首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Since the mechanism underlying the insulin stimulation of (Na+,K+)-ATPase transport activity observed in multiple tissues has remained undetermined, we have examined (Na+,K+)-ATPase transport activity (ouabain-sensitive 86Rb+ uptake) and Na+/H+ exchange transport (amiloride-sensitive 22Na+ influx) in differentiated BC3H-1 cultured myocytes as a model of insulin action in muscle. The active uptake of 86Rb+ was sensitive to physiological insulin concentrations (1 nM), yielding a maximum increase of 60% without any change in 86Rb+ permeability. In order to determine the mechanism of insulin stimulation of (Na+,K+)-ATPase activity, we demonstrated that insulin also stimulates passive 22Na+ influx by Na+/H+ exchange transport (maximal 200% increase) and an 80% increase in intracellular Na+ concentration with an identical time course and dose-response curve as insulin-stimulated (Na+,K+)-ATPase transport activity. Incubation of the cells with high [Na+] (195 mM) significantly potentiated insulin stimulation of ouabain-inhibitable 86Rb+ uptake. The ionophore monensin, which also promotes passive Na+ entry into BC3H-1 cells, mimics the insulin stimulation of ouabain-inhibitable 86Rb+ uptake. In contrast, incubation with amiloride or low [Na+] (10 mM), both of which inhibit Na+/H+ exchange transport, abolished the insulin stimulation of (Na+,K+)-ATPase transport activity. Furthermore, each of these insulin-stimulated transport activities displayed a similar sensitivity to amiloride. These results indicate that insulin stimulates a large increase in Na+/H+ exchange transport and that the resulting Na+ influx increases the intracellular Na+ concentration, thus activating the internal Na+ transport sites of the (Na+,K+)-ATPase. This Na+ influx is, therefore, the mediator of the insulin-induced stimulation of membrane (Na+,K+)-ATPase transport activity classically observed in muscle.  相似文献   

2.
When gastric microsomes were purified from resting and stimulated rabbit mucosae, they were found to be generally similar in (H+ + K+)-ATPase activity, peptide composition in single-dimension sodium dodecyl sulfate-gel electrophoresis, and in size. In the stimulated vesicles, optimal proton transport activity was found at pH 7.4, 20-50 mM KCl, and 1 mM ATP-Mg. However, in the case of resting vesicles, the presence of valinomycin and an inward Cl-gradient was also necessary for Mg-ATP-dependent proton transport. Measurement of K+ and Cl-diffusion potentials using 3,3-dipropylthiadicarboxocyanine iodide as a potential sensitive dye showed that both resting and stimulated vesicles developed K+ gradient-dependent potentials in the presence of an impermeant anion, but that Cl- gradient-dependent potentials were observed only in the stimulated preparation. 86Rb+ self-exchange was found in both types of vesicles, but Cl- self-exchange was confined to vesicles derived from stimulated mucosae. Putative inhibitors of anion conductance such as furosemide and anthracene 9-carboxylic acid blocked proton transport, Cl- conductance, 36Cl- uptake, and Cl- exchange. The inhibition of proton transport was overcome by valinomycin. ATPase activity in the presence of nigericin, an H+:K+ exchanger, was unaffected by these inhibitors. K+ conductance, Rb+ uptake, and Rb+ exchange were insensitive to these inhibitors. Thus, activation of acid secretion by the stimulated parietal cell appears to involve at least the appearance of a discrete Cl- conductance in the pump-associated membrane.  相似文献   

3.
In bovine cardiac sarcolemmal vesicles, an outward H+ gradient stimulated the initial rate of amiloride-sensitive uptake of 22Na+, 42K+, or 86Rb+. Release of H+ from the vesicles was stimulated by extravesicular Na+, K+, Rb+, or Li+ but not by choline or N-methylglucamine. Uptakes of Na+ and Rb+ were half-saturated at 3 mM Na+ and 3 mM Rb+, but the maximal velocity of Na+ uptake was 1.5 times that of Rb+ uptake. Na+ uptake was inhibited by extravesicular K+, Rb+, or Li+, and Rb+ uptake was inhibited by extravesicular Na+ or Li+. Amiloride-sensitive uptake of Na+ or Rb+ increased with increase in extravesicular pH and decrease in intravesicular pH. In the absence of pH gradient, there were stimulations of Na+ uptake by intravesicular Na+ and K+ and of Rb+ uptake by intravesicular Rb+ and Na+. Similarly, there were trans stimulations of Na+ and Rb+ efflux by extravesicular alkali cations. The data suggest the existence of a nonselective antiporter catalyzing either alkali cation/H+ exchange or alkali cation/alkali cation exchange. Since increasing Na+ caused complete inhibition of Rb+/H+ exchange, but saturating K+ caused partial inhibitions of Na+/H+ exchange and Na+/Na+ exchange, the presence of a Na(+)-selective antiporter is also indicated. Although both antiporters may be involved in pH homeostasis, a role of the nonselective antiporter may be in the control of Na+/K+ exchange across the cardiac sarcolemma.  相似文献   

4.
A nonelectrogenic H+ pump in plasma membranes of hog stomach.   总被引:12,自引:0,他引:12  
Differential and density gradient centrifugation were used to prepare a vesicular membrane fraction from hog gastric mucosa enriched 17-fold with respect to cation-activated ATPase and 5'-AMPase. Fractionation of the gradient material by free flow electrophoresis resulted in a fraction 35-fold enriched in cation-activated ATPase and essentially free of 5'-AMPase and Mg2+ATPase. The addition of ATP to either fraction resulted in H+ uptake and Rb+ efflux. The ionophoric and osmotic sensitivity showed that these ion movements were due to transport rather than binding. The cation selectivity sequences, substrate specificities and action of inhibitors indicated that the transport was a function of K+ATPase activity. The characteristics of the ATP-dependent enhancement of SCN- uptake and 8-anilinonapthalene-1-sulfonate fluorescence in the presence of valinomycin and the action of ionophores and lipid-permeable ions suggested that the energy dependent K+:H+ exchange was effectively nonelectrogenic. Thus these vesicles contain a nonelectrogenic (H+ + K+)-ATPase, hence acid secretion by the stomach is probably due to an ATP-dependent H+ + K+ exchange.  相似文献   

5.
Cation transport in vesicles from secreting rabbit stomach   总被引:1,自引:0,他引:1  
K+ gradient-dependent rubidium flux in vesicles obtained from stimulated rabbit stomach distinguishes two cation pathways. Selective inhibition by vanadate and the (1,2-alpha)-imidazopyridine, SCH 28080 identifies one pathway as H,K-ATPase-mediated passive cation exchange. A second pathway, additive to the first, is inhibited by the protonophore, tetrachlorosalicylanilide and is identified as a K+ conductance pathway present in these vesicles. The conductance was limited to vesicle populations obtained from the stimulated rabbit gastric mucosa and was distributed into both a light microsomal fraction and a heavier membrane fraction. 86Rb+ transport through the cation conductance exhibited a trans-stimulated cation selectivity sequence of K+ greater than Rb+ = Cs+ much greater than Li+. Potential sensitive flux was inhibited by the cyanine dye 3,3'-dipropyl-2,2'-thiodicarbo cyanine iodide, Ba2+, quinine, and the guanidinium compound 1,8-bis-guanidinium-n-octane. The presence of the conductance was correlated with K+-dependent H+ transport which did not require prolonged equilibration in K+ medium for activation. A role for the stimulus-dependent K+ conductance in gastric acid secretion could be its provision of a pathway for net K+ movement to the luminal site of the H,K-ATPase.  相似文献   

6.
Radiation inactivation analysis of oligomeric structure of the H,K-ATPase   总被引:2,自引:0,他引:2  
The oligomeric size of the H,K-ATPase was determined in frozen gastric microsomal vesicles irradiated with high energy electrons. Target sizes of various catalytic activities associated with H,K-ATPase function fell into two distinct groups. The lower group of target sizes described the radiation-induced loss of steady-state phosphoenzyme and structural monomer: the MgATP-dependent formation of a beta-aspartyl phosphate exhibited a size range of 133-147 kDa; the size range for the structural measurement (i.e. loss of H,K-ATPase monomer on sodium dodecyl sulfate-polyacrylamide gels) was 92-143 kDa. In contrast, a larger group of target sizes described the loss of full cycle catalytic activities (i.e. K+-dependent stimulation of p-nitrophenyl phosphate and ATP hydrolysis). The K+-phosphatase and K+-stimulated ATPase exhibited target sizes fo 200 +/- 13 and 232 +/- 23 kDa, respectively. The lower target size group represents the first evidence that a monomer of the catalytic subunit maintains partial enzyme function. The larger group of target sizes describing K+-phosphatase and ATPase activities suggest that subunit interactions contribute to full cycle catalytic activity. Subunit interactions appear to be involved in all ion transport activities. Passive Rb+ exchange and active H+ transport in reconstituted proteoliposomes exhibited target sizes of 233n = 2 and 388 +/- 48 kDa, respectively. H+ transport appears to require a subunit arrangement more complex than that associated with catalytic activity or passive ion transport.  相似文献   

7.
J W Hell  L Edelmann  J Hartinger  R Jahn 《Biochemistry》1991,30(51):11795-11800
The gamma-aminobutyric acid transporter of rat brain synaptic vesicles was reconstituted in proteoliposomes, and its activity was studied in response to artificially created membrane potentials or proton gradients. Changes of the membrane potential were monitored using the dyes oxonol VI and 3,3'-diisopropylthiodicarbocyanine iodide, and changes of the H+ gradient were followed using acridine orange. An inside positive membrane potential was generated by the creation of an inwardly directed K+ gradient and the subsequent addition of valinomycin. Under these conditions, valinomycin evoked uptake of [3H]GABA which was saturable. Similarly, [3H]glutamate uptake was stimulated by valinomycin, indicating that both transporters can be driven by the membrane potential. Proton gradients were generated by the incubation of K(+)-loaded proteoliposomes in a buffer free of K+ or Na+ ions and the subsequent addition of nigericin. Proton gradients were also generated via the endogenous H+ ATPase by incubation of K(+)-loaded proteoliposomes in equimolar K+ buffer in the presence of valinomycin. These proton gradients evoked nonspecific, nonsaturable uptake of GABA and beta-alanine but not of glycine in proteoliposomes as well as protein-free liposomes. Therefore, transporter activity was monitored using glycine as an alternative substrate. Proton gradients generated by both methods elicited saturable glycine uptake in proteoliposomes. Together, our data confirm that the vesicular GABA transporter can be energized by both the membrane potential and the pH gradient and show that transport can be achieved by artificial gradients independently of the endogenous proton ATPase.  相似文献   

8.
Confluent monolayer cultures of the differentiated kidney epithelial cell line, Madin-Darby canine kidney cells (MDCK), have been used to study ion transport mechanisms involved in transepithelial transport. We have investigated the previously reported K+-stimulation of 22Na+ uptake by confluent monolayers of Na+ depleted cells (Rindler, M. J., Taub, M., and Saier, M. H., Jr. (1979) J. Biol. Chem. 254, 11431-11439). This component of Na+ uptake was insensitive to ouabain and amiloride, but was strongly inhibited by furosemide or bumetanide. Ouabain-insensitive 86Rb+ uptake was also inhibitable by furosemide or bumetanide and stimulated by extracellular Na+. The synergistic effect of Na+ and 86Rb+ uptake and K+ on 22Na+ uptake was reflected by an increase in the apparent Vmax and a decrease in the apparent Km as the concentration of the other cation was increased. The extrapolated Km for either 86Rb+ or 22Na+ uptake in the absence of the other cation was 30 mM while the Km in the presence of a saturating concentration of the other cation was 9 mM. The absolute Vmax values for 22Na+ and 86Rb+ uptake suggest a cotransport system with a stoichiometry of 2Na+:3K+. However, because of the experimental design, the actual ratio may be closer to 1:1. Competition with, and stimulation by, a variety of unlabeled cations indicated that Na+ could be partially replaced by Li+, while K+ could be fully replaced by Rb+ and partially replaced by NH4+ and CS+. Uptake by this system was dependent upon cellular ATP. Reduction of intracellular ATP to 3% of normal abolished both K+-stimulated 22Na+ uptake and Na+-stimulated 86Rb+ uptake.  相似文献   

9.
Gastric vesicles enriched in (H+,K+)-ATPase were prepared from hog fundic mucosa and studied for their ability to transport K+ using 86Rb+ as tracer. In the absence of ATP, the vesicles elicited a rapid uptake of 86Rb+ (t 1/2 = 45 +/- 9 s at 30 degrees C) which accounted for both transport and binding. Transport was osmotically sensitive and was the fastest phase. It was not limited by anion permeability (C1- was equivalent to SO2-4) but rather by availability of either H+ or K+ as intravesicular countercation suggesting a Rb+-K+ or a Rb+-H+ exchange. Selectivity was K+ greater than Rb+ greater than Cs+ much greater than Na+,Li+. The capacity of vesicles which catalyzed the fast transport of K+ was 83 +/- 4% of maximal vesicular capacity of the fraction. Addition of ATP decreased both rate and extent of 86Rb+ uptake (by 62 and 43%, respectively with 1 mM ATP) with an apparent Ki of 30 microM. Such an effect was not seen on 22Na+ transport. ATP inhibition of transport did not require the presence of Mg2+, and inhibition was also produced by ADP even in the presence of myokinase inhibitor. On the other hand, 86Rb+ uptake was as strongly inhibited by 200 microM vanadate in the presence of Mg2+. Efflux studies suggested that ATP inhibition was originally due to a decrease of vesicular influx with little or no modification of efflux. Since ATP, ADP, and vanadate are known modulators of the (H+,K+)-ATPase, we propose that, in the absence of ATP, (H+,K+)-ATPase passively exchanges K+ for K+ or H+ and that ATP, ADP, and vanadate regulate this exchange.  相似文献   

10.
Malhotra B  Glass A 《Plant physiology》1995,108(4):1527-1536
Potassium influx and cellular [K+] were measured in the unicellular green alga Chlamydomonas reinhardtii after pretreatment in either 10 or 0 mM external K+ ([K]0). K+ (42K+ or 86Rb+) influx was mediated by a saturable, high-affinity transport system (HATS) at low [K+]0 and a linear, low-affinity transport system at high [K+]o. The HATS was typically more sensitive to metabolic inhibition (and darkness) than the low-affinity transport system. Membrane electrical potentials were determined by measuring the equilibrium distribution of tetraphenylphosphonium. These values, together with estimates of cytoplasmic [K+] (B. Malhotra and A.D.M. Glass [1995] Plant Physiol 108: 1537-1545), demonstrated that at 0.1 mM [K+]0 K+ uptake must be active. At higher [K+]0 (>0.3 mM) K+ influx appeared to be passive and possibly channel mediated. When cells were deprived of K+ for 24 h, the Vmax for the HATS increased from 50 x 10-6 to 85 x 10-6 nmol h-1 cell-1 and the Km value decreased from 0.25 to 0.162 mM. Meanwhile, cellular [K+] declined from 24 x 10-6 to 9 x 10-6 nmol cell-1. During this period influx increased exponentially, reaching its peak value after 18 h of K+ deprivation. This increase of K+ influx was not expressed when cells were exposed to inhibitors of protein synthesis. The use of 42K+ and 86Rb+ in parallel experiments demonstrated that Chlamydomonas discriminated in favor of K+ over Rb+, and this effect increased with the duration of K+ deprivation.  相似文献   

11.
The Mg2+-dependent, K+-stimulated ATPase of microsomes from pig gastric mucosa has been studied in relation to observed active H+ transport into vesicular space. Uptake of fluorescent dyes (acridine orange and 9-aminoacridine) was used to monitor the generated pH gradient. Freeze-fracture electron microscopy showed that the vesicular gastric microsomes have an asymmetric distribution of intramembraneous particles (P-face was particulate; E-face was relatively smooth. Valinomycin stimulated both dye uptake and K+-ATPase (valinomycin-stimulated K+-ATPase); stimulation by valinomycin was due to increased K+ entry to some intravesicular activating site, which in turn depends upon the accompanying anion. Using the valinomycin-stimulated K+-ATPase and H+ accumulation as an index, the sequence for anion permeation was NO-3 greater than Br- greater than Cl- greater than I- greater than acetate approximately isethionate. When permeability to both K+ and H+ was increased (e.g using valinomycin plus a protonophore or nigericin), stimulation of K+-ATPase was much less dependent on the anion and the observed dissipation of the vesicular pH gradient was consistent with an 'uncoupling' of ATP hydrolysis from H+ accumulation. Thiocyanate interacts with valinomycin inhibiting the typical action of the K+ ionophore. But stimulation of ATPase activity was seen by adding 10 mM SCN- to membranes preincubated with valinomycin. From the relative activation of the valinomycin-stimulated K+-ATPase, it appears that SCN- is a very permeant anion which can be placed before NO-3 in the sequence of permeation. Valinomycin-stimulated ATPase and H+ uptake showed similar dependent correlations, including: dependence on [ATP] and [K+], pH optima, temperature activation, and selective inhibition by SH- or NH2-group reagents. These results are consistent with a pump-leak model for the gastric microsomal K+-ATPase which was simulated using Nernst-Planck conditions for passive pathways and simple kinetics for the pump. The pump is a K+/H+ exchange pump requiring K+ at an internal site. Rate of K+ entry would depend on permeability to K+ as well as the counterion, either (1) the anion to accompany K+ or (2) the H+ efflux path as an exchange ion. The former leads to net accumulation of H+ and anion, while the latter results in non-productive stimulation of ATP hydrolysis.  相似文献   

12.
Transport ratios of reconstituted (H+ + K+)-ATPase   总被引:2,自引:0,他引:2  
Gastric (H+ + K+)-ATPase was reconstituted into artificial phosphatidylcholine/cholesterol vesicles by means of a freeze-thaw-sonication procedure. The passive and active transport mediated by these vesicles were measured (Skrabanja, A.T.P., Asty, P., Soumarmon, A., De Pont, J.J.H.H.M. and Lewin, M.J.M. (1986) Biochim. Biophys. Acta 860, 131-136). To determine real initial velocities, the proteoliposomes were separated from non-incorporated enzyme, by means of centrifugation on a sucrose gradient. The purified proteoliposomes were used to measure active H+ and Rb+ transport, giving at room-temperature velocities of 46.3 and 42.5 mumol per mg per h, respectively. A transport ratio of two cations per ATP hydrolyzed was also measured. These figures indicate that the enzyme catalyzes an electroneutral H+-Rb+ exchange.  相似文献   

13.
Gastric (H+ + K+)-ATPase was reconstituted into artificial phosphatidylcholine/cholesterol liposomes by means of a freeze-thaw-sonication technique. Upon addition of MgATP, active H+ transport was observed, with a maximal rate of 2.1 mumol X mg-1 X min-1, requiring the presence of 100 mM K+ at the intravesicular site. However, in the absence of ATP an H+-K+ exchange with a maximal rate of 0.12 mumol X mg-1 X min-1 was measured, which could be inhibited by the well-known ATPase inhibitors vanadate and omeprazole, giving the first evidence of a passive K+-H+ exchange function of gastric (H+ + K+)-ATPase. An Na+-H+ exchange activity was also measured, which was fully inhibited by 1 mM amiloride. Simultaneous reconstitution of Na+/H+ antiport and (H+ + K+)-ATPase could explain why reconstituted ATPase appeared less cation-specific than the native enzyme (Rabon, E.C., Gunther, R.B., Soumarmon, A., Bassilian, B., Lewin, M.J.M. and Sachs, G. (1985) J. Biol. Chem. 260, 10200-10212).  相似文献   

14.
1. Na/K ATPase activity in rat myometrial cells in culture exhibited a Kapp of 0.93 mM for Rb+ and a Ki of 31 microM for ouabain with respect to Rb+. 2. 86Rb+ uptake was stimulated by serum and monensin but was not affected by the uterine relaxants isoproterenol and relaxin in 0.5-7.5 mM Rb+. Nonetheless, these relaxants elicited significant increases in 45Ca2+ efflux under similar conditions. 3. These data suggest that increased Na/Ca exchange resulting from a stimulation of Na/K ATPase is not involved in the mechanism of action of relaxin and isoproterenol in the uterus.  相似文献   

15.
Regulation of Na+ transport in brown adipose tissue.   总被引:2,自引:0,他引:2       下载免费PDF全文
In order to test the hypothesis that Na+, K+-ATPase (Na+,K+-dependent ATPase) is involved in the noradrenaline-mediated stimulation of respiration in brown adipose tissue, the effects of noradrenaline on Na+,K+-ATPase in isolated brown-fat-cell membrane vesicles, and on 22Na+ and K+ (86Rb+) fluxes across the membranes of intact isolated cells, were measured. The ouabain-sensitive fraction of the K+-dependent ATPase activity in the isolated membrane-vesicle preparation was small and was not affected by the presence of noradrenaline in the incubation media. The uptake of 86Rb+ into intact hormone-sensitive cells was inhibited by 80% by ouabain, but it was insensitive to the presence of noradrenaline. 22Na+ uptake and efflux measured in the intact cells were 8 times more rapid than the 86Rb+ fluxes and were unaffected by ouabain. This indicated the presence of a separate, more active, transport system for Na+ than the Na+,K+-ATPase. This is likely to be a Na+/Na+ exchange activity under normal aerobic conditions. However, under anaerobic conditions, or conditions simulating anaerobiosis (2 mM-NaCN), the unidirectional uptake of Na+ increased dramatically, while efflux was unaltered.  相似文献   

16.
The transport activity of the Na,K-ATPase (a 3 Na+ for 2 K+ ion exchange) is electrogenic, whereas the closely related gastric and non-gastric H,K-ATPases perform electroneutral cation exchange. We have studied the role of a highly conserved serine residue in the fifth transmembrane segment of the Na,K-ATPase, which is replaced with a lysine in all known H,K-ATPases. Ouabain-sensitive 86Rb uptake and K+-activated currents were measured in Xenopus oocytes expressing the Bufo bladder H,K-ATPase or the Bufo Na,K-ATPase in which these residues, Lys800 and Ser782, respectively, were mutated. Mutants K800A and K800E of the H,K-ATPase showed K+-stimulated and ouabain-sensitive electrogenic transport. In contrast, when the positive charge was conserved (K800R), no K+-induced outward current could be measured, even though rubidium transport activity was present. Conversely, the S782R mutant of the Na,K-ATPase had non-electrogenic transport activity, whereas the S782A mutant was electrogenic. The K800S mutant of the H,K-ATPase had a more complex behavior, with electrogenic transport only in the absence of extracellular Na+. Thus, a single positively charged residue in the fifth transmembrane segment of the alpha-subunit can determine the electrogenicity and therefore the stoichiometry of cation transport by these ATPases.  相似文献   

17.
A highly purified membrane fraction was derived from hog gastric mucosa by a combination of differential and density gradient centrifugation and free flow electrophoresis. This final fraction was 35-fold enriched with respect to cation activated ouabain-insensitive ATPase. Antibody against this fraction was shown to be bound to the luminal surface of the gastric glands. The addition of ATP to this fraction or the density gradient fraction resulted in H+ uptake into an osmotically sensitive space. The apparent Km for ATP was 1.7-10(-4) M in the absence of a K+ gradient similar to that found for ATPase activity. The reaction is specific for ATP and requires cation in the sequence K+ greater than Rb+ greater than Cs+ greater than Na+ greater than Li+ and inhibited by ATPase inhibitors such as N,N'-dicylclohexyl-carbodiimide. Maximal H+ uptake occurs with an outward K+ gradient but the minimal apparent KA is found in the absence of a K+ gradient. The pH optimum for H+ uptake is between 5.8 and 6.2 which corresponds to the pH range for phosphroylation of the enzyme, but is considerably less than the pH maximum of the K+ dependent dephosphorylation. In the presence of an inward K+ gradient, protonophores such as tetrachlorsalicylanilide only partially abolish the H+ gradient but valinomycin dissipates 75% of the gradient, and nigericin abolishes the gradient. The vesicles therefore have a low K+ conductance but a measurable H+ conductance, hence a K+ gradient can produce an H+ gradient in the presence of valinomycin. The uptake and spontaneous leak of H+ are temperature sensitive with a similar transition temperature. Ultraviolet irradiation inactivates ATPase and proton transport at the same rate, approximately at twice the rate of p-nitrophenylphosphatase inactivation. It is concluded that H+ uptake by these vesicles is probably due to a dimeric (H+ + K+)-ATPase and is probably non-electrogenic.  相似文献   

18.
Mitochondria contain two Na+/H+ antiporters, one of which transports K+ as well as Na+. The physiological role of this non-selective Na+/H+ (K+/H+) antiporter is to provide mitochondrial volume homeostasis. The properties of this carrier have been well documented in intact mitochondria, and it has been identified as an 82,000-dalton inner membrane protein. The present studies were designed to solubilize and reconstitute this antiporter in order to permit its isolation and molecular characterization. Proteins from mitoplasts made from rat liver mitochondria were extracted with Triton X-100 in the presence of cardiolipin and reconstituted into phospholipid vesicles. The reconstituted proteoliposomes exhibited electroneutral 86Rb+ transport which was reversibly inhibited by Mg2+ and quinine with K0.5 values of approximately 150 and 300 microM, respectively. Incubation of reconstituted vesicles with dicyclohexylcarbodiimide resulted in irreversible inhibition of 86Rb+ uptake into proteoliposomes. Incubation of vesicles with [14C]dicyclohexylcarbodiimide resulted in labeling of an 82,000-dalton protein. These properties, which are also characteristic of the native Na+/H+ (K+/H+) antiporter, lead us to conclude that this mitochondrial carrier has been reconstituted into proteoliposomes with its known native properties intact.  相似文献   

19.
Friend murine erythroleukemia cells underwent apparently normal erythropoiesis when treated with dimethyl sulfoxide. One of the earliest events associated with this induction was a decrease in ouabain sensitive 86Rb+ uptake, an assay of the plasma membrane Na,K(ATPase). Ammonium vanadate (10 microM) blocked differentiation of these cells without affecting cell viability. Vanadium was taken up by Friend cells and prevented the dimethyl sulfoxide-induced decrease in ouabain sensitive 86Rb+ uptake. Vanadate reactivated 86Rb+ transport previously inhibited by dimethyl sulfoxide treatment but had no affect on 86Rb+ transport in untreated cells. These results suggest an essential role for the (Na,K)ATPase in cell differentiation.  相似文献   

20.
Triads and transverse tubules isolated from mammalian skeletal muscle actively accumulated Na+ in the presence of K+ and Mg-ATP. Active Na+ transport exhibited a fast single-exponential phase, lasting 2 min, followed by slower linear uptake that continued for 10 minutes. Valinomycin stimulated Na+ uptake, suggesting it decreased a pump-generated membrane potential gradient (Vm) that prevented further Na+ accumulation. At the end of the fast uptake phase transverse tubule vesicles incubated in 30 mM external [Na+] attained a ratio [Na+]in/[Na+]out=13.4. From this ratio and the transverse tubule volume of 0.35 microl/mg protein measured in this work, [Na+]in=400 mM was calculated. Determinations of active K+ transport in triads, using 86Rb+ as tracer, showed a 30% decrease in vesicular 86Rb+ content two minutes after initiating the reaction, followed by a slower uptake phase during which vesicles regained their initial 86Rb+ content after 10 minutes. Transverse tubule volume increase during active Na+ transport-as shown by light scattering changes of isolated vesicles--presumably accounted for the secondary Na+ and 86Rb+ uptake phases. These combined results indicate that isolated triads have highly sealed transverse tubules that can be polarized effectively by the Na+ pump through the generation of significant Na+ gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号