首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The effect of gibberellins A1 through A9 on stem elongation and flower formation in five plants was tested. The plants wereMyosotis alpestris and a biennial strain ofCentaurium minus (cold-requiring plants),Silene armeria andCrepis parviflora (long-day plants), andBryophyllum crenatum (a long-short-day plant). The two former plants were maintained on non-inductive temperatures and long days, the three latter on short days, InMyosotis, flower formation was only obtained with GA7 and GA1, the latter being relatively less active. InCentaurium GA3 was the most effective, followed by GA1, GA4 and GA7 and perhaps GA5 and GA9. InSilene, flower formations was induced only by GA7. InCrepis, the most effective gibberellins were GA4 and GA7, inBryophyllum, GA3, GA4 and GA7. Thus, the different gibberellins exhibited considerable differences in their activity with respect to flower induction, and different plants exhibited in this respect certain specific differences in their sensitivity to the various gibberellins. Except inCrepis, flower initiation as a result of gibberellin treatment was always preceded by substantial stem or internode elongation; however, the correlation between the effect of the different gibberellins on stem elongation and flower induction was not in all cases complete. No correlation of the flower-inducing and elongation-promoting activity with the chemical structure of the different gibberellins could be recognized.With 2 Figures in the TextWork in part supported by the National Science Foundation, grants G-16408 and G-17483.  相似文献   

2.
A sensitive and reproducible method to obtain GA3 induced morphological reversion of mature Hedera helix to the juvenile form has been developed. Dose response experiments indicate that GA3 stimulates reversion over a 50–100 fold range with a half maximal response at approximately 0.5 μg GA3 per plant. The individual characteristics involved in phase change revert to the juvenile form in a sequential manner as GA3 dose is increased. Variations in light intensity from 1.2–3.6 × 104 lux and temperature from 15 to 26°C do not affect this hormonal response. Other growth regulators including indoleacetic acid, kinetin, abscisic acid and (2-chloroethyl)phosphonic acid (Ethephon) are inactive but other gibberellins (GA1 and a mixture of A4–A7) are active in stimulating reversion. Therefore, the response is specific for gibberellins as a class of hormones but non-specific for a particular form of gibberellin. The significance of this response in relation to juvenility in woody plants is discussed.  相似文献   

3.
Stem elongation in Fuchsia × hybrida was influenced by cultivation at different day and night temperatures or in different light qualities. Internode elongation of plants grown at a day (25°C) to night (15°C) temperature difference (DIF+10) in white light was almost twofold that of plants grown at the opposite temperature regime (DIF−10). Orange light resulted in a threefold stimulation of internode elongation compared with white light DIF−10. Surprisingly, internode elongation in orange light was similar for plants grown at DIF−10 and DIF+10. Flower development was accelerated at DIF−10 compared with DIF+10 in both white and orange light. To examine whether the effects of DIF and light quality on shoot elongation were related to changes in gibberellin metabolism or plant sensitivity to gibberellins (GAs), the stem elongation responses of paclobutrazol-treated plants to applied gibberellins were determined. In the absence of applied gibberellins paclobutrazol (>0.32 μmol plant−1) strongly retarded shoot elongation. This inhibition was nullified by the application of about 10–32 nmol of GA1, GA4, GA9, GA15, GA19, GA20, GA24, or GA44. The results are discussed in relation to possible effects of DIF and light quality on endogenous gibberellin levels and gibberellin sensitivity of fuchsia and their effects on stem elongation. Received October 4, 1997; accepted December 17, 1997  相似文献   

4.
The effects of various chemically pure gibberellins and cytokinins on leaf yellowing of Alstroemeria were described. The loss of chlorophyll was measured both in leaves of cut flowering stems and in a model system consisting of detached leaf tips. It was demonstrated that plant growth substances affected chlorophyll loss in both systems to the same extent. Leaf senescence was delayed by various gibberellins and cytokinins. The results demonstrated that some of the gibberellins (GA4 and GA7) are far more effective in delaying chlorophyll loss than GA3, which is commonly used as a postharvest treatment for Alstroemeria cut flowering stems. Immunoassays were used to demonstrate that the effect of gibberellins on leaf yellowing does not involve an increase in the endogenous cytokinin concentrations in the leaves as an intermediate step.Abbreviations GA gibberellin A - HPLC high performance liquid chromatography - GA3Mc GA3-methyl ester - ZR zeatin riboside - IPAR isopentenyl adenine riboside.  相似文献   

5.
Endogenous gibberellins (GAs) were extracted from safflower (Carthamus tinctorius L.) stems and detected by capillary gas chromatography-mass spectrometry from which GA1, GA3, GA19,, GA20, GA29, and probably, GA44 were detected. The detection of these GAs suggests that the early 13-OH biosynthetic pathway is prevalent in safflower shoots. Deuterated GAs were used as internal standards and GA concentrations were determined in stems harvested at weekly intervals. GA1 and GA19 levels per stem increased but concentrations per gram dry weight decreased over time. GA20 was only detected in young stem tissue.Gibberellic acid (GA3) was also applied in field trials and both GA3 and the GA biosynthetic inhibitor, paclobutrazol, were applied in growth chamber tests. GA3 increased epidermal cell size, internode length, and increased internode cell number causing stem elongation. Conversely, paclobutrazol reduced stem height, internode and cell size, cell number and overall shoot weight. In field tests, GA3 increased total stem weight, but decreased leaf weight, flower bud number and seed yield. Thus, GA3 promoted vegetative growth at the expense of reproductive commitment. These studies collectively indicate a promotory role of GAs in the control of shoot growth in safflower, and are generally consistent with gibberellin studies of related crop plants. Author for correspondence  相似文献   

6.
It has been found in recent studies that the inflorescence and nodes (node-pulvini) are the primary sources for native gibberellins in the Avena shoot, and that GA3 is the predominant gibberellin in the inflorescence. In the present work, linear growth of next-to-last internode is drastically reduced by removal of the inflorescence and last leaf. This growth is completely abolished when the nodes are also excised. It is restored fully by the addition of GA3 when the nodes are present, and restored only partially when the nodes are deleted. Internodal growth in Avena stem segments with basal node present is also restored by native GA3-like substances extracted from Avena inflorescences and partially purified by silica gel partition column chromatography. Evidence from these studies, taken in toto, indicates that the inflorescence, nodes, and leaves supply gibberellins, leaves supply substrate, and nodes modulate the gibberellin growth response in next-to-last Avena internodes.  相似文献   

7.
Abstact The three plant types ofAmaranthus namely,A. caudatus f.albiflorus, A. caudatus f.caudatus andA. tricolor var.tristis are qualitative short day plants with critical photoperiods 16.0, 15.5 and 15.0 h, respectively. Gibberellins A3, A4+7 and A13 affect extension growth, leaf differentiation and floral induction differently. Thus, in all the three plant types ofAmaranthus, whereas, GA3 and G4+7 enhanced extension growth, GA13 was completely ineffective under both, 24- and 8-h photoperiods. None of the three gibberellins could affect the leaf differentiation. In all the three plant types, flowering was promoted by GA13 and not by other gibberellins tried. GA13 caused promotion was manifested in two manners, firstly by lowering the critical dark period requirement in each inductive cycle, and secondly by shortening the total period taken for the initiation of inflorescence primordia under inductive photoperiods. The floral induction by gibberellins inAmaranthus is contrary to the gibberellin-anthesin concept of Chailakhyan. It is suggested that gibberellins other than GA3 may be playing an important role in floral morphogenesis of short day plants.  相似文献   

8.
The role and source of gibberellins (GAs) involved in the development of parthenocarpic fruits of Pisum sativum L. has been investigated. Gibberellins applied to the leaf adjacent to an emasculated ovary induced parthenocarpic fruit development on intact plants. The application of gibberellic acid (GA3) had to be done within 1 d of anthesis to be fully effective and the response was concentration-dependent. Gibberellin A1 and GA3 worked equally well and GA20 was less efficient. [3H]Gibberellin A1 applied to the leaf accumulated in the ovary and the accumulation was related to the growth response. These experiments show that GA applied to the leaf in high enough concentration is translocated to the ovary. Emasculated ovaries on decapitated pea plants develop without application of growth hormones. When [3H] GA1 was applied to the leaf adjacent to the ovary a substantial amount of radioactivity accumulated in the growing shoot of intact plants. In decapitated plants, however, this radioactivity was mainly found in the ovary. There it caused growth proportional to the accumulation of CA1. Application of LAB 150978, an inhibitor of GA biosynthesis, to decapitated plants inhibited parthenocarpic fruit development and this inhibition was counteracted by the application of GA3 (either to the fruit, or the leaf adjacent to the ovary, or through the lower cut end of the stem). All evidence taken together supports the view that parthenocarpic pea fruit development on topped plants depends on the import of gibberellins or their precursors, probably from the vegetative aerial parts of the plant.Abbreviations FW flesh weight - GAn gibberellin An - HPLC high-performance liquid chromatography  相似文献   

9.
Dwarfism in bean plants (Phaseolus vulgaris L.) is investigated in relation to the diffusible and extractable gibberel-lins in cotyledonary tissues. These gibberellins were partitioned into four parts prior to thin layer chromatograplty: non-acidic and acidic ethyl acetate fractions, and non-acidic and acidic butanol fractions. Cotyledonary segments from a tall plant (cv. Kentucky Wonder) seem to diffuse, preferentially acropetally, more gibberellins in each fraction than those from a dwarf plant (cv. Masterpiece). The diffusion increases with the length of the segments and decreases with period after sowing. From experiments on extraetable gibberellins, however, it is concluded that these phenomena actually result from differences in the gibbereliin contents of the tall and the dwarf plants, from differences in the gibberellin contents of the distal and proximal parts of cotyledons, and from the gibberellin contents before and after imbibition. Ten kinds of gibberellin-Iike substances are detectable in the diffusates, exudates and extracts from the cotyledons of both the plants; two in the non-acidic ethyl acetate, three in the acidic ethyl acetate (GA1, GA6 and another), two in the non-acidic butanol, and three in the acidic butanol frac—tion. They are almost identical in quality in the dwarf and tall plants, but in the latter they are more abundant in the cotyledons, particularly in their distal part. With respect to the change in content during the period after sowing, the gibberellin-Iike substances are classified in three groups; unchanging, decreasing (GA1, GA6, others) and increasing (butanol soluble glucosyl esters and glucosides of gibberellins)-. The increase of glucose-bound gibberellins and the decrease of free gibberellins during the sowing period suggest the occurrence of conversion. This is obvious only in the tall plants. The gibberellin content in cotyledons is higher in the tall plant than in the dwarf plant. Thus, the marked hypocotyl growth in the tall plants may be dependent on the higher content of gibberellins in their cotyledons and on the higner rate of conversion from free to bound forms.  相似文献   

10.
The phytochrome-controlled dormancy of celery seeds (Apium graveolens L.) can be broken by exogenously applied growth regulators. Gibberellins, especially the mixture of GA4 and GA7 appeared to be the primary stimuli for germination of darkincubated seeds. However, concentrations less than 1 mM were ineffective in replacing the light requirement in one celery cultivar (cv.Utah), and in another cultivar (cv.Lathom Blanching), concentrations above 1 mM were insufficient. The addition of ethylenediaminetetraacetic acid (EDTA) to gibberellins, increased markedly their activity and reduced by several orders of magnitude the gibberellin concentrations needed to stimulate a light treatment. This synergistic activity is similar to the effect of benzyladenine (BA) or Succinic acid-2,2-dimethylhydrazide (SADH) when added to gibberellins. In a diverse plant system, the mixture of gibberellin with EDTA increased significantly the amount of reducing sugars released by embryoless barley seeds.  相似文献   

11.
Gibberellins A19, A20, and A1 were applied to seedlings of birch (Betula pubescens Ehrh.) and alder (Alnus glutinosa (L.) Gaertn.) in order to test their ability to counteract growth inhibition induced by growth retardants (ancymidol and BX-112) or short day (SD, 12 h) photoperiod. Ancymidol inhibits early and BX-112 inhibits late steps in gibberellin biosynthesis. BX-112 inhibited stem elongation in both species while ancymidol, applied as a soil drench, was effective in alder only. Growth retardants affected stem elongation mainly by inhibiting elongation of internodes. All three gibberellins were equally active when applied to seedlings treated with ancymidol; however, only GA1 was able to counteract the growth inhibition induced by BX-112. SD-induced cessation of elongation growth in birch was counteracted by GA1, and to some degree, by GA20, while GA19 was inactive. SD treatment did not induce cessation of apical growth in alder. These results are consistent with the hypothesis that of gibberellins belonging to the early C-13 hydroxylation pathway, GA1 is the only active gibberellin for stem elongation.  相似文献   

12.
In young needles of the Douglas-fir (Pseudotsuga menziesii) GA9 has been shown by GC and HPLC to be the main gibberellin. As minor compounds GA7, GA3 and GA8 have been tentatively identified by HPLC. In addition to the free gibberellins small amounts of GA9 glucosyl ester and a not yet identified ester of GA20 have been isolated. From the group of endogenous inhibitors ABA has been identified by GC-MS and ABA glucosyl ester by HPLC. After enzymatic hydrolysis of the ester, ABA and glucose have been quantified by GC and GOD-POD reaction giving the ratio 1:1. Another plant growth inhibitor has been identified as the methyl ester of jasmonic acid.  相似文献   

13.
The effect of light on the dwarfing allele, le, in Pisum sativum L. was tested as the growth response to gibberellins prior to or beyond the presumed block in the gibberellin biosynthetic pathway. The response to the substrate (GA20), the product (GA1), and a nonendogenous early precursor (steviol) was compared in plants bearing the normal Le and the deficient lele genotypes in plants made low in gibberellin content genetically (nana lines) or by paclobutrazol treatment to tall (cv Alaska) and dwarf (cv Progress) peas. Both genotypes responded to GA1 under red irradiation and in darkness. The lele plants grew in response to GA20 and steviol in darkness but showed a much smaller response when red irradiated. The Le plants responded to GA20 and steviol in both light and darkness. The red effects on lele plants were largely reversible by far-red irradiation. It is concluded that the deficiency in 3β-hydroxylation of GA20 to GA1 in genotype lele is due to a Pfr-induced blockage in the expression of that activity.  相似文献   

14.
We have shown previously that ethylene, which accumulates in the air spaces of submerged stem sections of rice (Oryza sativa L. cv “Habiganj Aman II”), is involved in regulating the growth response caused by submergence. The role of gibberellins in the submergence response was studied using tetcyclacis (TCY), a new plant growth retardant, which inhibits gibberellin biosynthesis. Stem sections excised from plants that had been watered with a solution of 1 micromolar TCY for 7 to 10 days did not elongate when submerged in the same solution or when exposed to 1 microliter per liter ethylene in air. Gibberellic acid (GA3) at 0.3 micromolar overcame the effect of TCY and restored the rapid internodal elongation in submerged and ethylene-treated sections to the levels observed in control sections that had not been treated with TCY. The effect of 0.01 to 0.2 micromolar GA3 on internodal elongation was enhanced two- to eight-fold when 1 microliter per liter ethylene was added to the air passing through the chamber in which the sections were incubated. GA3 and ethylene caused a similar increase in cell division and cell elongation in rice internodes. Thus, ethylene may cause internodal elongation in rice by increasing the activity of endogenous GAs. In internodes from which the leaf sheath had been peeled off, growth in response to submergence, ethylene and GA3 was severely inhibited by light.  相似文献   

15.
Abstract

Gibberellins are a classic example of the production of plant growth regulators by microorganisms. They are important biotechnological products and are increasingly used in agriculture and horticulture.

This article intends to assemble information on the history of the identification of gibberellins (GA) and producing microorganisms, especially Gibberella fujikuroi (Saw.) Wr. Furthermore, the biosynthesis of gibberelins through the isoprenoid biosynthetic pathway will be described. The main product of GA biosynthesis in Gibberella fujikuroi is gibberellic acid (GA3), which is formed from GA4 via GA7. Both the amount and the type of gibberellins produced by the fungus are dependent on the genetic constitution of the strain and the fermentation conditions.

Mutation and selection for increased product formation are probably the most important factors in improving the yield of gibberellins. Some publications concerning methods of parasexual recombination will also be summarized. Beside strain improvement of wild strains, medium development and appropriate cultivation techniques (batch, fed-batch-, continuous-, and solid state-fermentation) are very important prerequisites for successful economy of gibberellin production. Furthermore, the most important ways of gibberellin recovery and purification are described. Continuing reductions in the costs make gibberellins more attractive for existing applications and open possibilities for further applications of GA3 and some other active gibberellins like GA4, Ga7, and GA9  相似文献   

16.
Red light controls cell elongation in seedlings of rice (Oryza sativa L.) in a far-red-reversible manner (Nick and Furuya, 1993, Plant Growth Regul. 12, 195–206). The role of gibberellins and microtubules in the transduction of this response was investigated in the rice cultivars Nihon Masari (japonica type) and Kasarath (indica type). The dose dependence of mesocotyl elongation on applied gibberellic acid (GA3) was shifted by red light, and this shift was reversed by far-red light. In contrast, coleoptile elongation was found to be independent of exogenous GA3. Nevertheless, it was inhibited by red light, and this inhibition was reversed by far-red light. The content of the active gibberellin species GA1 and GA4 was estimated by radio-immunoassay. In the mesocotyl, the gibberellin content per cell was found to increase after irradiation with red light, and this increase was far-red reversible. Conversely, the cellular gibberellin content in japonica-type coleoptiles did not exhibit any significant light response. Microtubules reoriented from transverse to longitudinal arrays in response to red light and this reorientation could be reversed by subsequent far-red light in both the coleoptile and the mesocotyl. This movement was accompanied by changes in cell-wall birefringence, indicating parallel reorientations of cellulose deposition. The data indicate that phytochrome regulates the sensitivity of the tissue towards gibberellins, that gibberellin synthesis is controlled in a negative-feedback loop dependent on gibberellin effectiveness, and that at least two hormone-triggered signal chains are linked to the cytoskeleton in rice.Abbreviations D darkness - FR far-red light - GA3 gibberellic acid - GC-SIM gas chromatography-selected ion monitoring - R red light This work was supported by a grant of the Human Frontier Science Organization to P.N. Advice and organizational support by Prof. M. Furuya (Hitachi Advanced Research Laboratory, Hatoyama, Japan) and Prof. N. Murofushi (Department of Agricultural Chemistry, University of Tokyo, Japan) is gratefully acknowledged. Seeds of both rice cultivars were kindly provided by Dr. O. Yatou (Institute for Radiation Breeding, Hitachi-Ohmiya, Japan), and the antiGA1 Me-antiserum for the radio-immunoassays by Dr. I. Yamaguchi (Department of Agricultural Chemistry, University of Tokyo, Japan).  相似文献   

17.
Carol Moll  Russell L. Jones 《Planta》1981,152(5):442-449
The short-term kinetics of growth of the excised lettuce (Lactuca sativa L.) hypocotyl were characterized with respect to the effects of gibberellic acid (GA3), indole-3-acetic acid (IAA), KCl and pH. A Hall-device-based, miniaturized, linear displacement transducer was developed to measure the growth of 2-mm hypocotyl sections with 1-m resolution. Following treatment with GA3, a lag time of less than 10 min was typically followed by an increase in growth rate with two acceleration phases, reaching a final elevated rate within about 1 h. The kinetics of the response to GA1, a mixture of GA4 and GA7, and GA9 were similar to the response to GA3. There was no response to IAA treatment either in the presence or absence of GA3. KCl alone had no effect on the growth rate, but caused an increase in rate when added after GA3, with a lag time of usually less than 1 h. Responses to pH changes had lag times of a few minutes in all cases. A shift from H2O to pH 6 buffer inhibited growth, while a shift from H2O to pH 4 buffer resulted in a transient increase to a rate comparable to that induced by GA3. A shift from pH 6 to pH 5 caused an increase in growth rate, followed by a gradual decline to an H2O control rate after more than an hour. The responses to GA3 at pH 4 and pH 5 were similar to that found for addition of GA3 to water controls.Abbreviations GA gibberellin - GA3 gibberellic acid - GA1, GA4+7, GA9 gibberellins A1, A4+7, A9 - IAA indole-3-acetic acid  相似文献   

18.
Endogenous levels of two gibberellins, GA3 andGA20, were quantified in unimbibed Onopordumnervosum seeds collected from two different populations, whichshoweddifferences in their germination capacity. After purifying the seed extracts,gibberellin levels were evaluated by gas chromatography mass spectrometry byusing selected ion monitoring (GC-MS-SIM) adding deuterated gibberellins asinternal standards. The intraspecific differences in germination capacity wereassociated with differences in the endogenous levels of both gibberellins. Thecontents of GA3 and GA20 in seeds with high germinationrate were twice and five times higher, respectively, than those from seeds witha low germination rate, indicating a possible role of gibberellins in dormancyrelease in this plant species.  相似文献   

19.
The change of endogenous gibberellin in the germinated seeds of Phaseolus vuigaris cv. Kentucky Wonder was investigated. Based on this result, endogenous gibberellins in the mature seeds were extensively investigated to result in the isolation of GA1, GA8, GA8 glucoside, AB-II (unknown gibberellin-like substance) and glucosyl esters of GA1, GA4, GA37 and GA38.  相似文献   

20.
Relationships between gibberellins and floral initiation were investigated in a conditional non-flowering mutant of red clover, Trifolium pratense. Untreated mutant plants will not flower under long-days, but will do so when certain GAs are applied. Gibberellins, A3, A1, A7, and A5 all resulted in both stem elongation and flowering whilst GA4 produced the elongation only. Applications of GA20, GA8 and GA13 under long-days had no detectable effect. Thus, by combining the use of the mutant with the application of different GAs, the correlation between the processes of stem elongation and floral initiation, which is normally strongly expressed in this species, was broken. Endogenous gibberellins shown to be present in normal plants were also found in the mutant genotype. Gibberellins alone were not sufficient to initiate floral development in the mutant, there being an essential element of interaction with long-days. These results are discussed in relation to the nature of the lesion in the mutant and the signal provided by the applied gibberellin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号