首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maurotoxin (MTX) is a 34-residue toxin that has been isolated from the venom of the chactidae scorpion Scorpio maurus palmatus. The toxin displays an exceptionally wide range of pharmacological activity since it binds onto small conductance Ca(2+)-activated K(+) channels and also blocks Kv channels (Shaker, Kv1.2 and Kv1.3). MTX possesses 53-68% sequence identity with HsTx1 and Pi1, two other K(+) channel short chain scorpion toxins cross-linked by four disulfide bridges. These three toxins differ from other K(+)/Cl(-)/Na(+) channel scorpion toxins cross-linked by either three or four disulfide bridges by the presence of an extra half-cystine residue in the middle of a consensus sequence generally associated with the formation of an alpha/beta scaffold (an alpha-helix connected to an antiparallel beta-sheet by two disulfide bridges). Because MTX exhibits an uncommon disulfide bridge organization among known scorpion toxins (C1-C5, C2-C6, C3-C4, and C7-C8 instead of C1-C4, C2-C5, and C3-C6 for three-disulfide-bridged toxins or C1-C5, C2-C6, C3-C7, and C4-C8 for four-disulfide-bridged toxins), we designed and chemically synthesized an MTX analog with three instead of four disulfide bridges ([Abu(19),Abu(34)]MTX) and in which the entire consensus motif of scorpion toxins was restored by the substitution of the two half-cystines in positions 19 and 34 (corresponding to C4 and C8) by two isosteric alpha-aminobutyrate (Abu) derivatives. The three-dimensional structure of [Abu(19), Abu(34)]MTX in solution was solved by (1)H NMR. This analog adopts the alpha/beta scaffold with now conventional half-cystine pairings connecting C1-C5, C2-C6, and C3-C7 (with C4 and C8 replaced by Abu derivatives). This novel arrangement in half-cystine pairings that concerns the last disulfide bridge results mainly in a reorientation of the alpha-helix regarding the beta-sheet structure. In vivo, [Abu(19),Abu(34)]MTX remains lethal in mice as assessed by intracerebroventricular injection of the peptide (LD(50) value of 0. 25 microg/mouse). The structural variations are also accompanied by changes in the pharmacological selectivity of the peptide, suggesting that the organization pattern of disulfide bridges should affect the three-dimensional presentation of certain key residues critical to the blockage of K(+) channel subtypes.  相似文献   

2.
Maurotoxin (MTX) is a scorpion toxin acting on several K(+) channel subtypes. It is a 34-residue peptide cross-linked by four disulfide bridges that are in an "uncommon" arrangement of the type C1-C5, C2-C6, C3-C4, and C7-C8 (versus C1-C5, C2-C6, C3-C7, and C4-C8 for Pi1 or HsTx1, two MTX-related scorpion toxins). We report here that a single mutation in MTX, in either position 15 or 33, resulted in a shift from the MTX toward the Pi1/HsTx1 disulfide bridge pattern. This shift is accompanied by structural and pharmacological changes of the peptide without altering the general alpha/beta scaffold of scorpion toxins.  相似文献   

3.
Agitoxin 2 (AgTx2) is a 38-residue scorpion toxin, cross-linked by three disulfide bridges, which acts on voltage-gated K(+) (Kv) channels. Maurotoxin (MTX) is a 34-residue scorpion toxin with an uncommon four-disulfide bridge reticulation, acting on both Ca(2+)-activated and Kv channels. A 39-mer chimeric peptide, named AgTx2-MTX, was designed from the sequence of the two toxins and chemically synthesized. It encompasses residues 1-5 of AgTx2, followed by the complete sequence of MTX. As established by enzyme cleavage, the new AgTx2-MTX molecule displays half-cystine pairings of the type C1-C5, C2-C6, C3-C7, and C4-C8, which is different from that of MTX. The 3D structure of AgTx2-MTX solved by (1)H-NMR, revealed both alpha-helical and beta-sheet structures, consistent with a common alpha/beta scaffold of scorpion toxins. Pharmacological assays of AgTx2-MTX revealed that this new molecule is more potent than both original toxins in blocking rat Kv1.2 channel. Docking simulations, performed with the 3D structure of AgTx2-MTX, confirmed this result and demonstrated the participation of the N-terminal domain of AgTx2 in its increased affinity for Kv1.2 through additional molecular contacts. Altogether, the data indicated that replacement of the N-terminal domain of MTX by the one of AgTx2 in the AgTx2-MTX chimera results in a reorganization of the disulfide bridge arrangement and an increase of affinity to the Kv1.2 channel.  相似文献   

4.
Maurotoxin (MTX) is a 34-mer scorpion toxin cross-linked by four disulfide bridges that acts on both Ca(2+)-activated (SK) and voltage-gated (Kv) K(+) channels. A 38-mer chimera of MTX, Tsk-MTX, has been synthesized by the solid-phase method. It encompasses residues from 1 to 6 of Tsk at N-terminal, and residues from 3 to 34 of MTX at C-terminal. As established by enzyme cleavage, Tsk-MTX displays half-cystine pairings of the type C1-C5, C2-C6, C3-C7 and C4-C8 which, contrary to MTX, correspond to a disulfide bridge pattern common to known scorpion toxins. The 3-D structure of Tsk-MTX, solved by (1)H NMR, demonstrates that it adopts the alpha/beta scaffold of scorpion toxins. In vivo, Tsk-MTX is lethal by intracerebroventricular injection in mice (LD(50) value of 0.2 microg/mouse). In vitro, Tsk-MTX is as potent as MTX, or Tsk, to interact with apamin-sensitive SK channels of rat brain synaptosomes (IC(50) value of 2.5 nM). It also blocks voltage-gated K(+) channels expressed in Xenopus oocytes, but is inactive on rat Kv1.3 contrary to MTX.  相似文献   

5.
Cn12 isolated from the venom of the scorpion Centruroides noxius has 67 amino-acid residues, closely packed with four disulfide bridges. Its primary structure and disulfide bridges were determined. Cn12 is not lethal to mammals and arthropods in vivo at doses up to 100 microg per animal. Its 3D structure was determined by proton NMR using 850 distance constraints, 36 phi angles derived from 36 coupling constants obtained by two different methods, and 22 hydrogen bonds. The overall structure has a two and half turn alpha-helix (residues 24-32), three strands of antiparallel beta-sheet (residues 2-4, 37-40 and 45-48), and a type II turn (residues 41-44). The amino-acid sequence of Cn12 resembles the beta scorpion toxin class, although patch-clamp experiments showed the induction of supplementary slow inactivation of Na(+) channels in F-11 cells (mouse neuroblastoma N18TG-2 x rat DRG2), which means that it behaves more like an alpha scorpion toxin. This behaviour prompted us to analyse Na(+) channel binding sites using information from 112 Na(+) channel gene clones available in the literature, focusing on the extracytoplasmic loops of the S5-S6 transmembrane segments of domain I and the S3-S4 segments of domain IV, sites considered to be responsible for binding alpha scorpion toxins.  相似文献   

6.
Maurotoxin (MTX) is a 34-residue toxin that has been isolated from the venom of the chactidae scorpion Scorpio maurus palmatus, and characterized. Together with Pi1 and HsTx1, MTX belongs to a family of short-chain four-disulfide-bridged scorpion toxins acting on potassium channels. However, contrary to other members of this family, MTX exhibits an uncommon disulfide bridge organization of the type C1-C5, C2-C6, C3-C4 and C7-C8, versus C1-C5, C2-C6, C3-C7 and C4-C8 for both Pi1 and HsTx1. Here, we report that the substitution of MTX proline residues located at positions 12 and/or 20, adjacent to C3 (Cys(13)) and C4 (Cys(19)), results in conventional Pi1- and HsTx1-like arrangement of the half-cystine pairings. In this case, this novel disulfide bridge arrangement is without obvious incidence on the overall three-dimensional structure of the toxin. Pharmacological assays of this structural analog, [A(12),A(20)]MTX, reveal that the blocking activities on Shaker B and rat Kv1.2 channels remain potent whereas the peptide becomes inactive on rat Kv1.3. These data indicate, for the first time, that discrete point mutations in MTX can result in a marked reorganization of the half-cystine pairings, accompanied with a novel pharmacological profile for the analog.  相似文献   

7.
Maurotoxin (MTX) is a 34-residue toxin that has been isolated initially from the venom of the scorpion Scorpio maurus palmatus. It presents a large number of pharmacological targets, including small conductance Ca2+-activated and voltage-gated K+ channels. Contrary to other toxins of the alpha-KTx6 family (Pi1, Pi4, Pi7, and HsTx1), MTX exhibits a unique disulfide bridge organization of the type C1-C5, C2-C6, C3-C4, and C7-C8 (instead of the conventional C1-C5, C2-C6, C3-C7, and C4-C8, herein referred to as Pi1-like) that does not prevent its folding along the classic alpha/beta scaffold of scorpion toxins. Here, we developed an innovative strategy of chemical peptide synthesis to produce an MTX variant (MTXPi1) with a conventional pattern of disulfide bridging without any alteration of the toxin chemical structure. This strategy was used solely to address the impact of half-cystine pairings on MTX structural properties and pharmacology. The data indicate that MTXPi1 displays some marked changes in affinities toward the target K+ channels. Computed docking analyses using molecular models of both MTXPi1 and the various voltage-gated K+ channel subtypes (Shaker B, Kv1.2, and Kv1.3) were found to correlate with MTXPi1 pharmacology. A functional map detailing the interaction between MTXPi1 and Shaker B channel was generated in line with docking experiments.  相似文献   

8.
Disulfide bonds are known to be crucial for protein stability. To probe the contribution of each of the five disulfide bonds (C9-C31, C30-C70, C37-C63, C61-C95, and C105-C113) in bee venom phospholipase A2 to stability, variants with deleted disulfide bonds were produced by substituting two serine residues for each pair of cysteine residues. The mutations started from the pseudo-wild-type variant (pWT) with the mutation I1A (Markert et al., Biotechnol. Bioeng. 98 (2007) 48-59). All variants were expressed in Escherichia coli, refolded from inclusion bodies and purified as pWT. The activity of the variants ranged from 12 to 82% of pWT. From the transition curves of guanidine hydrochloride-induced unfolding, the contributions of the individual disulfide bonds to conformational stability were estimated. They increased in the sequence C9-C31 < C105-C113 < C30-C70 ≈ C37-C63 < C61-C95. For two disulfide bonds (C9-C31, C105-C113) the effects were confirmed on additionally produced variants with the substitution of cysteine by alanine. Despite distinct differences in stability, all variants showed similar cooperativity in unfolding. Selected variants were also probed for proteolytic stability toward thermolysin. The removal of disulfide bonds increased the proteolytic susceptibility of the native proteins in the same way as the stability decreased. From the comparison of the results with literature data on phospholipase A2 from bovine pancreas possessing seven disulfide bonds, it was concluded that conserved disulfide bonds in homologous proteins fulfill related functions in conformational stability.  相似文献   

9.
An increasing number of analgesic peptides have been found in the tail toxicyst, but there has been little research into their analgesic domains. Where are the analgesic domains in a conservative βαββ topology conformation of the analgesic peptides? We have carried out research to address this question. On account of the importance of disulfide bonds in the study of protein structure, the conformational stability, catalytic activity and folding, and site-directed mutagenesis in disulfide bridges have been used to look for the analgesic domain in a mature antitumor-analgesic peptide from the venom of the Chinese scorpion Buthus martensii Karsch (BmK AGAP). The mouse-twisting assay was used to examine the analgesic activity of 12 mutants, in which two mutants (C22S, C46S) and (C16S, C36S), exhibited lower relative activity. Following the conformational analysis, one domain, called the “core domain”, was found to be the key to the analgesic activity.  相似文献   

10.
Animal toxins are highly reticulated and structured polypeptides that adopt a limited number of folds. In scorpion species, the most represented fold is the alpha/beta scaffold in which an helical structure is connected to an antiparallel beta-sheet by two disulfide bridges. The intimate relationship existing between peptide reticulation and folding remains poorly understood. Here, we investigated the role of disulfide bridging on the 3D structure of HsTx1, a scorpion toxin potently active on Kv1.1 and Kv1.3 channels. This toxin folds along the classical alpha/beta scaffold but belongs to a unique family of short-chain, four disulfide-bridged toxins. Removal of the fourth disulfide bridge of HsTx1 does not affect its helical structure, whereas its two-stranded beta-sheet is altered from a twisted to a nontwisted configuration. This structural change in HsTx1 is accompanied by a marked decrease in Kv1.1 and Kv1.3 current blockage, and by alterations in the toxin to channel molecular contacts. In contrast, a similar removal of the fourth disulfide bridge of Pi1, another scorpion toxin from the same structural family, has no impact on its 3D structure, pharmacology, or channel interaction. These data highlight the importance of disulfide bridging in reaching the correct bioactive conformation of some toxins.  相似文献   

11.
Vertebrate trypsins usually contain six disulfide bonds but human trypsin 1 (PRSS1) contains only five and human trypsin 2 (PRSS2) contains only four. To elucidate possible evolutionary pathways leading to the loss of disulfide bonds, we have constructed mutants lacking one or two cysteines of four disulfide bonds (C22-C157, C127-C232, C136-C201, and C191-C220) in rat anionic trypsinogen and followed their expression in the periplasm of Escherichia coli. When both cysteines of any of the above-mentioned disulfide bonds were replaced by alanines we found, as expected, proteolytically active enzymes. In the case of C127-C232 (missing from both human trypsins) and C191-C220 both single mutants gave active enzymes although their yield was significantly reduced. In contrast, only one of the single mutants of disulfide bonds C22-C157 and C136-C201 (missing from human trypsin 2) was expressed in E. coli. In the case of these disulfide bonds, we obtained no expression when the solvent accessible molecular surface of the free cysteine residue was the smaller one, indicating that a buried unpaired cysteine was more deleterious than one on the surface of the molecule.  相似文献   

12.
Oncostatin M is a polypeptide cytokine having unique structure and diverse biological activities, including the ability to inhibit growth of certain cultured tumor cells. Here we have determined the disulfide bonding pattern of recombinant oncostatin M and have used site-directed mutagenesis to identify regions of this molecule necessary for receptor binding and growth inhibitory activities. Two intramolecular disulfide bonds, C6-C127 and C49-C167, were identified in recombinant oncostatin M. Analysis of mutations at each of the five cysteines in oncostatin M indicated that mutants C49S and C167S were inactive (less than 1/10 wild type activity) in growth inhibitory assays and radioreceptor assays. Carboxyl-terminal deletion mutations terminating at S185 and beyond were active, but further shortening abolished activity in both assays. Two deletion mutants proximal to C49 (delta 22-36 and delta 44-47) and insertion mutant GAG77 also were inactive. One deletion mutant, delta 87-90, had significantly (approximately 3-fold) increased activities in both growth inhibitory assays and radioreceptor assays. A potential amphiphilic domain was identified beginning at C167 and extending toward the carboxyl terminus. Two mutants having altered hydrophobic residues within this domain (F176G and F184G) were inactive, suggesting that these residues are required for proper conformation of the receptor binding site. Taken together, these results indicate that biological activity of oncostatin M requires discontinuous regions of the molecule, including residues near the essential disulfide bond, C49-C167, and within a putative amphiphilic helix at the carboxyl terminus. Oncostatin M thus belongs to a growing family of cytokines whose interactions with their respective receptors are mediated in part by known or predicted carboxyl-terminal amphiphilic helices.  相似文献   

13.
Yang  Hong  Zhang  Yueqi  Li  Xinxin  Bai  Yingguo  Xia  Wei  Ma  Rui  Luo  Huiying  Shi  Pengjun  Yao  Bin 《Applied microbiology and biotechnology》2018,102(21):9183-9192

A new cellulase (TaCel45) of glycoside hydrolase family 45 was identified in the thermophilic fungus Thielavia arenaria XZ7 and was successfully expressed in Pichia pastoris. The specific activities of TaCel45 towards lichenin, sodium carboxymethylcellulose (CMC-Na), and barley β-glucan were 769, 498, and 486 U/mg protein, respectively, which are higher than the values for all other reported GH45 cellulases. TaCel45 had maximum activity at pH 5.0–6.0 and 60–65 °C with barley β-glucan and CMC-Na as substrates and had a melting temperature (Tm) of 68.4 °C. However, TaCel45 exhibited extraordinary thermostability at 90 and 100 °C, retaining more than 70 and 45% of its activity after a 1-h incubation, respectively. Seven mutants (C11S, C12S, C16S, C31S, C171S, C193S, and C203S) were then constructed to investigate the effects of each disulfide bond on the structure, activity, and stability of TaCel45. As a result, six disulfide bonds (C11-C136, C16-C87, C31-C57, C88-C203, C90-C193, and C160-Cy171) were found to be indispensable for the folding, secretion, and activity of TaCel45, while C12-C48 was critical for thermal adaptation and refolding. The mutant C12S showed decreased optimal temperature and Tm values of 50 and 60.2 °C, respectively, and retained less than 50% of the thermal refolding ability of the wild type. Overall, this study demonstrated that disulfide bonds play a vital role in the folding and refolding capability and thermostability of this GH45 cellulase.

  相似文献   

14.
Pi4 is a short toxin found at very low abundance in the venom of Pandinus imperator scorpions. It is a potent blocker of K(+) channels. Like the other members of the alpha-KTX6 subfamily to which it belongs, it is cross-linked by four disulfide bonds. The synthetic analog (sPi4) and the natural toxin (nPi4) have been obtained by solid-phase synthesis or from scorpion venom, respectively. Analysis of two-dimensional (1)H NMR spectra of nPi4 and sPi4 indicates that both peptides have the same structure. Moreover, electrophysiological recordings of the blocking of Shaker B K(+) channels by sPi4 (K(D) = 8.5 nM) indicate that sPi4 has the same blocking activity of nPi4 (K(D) = 8.0 nM), previously described. The disulfide bonds have been independently determined by NMR and structure calculations, and by Edman-degradation/mass-spectrometry identification of peptides obtained by proteolysis of nPi4. Both approaches indicate that the pairing of the half-cystines is (6)C-(27)C, (12)C-(32)C, (16)C-(34)C, and (22)C-(37)C. The structure of the toxin has been determined by using 705 constraints derived from NMR data on sPi4. The structure, which is well defined, shows the characteristic alpha/beta scaffold of scorpion toxins. It is compared to the structure of the other alpha-KTX6 subfamily members and, in particular, to the structure of maurotoxin, which shows a different pattern of disulfide bridges despite its high degree of sequence identity (76%) with Pi4. The structure of Pi4 and the high amounts of synthetic peptide available, will enable the detailed analysis of the interaction of Pi4 with K(+) channels.  相似文献   

15.
Zhu Q  Liang S  Martin L  Gasparini S  Ménez A  Vita C 《Biochemistry》2002,41(38):11488-11494
The aim of this study is to investigate the contribution of each disulfide bond in the folding and function of leiurotoxin I, a short scorpion toxin that blocks small conductance K(+) channels. The structure of leiurotoxin I contains a motif conserved in all scorpion toxins, formed by a helix and a double-stranded beta-sheet and stabilized by three disulfide bridges. We synthesized three analogues, each presenting two alpha-aminobutyric acid (Abu) moieties replacing two bridged cysteine residues: LeTx1 ([Abu 3,21] Leiurotoxin I), LeTx2 ([Abu 8,26] Leiurotoxin I), and LeTx3 ([Abu 12,28] Leiurotoxin I). All three analogues fold into a major product containing two native disulfide bonds, while LeTx3 forms an additional isomer, containing non-native disulfides. In denaturing conditions, analogues LeTx2 and LeTx3 yield non-native isomers, while LeTx1 only forms the isomer with native disulfides. All isomers with native disulfides contain nativelike alpha-helical conformations and bind to synaptosomal membranes with affinities within a log of that shown by the native toxin. By contrast, the non-native LeTx3A analogue exhibits a disordered conformation and a decreased biological potency. Our results indicate that the "CxxxC, CxC" cysteine spacing, conserved in all scorpion toxins and preserved in LeTx1, may play an active role in folding, and that only two native disulfide bonds in leiurotoxin I are sufficient to preserve a nativelike and active conformation. Thus, in the scorpion toxin scaffold, modifications of conserved and interior cysteine residues may permit modulation of function, without significantly affecting folding efficiency and structure.  相似文献   

16.
B A Johnson  E E Sugg 《Biochemistry》1992,31(35):8151-8159
The solution structure of chemically synthesized iberiotoxin, a scorpion toxin that blocks Ca(2+)-activated K+ channels, has been determined using 2D 1H NMR spectroscopy. Analysis of the NOEs, coupling constants, and HN-DN exchange rates indicates the structure consists of an antiparallel beta-sheet from residues 25 to 36, with a type 1 turn at residues 30-31, and a helix from residues 13 to 21. The carboxyl-terminal residues form a short, and distorted, third strand of the sheet. The NMR data are consistent with disulfide bonds from residues 7 to 28, 13 to 33, and 17 to 35. The disulfide bridging presents the same profile as in other scorpion toxins, where a Cys-X-Cys sequence in a strand of sheet forms two disulfide bonds to a Cys-X-X-X-Cys sequence in a helix. Three-dimensional structures were generated using the torsion angle space program PEGASUS. The best ten structures had an average rmsd over all pairwise comparisons of 1.49 A. The average rmsd to a calculated average structure is 1.0 A. The resulting structures appear very similar to those of charybdotoxin, a related scorpion toxin.  相似文献   

17.
Discrepin, isolated from the venom of the Venezuelan scorpion Tityus discrepans, blocks preferentially the I(A) currents of the voltage-dependent K+ channel of rat cerebellum granular cells in an irreversible way. It contains 38 amino acid residues with a pyroglutamic acid as the N-terminal residue [D'Suze, G., Batista, C. V., Frau, A., Murgia, A. R., Zamudio, F. Z., Sevcik, C., Possani, L. D., and Prestipino, G. (2004) Arch. Biochem. Biophys. 430, 256-63]. It is the most distinctive member of the alpha-KTx15 subfamily of scorpion toxins. Six members of the alpha-KTx15 subfamily have been reported so far to be specific for this subtype of the K+ channel; however, none of them have had their three-dimensional structure determined, and no information for the residues possibly involved in channel recognition and binding is available. Natural discrepin (n-discrepin) was prepared from scorpion venom, and its synthetic analogue (s-discrepin) was obtained by solid-phase synthesis. Analysis of two-dimensional 1H NMR spectra of n- and s-discrepin indicates that both peptides have the same structure. Here we report the solution structure of s-discrepin determined by NMR using 565 meaningful distance constraints derived from the volume integration of the two-dimensional NOESY spectrum, 22 dihedrals, and three hydrogen bonds. Discrepin displays the alpha/beta scaffold, characteristic of scorpion toxins. Some features of the proposed interacting surface between the toxin and channel as well as the opposite "alpha-helix surface" are discussed in comparison with those of other alpha-KTx15 members. Both n- and s-discrepin exhibit similar physiological actions as verified by patch-clamp and binding and displacement experiments.  相似文献   

18.
The thermostable sweet protein brazzein consists of 54 amino acid residues and has four intramolecular disulfide bonds, the location of which is unknown. We found that brazzein resists enzymatic hydrolysis at enzyme/substrate ratios (w/w) of 1:100-1:10 at 35–40°C for 24–48 h. Brazzein was hydrolyzed using thermolysin at an enzyme/substrate ratio of 1:1 (w/w) in water, pH 5.5. for 6 h and at 50°C. The disulfide bonds were determined, by a combination of mass spectrometric analysis and amino acid sequencing of cystine-containing peptides, to be between Cys4-Cys52, Cys16-Cys37, Cys22-Cys47, and Cys26-Cys49. These disulfide bonds contribute to its thermostability. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
The fold of small disulfide-rich proteins largely relies on two or more disulfide bridges that are main components of the hydrophobic core. Because of the small size of these proteins and their high cystine content, the cysteine connectivity has been difficult to ascertain in some cases, leading to uncertainties and debates in the literature. Here, we use molecular dynamics simulations and MM-PBSA free energy calculations to compare similar folds with different disulfide pairings in two disulfide-rich miniprotein families, namely the knottins and the short-chain scorpion toxins, for which the connectivity has been discussed. We first show that the MM-PBSA approach is able to discriminate the correct knotted topology of knottins from the laddered one. Interestingly, a comparison of the free energy components for kalata B1 and MCoTI-II suggests that cyclotides and squash inhibitors, although sharing the same scaffold, are stabilized through different interactions. Application to short-chain scorpion toxins suggests that the conventional cysteine pairing found in many homologous toxins is significantly more stable than the unconventional pairing reported for maurotoxin and for spinoxin. This would mean that native maurotoxin and spinoxin are not at the lowest free energy minimum and might result from kinetically rather than thermodynamically driven oxidative folding processes. For both knottins and toxins, the correct or conventional disulfide connectivities provide lower flexibilities and smaller deviations from the initial conformations. Overall, our work suggests that molecular dynamics simulations and the MM-PBSA approach to estimate free energies are useful tools to analyze and compare disulfide bridge connectivities in miniproteins.  相似文献   

20.
Maurotoxin (alpha-KTx6.2) is a toxin derived from the Tunisian chactoid scorpion Scorpio maurus palmatus, and it is a member of a new family of toxins that contain four disulfide bridges (, Eur. J. Biochem. 254:468-479). We investigated the mechanism of the maurotoxin action on voltage-gated K(+) channels expressed in Xenopus oocytes. Maurotoxin blocks the channels in a voltage-dependent manner, with its efficacy increasing with greater hyperpolarization. We show that an amino acid residue in the external mouth of the channel pore segment that is known to be involved in the actions of other peptide toxins is also involved in maurotoxin's interaction with the channel. We conclude that, despite the unusual disulfide bridge pattern, the mechanism of the maurotoxin action is similar to those of other K(+) channel toxins with only three disulfide bridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号