首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several chimeric peptides were synthesized and found to be high-affinity ligands for both galanin and substance P receptors in membranes from the rat hypothalamus. The peptide galantide, composed of the N-terminal part of galanin and C-terminal part of substance P (SP), galanin-(1-12)-Pro-SP-(5-11) amide, which is the first galanin antagonist to be reported, recognizes two classes of galanin binding sites (KD(1) less than 0.1 nM and KD(2) approximately 6 nM) in the rat hypothalamus, while it appears to bind to a single population of SP receptors (KD approximately 40 nM). The chimeric peptide has higher affinity towards galanin receptors than the endogenous peptide galanin-(1-29) (KD approximately 1 nM) or its N-terminal fragment galanin-(1-13) (KD approximately 1 microM), which constitutes the N-terminus of the chimeric peptide. Galantide has also higher affinity for the SP receptors than the C-terminal SP fragment-(4-11) amide (KD = 0.4 microM), which constitutes its C-terminal portion. Substitution of amino acid residues, which is of importance for recognition of galanin by galanin receptors, such as [Trp2], in the galanin portion of the chimeric peptide or substitution of ([Phe7] or [Met11]-amide) in the SP portion of chimeric peptide both cause significant loss in affinity of the analogs of galantide for both the galanin- and the SP-receptors. These results suggest that the high affinity of the chimeric peptide, galantide, may in part be accounted for by simultaneous recognition/binding to both receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The chimeric peptide M617, galanin(1–13)-Gln14-bradykinin(2–9)amide, is a novel galanin receptor ligand with increased subtype specificity for GalR1 and agonistic activity in cultured cells as well as in vivo. Displacement studies on cell membranes expressing hGalR1 or hGalR2 show the presence of a high affinity binding site for M617 on GalR1 (Ki=0.23±.12 nM) while lower affinity was seen towards GalR2 (Ki=5.71±1.28 nM) resulting in 25-fold specificity for GalR1. Activation of GalR1 upon stimulation with M617 is further confirmed by internalization of a GalR1-EGFP conjugate. Intracellular signaling studies show the ability of M617 to inhibit forskolin stimulated cAMP formation with 57% and to produce a 5-fold increase in inositol phosphate (IP) accumulation. Agonistic effects on signal transduction are shown on both receptors studied after treatment with M617 in the presence of galanin. In noradrenergic locus coeruleus neurons, M617 induces an outward current even in the presence of TTX plus Ca2+, high Mg2+, suggesting a postsynaptic effect. Intracerebroventricular (i.c.v.) administration of M617 dose-dependently stimulates food uptake in rats while, in contrast, M35 completely fails to affect the feeding behavior. Spinal cord flexor reflex is facilitated by intrathecal (i.t.) administration of M617 as well as galanin with no significant change upon pre-treatment with M617. M617 dose dependently antagonizes the spinal cord hyperexcitablility induced by C-fiber conditioning stimulus and does neither enhance nor antagonize the effect of galanin. These data demonstrate a novel galanin receptor ligand with subtype specificity for GalR1 and agonistic activity, both in vitro and in vivo.  相似文献   

3.
Neuropeptide Y (NPY) inhibits cardiac adenylate cyclase activity by interacting with specific receptors coupled to a pertussis toxin-sensitive G protein. Structure-activity studies revealed that only C-terminal fragments can exhibit an NPY-like inhibitory effect on 125I-NPY binding and adenylate cyclase activity of rat cardiac ventricular membranes. Although NPY(17-36) inhibited 125I-NPY binding with high potency, it produced a biphasic effect on basal (GTP, 10 and 100 microM or guanosine 5'-gamma-O-(thio)triphosphate (GTP gamma S, 10 microM) adenylate cyclase activity. Low concentrations (less than 1 nM) of NPY(17-36) inhibited the adenylate cyclase activity whereas high concentrations (greater than 1 nM) reversed this action. GTP gamma S (100 microM) reversed the biphasic effect of NPY(17-36). NPY(17-36) exhibited only a stimulatory effect in the membranes from pertussis toxin-treated rats and an inhibitory effect with membranes from cholera toxin-treated rats. Low concentrations (less than 1 nM) of NPY(17-36) inhibited isoproterenol-stimulated adenylate cyclase activity whereas high doses (greater than 1 nM) reversed this activity. The cardiac NPY receptor antagonist, NPY(18-36) (1 microM), completely blocked the biphasic effect of NPY(17-36) on isoproterenol-stimulated activity. The inhibitory dose-response curve of NPY on isoproterenol-stimulated adenylate cyclase activity was shifted parallel to the right by NPY(17-36) (1 microM), suggesting that it is an antagonist of NPY at high concentrations. N-alpha-acetylated and C-terminally deamidated analogs of NPY(17-36) had no effect on the adenylate cyclase activity. [im-DNP-His26] NPY exhibited a more pronounced biphasic effect whereas N-alpha-myristoyl-NPY(17-36) elicited only a stimulatory effect. These investigations suggest that: 1) the inhibitory and stimulatory effects of NPY(17-36) are mediated by high affinity NPY receptors coupled to a pertussis toxin-sensitive G protein and a distinct population of low affinity receptors coupled to a cholera toxin-sensitive G protein, respectively; and 2) the stimulatory effect of NPY(17-36) is dissociable.  相似文献   

4.
Galanin, an ubiquitous neuropeptide, was recently shown to inhibit somatostatin release by the rat islet tumor cell line, Rin-m. By using the clonal pancreatic delta cell line Rin14B, originating from Rin-m cells, we were able to identify the presence of one type of specific galanin-binding site of high affinity (Kd = 1.6 nM; maximal binding capacity = 270 fmol/mg protein) and high specificity for the peptide. Binding of 125I-galanin to these receptors was time-dependent and highly sensitive to guanine nucleotides. Using the cross-linker disuccinimidyl tartrate, covalent linking of the galanin receptor to 125I-galanin in membranes from Rin14B cells, followed by SDS/PAGE analysis of membrane proteins, indicated that the galanin receptor is a protein of 54 kDa. 0.1-100 nM galanin also exerted a marked inhibitory effect on the cAMP-production system under basal conditions, as well as in the presence of the pancreatic peptide glucagon. At a maximal dose, galanin induces a 90-100% decrease of basal and glucagon-stimulated cAMP production levels, with a median inhibition concentration (IC50) of 3 nM galanin. The direct inhibitory effect of galanin on the adenylate cyclase activity in Rin14B cell membranes was also demonstrated (IC50 = 3 nM galanin). The inhibitory effect of galanin on the basal and glucagon-stimulated cAMP production in Rin14B cells was reversed by pertussis toxin. The toxin was also shown to specifically ADP-ribosylate a protein of 41 kDa in membranes from Rin14B cells. Taken together, these data show that the pancreatic delta cell line Rin14B expresses high affinity galanin receptors negatively coupled to a pertussis-toxin-sensitive cAMP-production system.  相似文献   

5.
Y Chen  M Laburthe  B Amiranoff 《Peptides》1992,13(2):339-341
The ubiquitous neuropeptide, galanin, strongly inhibits adenylate cyclase in rat brain membranes. While basal enzyme activity was not altered, galanin from 10(-11) M to 5 x 10(-7) M decreased forskolin- and VIP-stimulated adenylate cyclase with a half-maximal effect being elicited by 0.7 nM neuropeptide and a maximal 80% inhibition of the enzyme activity. The galanin fragments (2-29) and (1-15) dose-dependently inhibited the forskolin-stimulated adenylate cyclase, while the fragments (3-29) and (10-29) were found inactive. These results indicate that the regulatory action of galanin in the central nervous system involves the coupling of galanin receptors to the inhibition of the adenylate cyclase system.  相似文献   

6.
Neuropeptide Y (NPY), a hexatriacontapeptide amide, is present in high concentrations in the mammalian heart. Specific receptors of NPY in rat cardiac ventricular membranes have been characterized recently in our laboratory. Structure-activity studies with selected partial sequences of NPY revealed that NPY(18-36) inhibited the binding of 125I-NPY to rat cardiac ventricular membranes but had no effect on the cardiac adenylate cyclase activity. NPY, as previously reported, inhibited the cardiac adenylate cyclase activity. These observations suggested that NPY (18-36) may be an antagonist of NPY in cardiac membranes. Consistent with this observation, the presence of NPY (18-36) (1 microM) shifted the inhibitory adenylate cyclase activity dose-response curve of NPY to the right in a parallel fashion. Furthermore, NPY(18-36) (1 microM) completely abolished the effect of NPY (10 nM) that alone caused 80% of the maximum inhibition of adenylate cyclase activity. These findings confirm that NPY(18-36) is a competitive antagonist of NPY in rat cardiac ventricular membranes. NPY cardiac receptor antagonist, NPY(18-36), or analogs based on this sequence may have potential clinical application, since NPY has been implicated in the pathophysiology of congestive heart failure.  相似文献   

7.
The priming effect of glucagon-like peptide-1 (7-36) amide (GLP-1 (7-36) amide), glucose-dependent insulin-releasing polypeptide (GIP) and cholecystokinin-8 (CCK-8) on glucose-induced insulin secretion from rat pancreas was investigated. The isolated pancreas was perfused in vitro with Krebs-Ringer bicarbonate buffer containing 2.8 mmol/l glucose. After 10 min this medium was supplemented with GLP-1 (7-36) amide, GIP or CCK-8 (10, 100, 1000 pmol/l) for 10 min. After an additional 10 min period with 2.8 mmol/l glucose alone, insulin secretion was stimulated with buffer containing 10 mmol/l glucose for 44 min. In control experiments the typical biphasic insulin response to 10 mmol/l glucose occurred. Pretreatment of the pancreas with GIP augmented insulin secretion: 10 pmol/l GIP enhanced only the first phase of the secretory response to 10 mmol/l glucose; 100 and 1000 pmol/l GIP stimulated both phases of hormone secretion. After exposure to CCK-8, enhanced insulin release during the first (at 10 and 1000 pmol/l CCK-8) and the second phase (at 1000 pmol/l) was observed. Priming with 100 pmol/l GLP-1 (7-36) amide significantly amplified the first and 1000 pmol/l GLP-1 (7-36) amide both secretion periods, 10 pmol/l GLP-1 (7-36) amide had no significant effect. All three peptide hormones influenced the first, quickly arising secretory response more than the second phase. Priming with forskolin (30 mM) enhanced the secretory response to 10 mM glucose plus 0.5 nM GLP-1 (7-36) amide 4-fold. With a glucose-responsive B-cell line (HIT cells), we investigated the hypothesis that the priming effect of GLP-1 (7-36) amide is mediated by the adenylate cyclase system. Priming with either IBMX (0.1 mM) or forskolin (2.5 microM) enhanced the insulin release after a consecutive glucose stimulation (5 mM). This effect was pronounced when GLP-1 (7-36) amide (100 pM) was added during glucose stimulation. Priming capacities of intestinal peptide hormones may be involved in the regulation of postprandial insulin release. The incretin action of these hormones can probably, at least in part, be explained by these effects. The priming effect of GLP-1 (7-36) amide is most likely mediated by the adenylate cyclase system.  相似文献   

8.
We characterized highly selective receptors for PACAP, the pituitary adenylate cyclase activating peptide, in the tumoral acinar cell line AR 4-2J derived from the rat pancreas. PACAP, a novel hypothalamic peptide related to vasoactive intestinal peptide (VIP), was tested as the full natural 38-residue peptide (PACAP-38) and as an N-terminal amidated 27-residue derivative (PACAP-27). The binding sites showed considerable affinity for [125I]PACAP-27 (Kd = 0.4 nM) and PACAP-38, while their affinity for VIP and the parent peptide helodermin was 1000-fold lower. These receptors were coupled to adenylate cyclase, the potency of PACAP-38 and PACAP-27 (Kact = 0.2 nM) being much higher than that of VIP (Kact = 100 nM) and helodermin (Kact = 30 nM). Chemical cross-linking of [125I]PACAP-27 followed by SDS-PAGE and autoradiography revealed a specifically cross-linked peptide with an Mr of 68,000 (including 3000 for one PACAP-27 molecule).  相似文献   

9.
A tumor-derived protein with a spectrum of biologic activities remarkably similar to that of parathyroid hormone (PTH) has recently been purified and its sequence deduced from cloned cDNA. This PTH-like protein (PLP) has substantial sequence homology with PTH only in the amino-terminal 1-13 region and shows little similarity to other regions of PTH thought to be important for binding to receptors. In the present study, we compared the actions of two synthetic PLP peptides, PLP-(1-34)amide and [Tyr36]PLP-(1-36)amide, with those of bovine parathyroid hormone (bPTH)-(1-34) on receptors and adenylate cyclase in bone cells and in renal membranes. Synthetic PLP peptides were potent activators of adenylate cyclase in canine renal membranes (EC50 = 3.0 nM) and in UMR-106 osteosarcoma cells (EC50 = 0.05 nM). Bovine PTH-(1-34) was 6-fold more potent than the PLP peptides in renal membranes, but was 2-fold less potent in UMR-106 cells. A competitive PTH receptor antagonist, [Tyr34]bPTH-(7-34)amide, rapidly and fully inhibited adenylate cyclase stimulation by the PLP peptides as well as bPTH-(1-34). Competitive binding experiments with 125I-labeled PLP peptides revealed the presence of high affinity PLP receptors in UMR-106 cells IC50 = 3-4 nM) and in renal membranes (IC50 = 0.3 nM). There was no evidence of heterogeneity of PLP receptors. Bovine PTH-(1-34) was equipotent with the PLP peptides in binding to PLP receptors. Likewise, PLP peptides and bPTH-(1-34) were equipotent in competing with 125I-bPTH-(1-34) for binding to PTH receptors in renal membranes. Photoaffinity cross-linking experiments revealed that PTH and PLP peptides both interact with a major 85-kDa and minor 55- and 130-kDa components of canine renal membranes. We conclude that PTH and PLP activate adenylate cyclase by binding to common receptors in bone and kidney. The results further imply that subtle differences exist between PTH and PLP peptides in their ability to induce receptor-adenylate cyclase coupling.  相似文献   

10.
We previously reported that GLP-1(7-36)amide had glucagonostatic action as well as insulinotropic action in the perfused rat pancreas. In this study, we examined the effect of GLP-1(7-36)amide on glucagon secretion and cAMP concentration in glucagon-secreting cell line, In-R1-G9. GLP-1(7-36)amide (1nM) significantly suppressed glucagon secretion and decreased cAMP concentration in the cells. GLP-1(1-37) did not affect glucagon secretion. It is suggested that inhibitory effect of GLP-1(7-36)amide on glucagon secretion is at least partly mediated by adenylate cyclase system.  相似文献   

11.
The synthesis, purification, and structural analysis of the major compounds resulting from photoderivatization of [Tyr36]-parathyroid hormone related peptide (1-36)amide [[Tyr36]PTHrP(1-36)amide] are described. The reaction of the synthetic peptide with 4-fluoro-3-nitrophenyl azide under nonaqueous conditions yields three major products (peaks D-1, D-2, and G), which were purified to homogeneity by reverse-phase high-performance liquid chromatography. Subsequent amino acid analysis showed that the peptides of peaks D-1 and G each lack one lysine residue, while the peptide in peak D-2 lacks one alanine residue, suggesting that these residues are chemically modified by photoderivatization. Sequence analysis of the photoderivatized peptides revealed that compounds D-1 and G were derivatized on Lys13 and Lys11, respectively. Compound D-2 was N-blocked, indicating that this compound is derivatized on the alpha-amino function of Ala1. Both Lys residues of D-2 were quantitatively recovered upon sequencing after digestion with endoproteinase Glu-C. Compounds D-2 and G had apparent KdS of 1 X 10(-9) M and 0.6 X 10(-9) M, respectively, for their receptors on ROS 17/2.8 cells, which are identical with or similar to that of the underivatized [Tyr36]PTHrP(1-36)amide. Compound G had the same adenylate cyclase stimulating potency as the underivatized, synthetic [Tyr36]PTHrP(1-36)amide, whereas compound D-2 was only a partial agonist, having about 25% of the maximal cAMP production. Compound D-1, which is modified on Lys13, retained only 2-4% of its receptor binding affinity and biological activity relative to that of its parent compound.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The neuropeptide galanin modulates several physiological functions such as cognition, learning, feeding behavior, and depression, probably via the galanin 1 receptor (GAL-R1). Using an HTS assay based on 125I-human galanin binding to the human galanin-1 receptor (hGAL-R1), we discovered a series of 1,4-dithiin and dithiipine-1,1,4,4-tetroxides that exhibited binding affinity IC50's to hGAL-R1 ranging from 190 to 2700 nM. Two of the dithiepin analogues, 7 and 23, behaved pharmacologically as hGAL-R1 antagonists in secondary assays involving adenylate cyclase activity and GTP binding to G-proteins. Analogues 7 and 23 were also active in functional assays involving galanin, reversing the inhibitory effect of galanin on acetylcholine (ACh) release in rat brain hippocampal slices and electrically-stimulated guinea pig ileum twitch.  相似文献   

13.
The neuropeptide galanin (1-29) binds with high affinity to hypothalamic receptors (KD approximately 0.9 nM) and regulates feeding behavior. The N-terminal fragments (1-16), (1-16)NH2 are high affinity (KD approximately 6 nM) full agonists in vivo and in vitro. L-Ala substitutions show that amino acid residues Gly1, Trp2, Asn5, Tyr9, and Gly12 are important for the high affinity binding of galanin (1-16). Shortening the fragment (1-16) to galanin (1-7) causes a gradual drop of affinity: galanin (1-15), (1-14), and (1-13) have submicromolar KD values and galanin (1-12) has KD approximately 3 microM. Cyclic analogs of galanin (1-12) of different ring size were synthesized by condensing Gly1 and Gly12 without or with spacer groups. These analogs, independent of ring size, had a lower affinity than the linear galanin (1-12). Derivatization of the N-terminus of galanin (1-29), (1-16), and (1-12) all resulted in a large drop of affinity for the receptors, suggesting again the importance of the free N-terminal Gly.  相似文献   

14.
Pituitary adenylate cyclase activating polypeptide (PACAP) is a novel hypothalamic peptide structurally related to vasoactive intestinal peptide (VIP) and glucagon like peptide-1(7-36) amide (tGLP-1) in its N-terminal portion. Therefore, their levels of insulinotropic potency were compared using an isolated rat pancreas perfusion. It was found that 0.1 nM PACAP (1-27) amide (PACAP27) significantly stimulated insulin release under a perfusate glucose concentration of 5.5 mM, whereas 1 nM PACAP27 did not under a perfusate glucose concentration of 2.8 mM. The potency was evaluated as tGLP-1 greater than PACAP27 greater than VIP. These results indicate that PACAP is a glucagon superfamily peptide which stimulates insulin release in a glucose dependent manner.  相似文献   

15.
Several chimeric peptides consisting of the N-terminal fragment of galanin (GAL) and C-terminal fragments of other bioactive peptides (e.g. substance P, bradykinin, neuropeptide Y, mastoparan) have been synthesized and reported as high-affinity galanin receptor antagonists. Recently we have synthesized a new chimeric peptide, GAL(1-13)-[Ala(10,11)]ET-1(6-21)-NH(2), consisting of the N-terminal fragment of GAL and the C-terminal fragment of endothelin-1 (ET-1) analogue. This chimera was previously shown to be a moderate-affinity ligand to hypothalamic galanin receptors with a K(D) value of 205 nM. However, its biological action has been unknown so far. In our studies we characterized the biological properties of this new chimeric analogue, investigating its action on rat isolated gastric smooth muscles and influence on insulin secretion from rat isolated islets of Langerhans. Data acquired in the course of our studies suggest that analogue GAL(1-13)-[Ala(10,11)]ET-1(6-21)-NH(2) does not seem to be a potent galanin receptor antagonist in the gastrointestinal tract.  相似文献   

16.
The postnatal development of skeletal muscle is accompanied by an increased capacity for glycogenolysis and anaerobic glycolysis. In the present study, regulatory features of cAMP synthesis were examined in neonatal and adult rabbit sarcolemmal membranes. Adult sarcolemma exhibited a 3-, 6-, and 10-fold greater adenylate cyclase activity than neonate for basal, NaF, and isoproterenol plus GTP, respectively. The Km for activation by isoproterenol was 1.4 X 10(-8) M and 6 X 10(-8) M for GTP. The number of beta-receptors was similar (0.9-1.2 pmol/mg). 10 microM GTP shifted isoproterenol EC50 from 1 X 10(-8) M to 1 X 10(-7) M in adult; neonatal agonist affinity was unaffected by GTP. Cholera toxin stimulated adenylate cyclase activity 2-fold and catalyzed 32P ribosylation of a Mr = 42,000 peptide in adult sarcolemma; both activities were low or absent in neonate. Isoproterenol-stimulated GTPase activity was elevated 4-fold in adult compared to neonatal sarcolemma. Mn2+ ion-stimulated basal activity, an indicator of catalytic function of adenylate cyclase, was also elevated in adult. Together, these findings suggest that the development of catecholamine-sensitive cAMP synthesis in muscle is governed by the coordinate expression of the regulatory and catalytic proteins of adenylate cyclase, but not the beta-receptor.  相似文献   

17.
The existence of specific receptors for the two PACAPs (Pituitary Adenylate Cyclase Activating Peptides of 27 and 38 amino acids) was previously demonstrated on membranes from the pancreatic acinar cell line AR 4-2J (Buscail et al., FEBS Lett. 202, 77-81, 1990) by [125I]PACAP-27 binding. Here we demonstrate, by comparing Scatchard analysis of saturation curves and competition binding curves obtained with [125I]PACAP-27 and [125I]PACAP-38 as radioligands, the coexistence of two classes of receptors: 1/PACAP-A receptors that recognize PACAP-27 and PACAP-38 with the same high affinity (Kd 0.3 nM) and 2/PACAP-B receptors that recognize PACAP-38 with a high affinity (Kd 0.3 nM) and PACAP-27 with a lower affinity (Kd 30 nM). These two receptors are coupled to adenylate cyclase but can be clearly distinguished by the ability of PACAP(6-27) to specifically inhibit PACAP-27 adenylate cyclase activation.  相似文献   

18.
There are reasons to believe that the galanin neuropeptide family could include more than the two hitherto known members (galanin(1-29) and galanin-like peptide), such as the existence of at least three galanin receptors and the fact that synthetic short-chain homologues have effects and binding sites that are distinct from those of galanin(1-29). The current study uses a radioimmunoassay based on a polyclonal rabbit antiserum raised against galanin(1-16) to study the concentrations of galanin(1-16) like immunoreactivity (LI) in the various parts of the brain and gut of ovariectomized female rats, and investigates the effects of different concentrations of estradiol on these concentrations in relation to galanin(1-29)-LI. Galanin(1-29) concentrations were increased by 17β-estradiol administration in almost all examined tissues whereas galanin(1-16)-LI was increased by 17β-estradiol treatment in most of the gut, but only in the pituitary of the brain. Furthermore, the relation between galanin(1-29)-LI and galanin(1-16)-LI varied substantially from tissue to tissue. The main hypothesis, that galanin(1-16)-LI would be affected by 17β-estradiol in brain and/or gut, was confirmed in addition to the secondary hypothesis, stating that the pattern of galanin(1-16)-LI changes would differ from that of galanin(1-29). The study indicates that galanin(1-16)-LI is estrogen-responsive but that its concentrations are regulated differently from that of galanin(1-29). This is strongly indicative of a biological relevance of this potentially new member of the galanin neuropeptide family.  相似文献   

19.
Parathyroid hormone-like proteins (PTHLP) display actions in the kidney which are similar to those of parathyroid hormone (PTH). We compared the binding properties of PTHLP and PTH in canine renal cortical membranes to determine if they interacted with the same or different receptors. Radioiodination to high specific activity (greater than 400 microCi/micrograms) of [Nle8,18,Tyr34]human PTH-(1-34)amide and [Tyr36]PTHLP-(1-36)amide was performed using the lactoperoxidase method. Complete enzymatic digestion of both radioligands demonstrated that the peptides were monoiodinated. Both radioligands retained full biological activity in the renal adenylate cyclase assay, and neither was significantly degraded during incubation with highly purified canine renal membranes under binding assays conditions. Specific binding reached equilibrium by 20 min at 20 degrees C. Competition binding studies using unlabeled [Nle8,18,Tyr34]human PTH-(1-34)amide, [Tyr36] PTHLP-(1-36)amide, and bovine PTH-(1-34) with either radioligand revealed similar binding affinities for all three peptides. Biologically inactive PTHLP fragments did not show significant displacement. In contrast to its similar binding affinity, [Tyr36]PTHLP-(1-36)amide was 6-15-fold less potent than bovine PTH-(1-34) in the renal adenylate cyclase assay, suggesting less efficient receptor-effector coupling. Photoaffinity cross-linking using either radioligand in canine renal membrane labeled indistinguishable 70,000-dalton proteins. In the presence of multiple protease inhibitors, binding to an 85-kDa component was observed. Labeling of both receptor forms was specifically abolished by an excess of either cold peptide and dose-response curves using affinity cross-linked membranes corroborated the apparent binding affinities determined by conventional radioligand binding assays. We conclude that PTHLP-(1-36) and amino-terminal PTH analogues bind to indistinguishable receptors in canine renal cortical membranes, but display differential coupling to post-receptor events.  相似文献   

20.
In order to identify molecular features of the calmodulin (CaM) activated adenylate cyclase of Bordetella pertussis, a truncated cya gene was fused after the 459th codon in frame with the alpha-lacZ' gene fragment and expressed in Escherichia coli. The recombinant, 604 residue long protein was purified to homogeneity by ion-exchange and affinity chromatography. The kinetic parameters of the recombinant protein are very similar to that of adenylate cyclase purified from B.pertussis culture supernatants, i.e. a specific activity greater than 2000 mumol/min mg of protein at 30 degrees C and pH 8, a KmATP of 0.6 mM and a Kd for its activator, CaM, of 0.2 nM. Proteolysis with trypsin in the presence of CaM converted the recombinant protein to a 43 kd protein with no loss of activity; the latter corresponds to the secreted form of B.pertussis adenylate cyclase. Site-directed mutagenesis of residue Trp-242 in the recombinant protein yielded mutants expressing full catalytic activity but having altered affinity for CaM. Thus, substitution of an aspartic acid residue for Trp-242 reduced the affinity of adenylate cyclase for CaM greater than 1000-fold. Substitution of a Gln residue for Lys-58 or Lys-65 yielded mutants with a drastically reduced catalytic activity (approximately 0.1% of that of wild-type protein) but with little alteration of CaM-binding. These results substantiated, at the molecular level, our previous genetic and biochemical studies according to which the N-terminal tryptic fragment of secreted B.pertussis adenylate cyclase (residues 1-235/237) harbours the catalytic site, whereas the C-terminal tryptic fragment (residues 235/237-399) corresponds to the main CaM-binding domain of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号