distinct tag, the detecting reactions can be performed in a highly multiplexed fashion and the resulting product then be hybridized to the reverse complements of the sequence tags arrayed on a glass slide for methylation analysis. The calibration curves with the correlation coefficient >0.97 were established, which suggested that the method could be used in near-quantitative DNA methylation analysis. Two breast tumor-related genes (E-cad and p16) are successfully analyzed by two group primers (22 primers total), and the results are compatible with that of methylation-specific PCR (MSP). Our research proved that the method is simple and inexpensive, and could be applied as a high-throughput tool to quantitatively determine methylation status of the investigated genes.  相似文献   

15.
具外源基因组成分(外源染色体/染色体片段/基因)植株是目前进行基因组学研究以及作物改良的重要材料。迄今为止,已建立了基于性状观测、染色体分析、特异蛋白、DNA序列4种鉴定外源基因组成分的策略。其中,基于DNA序列的分子标记技术是当前鉴定外源基因组成分的主要手段,文中归纳了用于小麦、甘蓝等重要作物外源基因组成分的分子标记,且对简单重复序列(Simple sequence repeat, SSR)、插入缺失(Insertion-deletion,InDel)、单核苷酸多态性(Single nucleotide polymorphism,SNP)等9种标记进行了系统的比较。相比单一的鉴定方法,组合法更全面精准,文中对各组合法的应用情况进行统计和分析,提供了小麦族、芸薹族等作物的最佳鉴定组合。新一代分子标记InDel、SNP易实现高通量检测,对于外源渗入基因的精细定位展现了一定的优越性。此外,可以考虑一些新鉴定方法的加入,如微阵列比较基因组杂交(Microarray-based comparative genomic hybridization,array-CGH)、抑制差减杂交(Suppression subtractive hybridization,SSH)。  相似文献   

16.
Molecular inversion probe (MIP)-based capture is a scalable and effective target-enrichment technology that can use synthetic single-stranded oligonucleotides as probes. Unlike the straightforward use of synthetic oligonucleotides for low-throughput target capture, high-throughput MIP capture has required laborious protocols to generate thousands of single-stranded probes from DNA microarray because of multiple enzymatic steps, gel purifications and extensive PCR amplifications. Here, we developed a simple and efficient microarray-based MIP preparation protocol using only one enzyme with double-stranded probes and improved target capture yields by designing probes with overlapping targets and unique barcodes. To test our strategy, we produced 11 510 microarray-based duplex MIPs (microDuMIPs) and captured 3554 exons of 228 genes in a HapMap genomic DNA sample (NA12878). Under our protocol, capture performance and precision of calling were compatible to conventional MIP capture methods, yet overlapping targets and unique barcodes allowed us to precisely genotype with as little as 50 ng of input genomic DNA without library preparation. microDuMIP method is simpler and cheaper, allowing broader applications and accurate target sequencing with a scalable number of targets.  相似文献   

17.
We describe here an efficient microarray-based multiplex assay to detect Korean-specific mutations in breast cancer susceptibility gene BRCA1 using direct probe/target hybridization. Allele-specific oligonucleotides were covalently immobilized on an aldehyde-activated glass slide to prepare an oligonucleotide chip. From a wild-type sample, a two-step method was used to generate labeled multiplex polymerase chain reaction (PCR) amplification products of genomic regions containing the mutation sites. Amino allyl-dUTP, an amine-modified nucleotide, was incorporated during multiplex PCR amplifications and a monofunctional form of cyanine 3 dye was subsequently attached to the reactive amine group of the PCR products. Hybridization of the labeled PCR products to the oligonucleotide chip successfully identified all of the genotypes for the selected mutation sites. This work demonstrates that oligonucleotides chip-based analysis is a good candidate for efficient clinical testing for BRCA1 mutations when combined with the indirect strategy to prepare labeled target samples.  相似文献   

18.
副溶血性弧菌全基因组DNA芯片的研制和质量评价   总被引:1,自引:0,他引:1  
【目的】研制副溶血性弧菌全基因组芯片,建立芯片杂交方法,并对芯片质量进行评价。【方法】利用副溶血性弧菌全基因组序列,挑选出4770条基因,PCR扩增各基因并将PCR产物纯化,点样制备芯片;设计了两个质控杂交组合,采用双色荧光杂交策略,对芯片质量进行评价;PCR方法验证部分芯片结果。【结果】芯片杂交与理论预期结果以及PCR验证结果完全一致。【结论】成功的研制了一批质量良好的副溶血性弧菌全基因组DNA芯片,并建立了基于DNA芯片的副溶血性弧菌比较基因组学技术平台,建立了一套系统的芯片数据分析的标准方法。  相似文献   

19.
Until recently, the identification of plants relied on conventional techniques, such as morphological, anatomical and chemical profiling, that are often inefficient or unfeasible in certain situations. Extensive literature exists describing the use of polymerase chain reaction (PCR) DNA-based identification techniques, which offer a reliable platform, but their broad application is often limited by a low throughput. However, hybridization-based microarray technology represents a rapid and high-throughput tool for genotype identification at a molecular level. Using an innovative technique, a 'Subtracted Diversity Array' (SDA) of 376 features was constructed from a pooled genomic DNA library of 49 angiosperm species, from which pooled non-angiosperm genomic DNA was subtracted. Although not the first use of a subtraction technique for genotyping, the SDA method was superior in accuracy, sensitivity and efficiency, and showed high-throughput capacity and broad application. The SDA technique was validated for potential genotyping use, and the results indicated a successful subtraction of non-angiosperm DNA. Statistical analysis of the polymorphic features from the pilot study enabled the establishment of accurate phylogenetic relationships, confirming the potential use of the SDA technique for genotyping. Further, the technique substantially enriched the presence of polymorphic sequences; 68% were polymorphic when using the array to differentiate six angiosperm clades (Asterids, Rosids, Caryophyllids, Ranunculids, Monocots and Eumagnoliids). The 'proof of concept' experiments demonstrate the potential of establishing a highly informative, reliable and high-throughput microarray-based technique for novel application to sequence independent genotyping of major angiosperm clades.  相似文献   

20.
目的:应用一种新的高通量SNP检测方法-双色荧光杂交芯片技术检测CYPIA1 MspI基因多态性。方法:收集江苏汉族人群原发性肺癌患者75例和相应对照77例,应用双色荧光杂交芯片技术检测了152例样本的CYPIAI基因MspI基因多态性,并应用PCR-RFLP技术验证双色荧光杂交芯片的特异性。结果:152例样本的CYPIAI基因双色荧光杂交芯片技术分型结果与PCR-RFLP结果完全相符,两种方法的基因型分型结果具有很好的一致性。结论:双色荧光杂交芯片技术是一个高通量SNP检测的良好工具,特异性高,在大规模人群SNP筛检中具有良好的发展前案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号