首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth kinetics of a microorganism with high affinity for liquid hydrocarbon which has a low solubility in water was investigated for Candida intermedia IFO 0761 in our previous work.6 The microorganism contained a hydrocarbon pool in and/or on the cell. The transfer of water-soluble substrates to the cell was not the rate-limiting step in the growth of C. intermedia accompanied by clump formation with liquid hydrocarbon. The operating conditions necessary for the oxygen supply for the growth were adequate for the growth of C. intermedia on n-tetradecane. The saturation kinetics was valid for the specific growth rate of C. intermedia and specific concentration of hydrocarbon per unit cell mass; the specific growth rate was expressed by the following equation:   相似文献   

2.
  1. The fine-structure analysis of the hydrocarbon oxidizing microorganism, Acinetobacter sp., demonstrated a cytoplasmic modification resulting from growth on paraffinic and olefinic hydrocarbons.
  2. Intracytoplasmic hydrocarbon inclusions were documented by electron microscopy with chemical identifications obtained by gas chromatography and X-ray diffraction.
  3. These results demonstrate the ability of a micro-organism to accumulate hydrocarbon substrates intracellularly which, in turn, indicates transport across the cell membrane.
  相似文献   

3.
The role of clay minerals in crude oil saturated hydrocarbon removal during biodegradation was investigated in aqueous clay/saturated hydrocarbon microcosm experiments with a hydrocarbon degrading microorganism community. The clay minerals used for this study were montmorillonite, palygorskite, saponite and kaolinite. The clay mineral samples were treated with hydrochloric acid and didecyldimethylammonium bromide to produce acid activated- and organoclays respectively which were used in this study. The production of organoclay was restricted to only montmorillonite and saponite because of their relative high CEC. The study indicated that acid activated clays, organoclays and unmodified kaolinite, were inhibitory to biodegradation of the hydrocarbon saturates. Unmodified saponite was neutral to biodegradation of the hydrocarbon saturates. However, unmodified palygorskite and montmorillonite were stimulatory to biodegradation of the hydrocarbon saturated fraction and appears to do so as a result of the clays’ ability to provide high surface area for the accumulation of microbes and nutrients such that the nutrients were within the ‘vicinity’ of the microbes. Adsorption of the saturated hydrocarbons was not significant during biodegradation.  相似文献   

4.
微生物降解石油烃的功能基因研究进展   总被引:4,自引:3,他引:1  
微生物对石油烃的降解在自然衰减去除土壤和地下水石油烃污染的过程中发挥了重要作用。微生物通过其产生的一系列酶来利用和降解这类有机污染物,其中,编码关键降解酶的基因称为功能基因。功能基因可作为生物标志物用于分析环境中石油烃降解基因的多样性。因此,研究石油降解功能基因是分析土著微生物群落多样性、评价自然衰减潜力与构建基因工程菌的重要基础。本文主要介绍了烷烃和芳香烃在有氧和无氧条件下的微生物降解途径,重点总结了烷烃和芳香烃降解的主要功能基因及其作用,包括参与羟化作用的单加氧酶和双加氧酶基因、延胡索酸加成反应的琥珀酸合酶基因以及中心中间产物的降解酶基因等。  相似文献   

5.
Optimum conditions for the growth ofPseudomonas arvilla, a hydrocarbon utiliser, have been studied. The microorganism produced economic cell yield at pH 5.7 and 4% kerosene concentration. C10-C16 hydrocarbons were utilised by the strain. The growth was maximum on n-decane. Supplementation of the hydrocarbon medium with 0.5% glucose stimulated the growth. Glutamic acid 16.0 mg; leucine 9.0 mg; valine 10.0 mg; methionine 2.5 mg; arginine 2.5 mg; histidine 1.0 mg were present in 100 ml of the broth. Cell protein contained leucine 13.69%, isoleucine 4.9%, histidine 4.37%, tryptophan 2.33%, methionine 1.8% and arginine 2.70%.  相似文献   

6.
7.
Summary A laboratory study was undertaken to assess the effect of adding eitherPseudomonas aeruginosa UG2 cells or the biosurfactants produced by this m microorganism on the biodegradation of a hydrocarbon mixture in soil at 20°C over a 2-month incubation period. The addition of 100 g of UG2 biosurfactants per g soil significantly enhanced the degradation of tetradecane, hexadecene and pristane but not 2-methylnaphthalene, the most water-soluble of the hydrocarbons. Addition of UG2 cells at densities of 106, 107, and 108 per g soil did not have a significant effect on biodegradation of the hydrocarbon mixture.  相似文献   

8.
The effects of various hydrocarbon substrates, and a chemical surfactant capable of enhancing crude-oil biodegradation, on the community structure of a mixed-bacterial inoculum were examined in batch culture. Of 1000 TSA-culturable isolates, 68.6% were identified at the genus level or better by phospholipid fatty acid analysis over 7-day time course experiments. Cultures were exposed to 20 g/L Bow River crude oil with and without 0.625 g/L Igepal CO-630 (a nonylphenol ethoxylate surfactant), 5 g/L saturates, 5 g/L aromatics, or 125 g/L refinery sludge. A group of six genera dominated the cultures: Acinetobacter, Alcaligenes, Ochrobactrum, Pseudomonas/Flavimonas, Stenotrophomonas, and Yersinia. Species from four of the genera were shown to be capable of hydrocarbon degradation, and counts of hydrocarbon degrading and total heterotrophic bacteria over time were nearly identical. Pseudomonas/Flavimonas and Stenotrophomonas normally dominated during the early portions of cultures, although the lag phase of Stenotrophomonas appears to have been increased by surfactant addition. Acinetobacter calcoaceticus was the most frequently isolated microorganism during exposure to the saturate fraction of crude oil. Regardless of substrate, the culture medium supported a greater variety of organisms during the latter portions of cultures. Understanding the community structure and dynamics of mixed bacterial cultures involved in treatment of heterogeneous waste substrates may assist in process development and optimization studies.  相似文献   

9.
The work provides a simple method, based on a direct density equilibrium measurement, for the rapid in situ estimation of total lipid, hydrocarbon or biopolymer content in a variety of prokaryotic and eukaryotic samples. The method can be readily applied to live microalgae and photosynthetic bacteria, single‐celled or colonial microorganisms, as well as cellular fractions and isolated subcellular compartments or components. In this approach, the absolute lipid, hydrocarbon, or biopolymer content of the cells can be readily calculated. This method is especially useful for tracking the oil or polymer content of strains of microalgae and other microorganisms, whose lipid, hydrocarbon or biopolymer content may change with cultivation conditions and/or time, as the case would be in microorganism lipid‐induction industrial processes. The method is also useful for the direct in situ measurement of storage polymer accumulation in live cells, such as starch in microalgae and polyhydroxybutyrate, or other polyhydroxyalkanoates, in photosynthetic and non‐photosynthetic bacteria. Biotechnol. Bioeng. 2009;102: 1406–1415. © 2008 Wiley Periodicals, Inc.  相似文献   

10.
Present study attempts in revealing taxonomic and functional diversity of microorganism from petroleum muck using metagenomics approach. Using Ion Torrent Personal Genome Machine, total of 249 Mb raw data were obtained which was analysed using MG-RAST platform. The taxonomic analysis revealed predominance of Proteobacteria with Gammaproteobacteria as major class and Pseudomonas stutzeri as most abundant organism. Several enzymes involved in aliphatic and aromatic hydrocarbon degradation through both aerobic and anaerobic routes and proteins related to stress response were also present. Comparison of our metagenome with the existing metagenomes from oil-contaminated sites and wastewater treatment plant indicated uniqueness of this metagenome taxonomically and functionally. Based on these results a hypothetical community model showing survival and syntrophy of microorganisms in hydrocarbon-rich environment is proposed. Validation of the metagenome data was done in three tiers by validating major OTUs by isolating oil-degrading microbes, confirmation of key genes responsible for hydrocarbon degradation by Sanger sequencing and studying functional dynamics for degradation of the hydrocarbons by the muck meta-community using GC–MS.  相似文献   

11.
The uptake mechanism of liquid hydrocarbons of low solubility in water was investigated, using microorganisms with different affinities for liquid hydrocarbon. Microorganisms which could utilize hydrocarbon were much more adherent to hydrocarbon than those which could not. The adhesive force between Candida intermedia IFO 0761 and hydrocarbon was higher than that of Candida tropicalis ATCC 20336, though both could utilize hydrocarbon; The total hydrocarbon uptake from the drop and accommodation forms of hydrocarbons was much higher than that from dissolved hydrocarbon. The uptake rate of drop-form hydrocarbon was nearly equal to that of accommodation-form hydrocarbon for C. intermedia, but was lower for C. tropicalis which shows lower adhesion to hydrocarbon.  相似文献   

12.
Triatomine insects (Hemiptera) are the vectors of Chagas disease. Their cuticular surface is covered by a thin layer of lipids, mainly hydrocarbons, wax esters, fatty alcohols, and free or esterified fatty acids. These lipids play a major role in preventing a lethal desiccation, altering the absorption of chemicals and microorganism penetration, they also participate in chemical communication events. Lipid components are biosynthetically related, the synthesis of long chain and very long chain fatty acids was first shown in the integument of Triatoma infestans through the concerted action of fatty acid synthases (FAS's) and fatty acyl-CoA elongases. A final decarboxylation step produces the corresponding hydrocarbon. Capillary gas chromatography coupled to mass spectrometry analyses showed that cuticular hydrocarbons of Triatominae comprise saturated straight and methyl-branched chains, from 18 to more than 43 carbon atoms. Odd-chain hydrocarbons, mostly from 27 to 33 carbons, are the major straight chains. Different isomers of mono, di, tri, and tetramethylcomponents, mostly from 29 to 39 atoms in the carbon skeleton, account for the major methyl-branched hydrocarbons. The presence, absence, and relative quantities of these hydrocarbons represent characters for their chemical phenotype, and are useful for differentiating genera, species and populations. In this review, we will discuss the metabolic pathways involved in hydrocarbon formation, and their structure, together with their role in insect survival. We will also review the utility of cuticular hydrocarbon fingerprints in chemotaxonomy.  相似文献   

13.
Advancement in metabolic engineering of microorganisms has enabled bio-based production of a range of chemicals, and such engineered microorganism can be used for sustainable production leading to reduced carbon dioxide emission there. One area that has attained much interest is microbial hydrocarbon biosynthesis, and in particular, alkanes and alkenes are important high-value chemicals as they can be utilized for a broad range of industrial purposes as well as ‘drop-in’ biofuels. Some microorganisms have the ability to biosynthesize alkanes and alkenes naturally, but their production level is extremely low. Therefore, there have been various attempts to recruit other microbial cell factories for production of alkanes and alkenes by applying metabolic engineering strategies. Here we review different pathways and involved enzymes for alkane and alkene production and discuss bottlenecks and possible solutions to accomplish industrial level production of these chemicals by microbial fermentation.  相似文献   

14.
Nocardia paraffinicum (Rhodococcus rhodochrous), a hydrocarbon-degrading microorganism, was used in a study of propane and isobutane metabolism. The bacterium was able to utilize propane or isobutane as a sole source of carbon, and oxygen was found to be essential for its metabolism. Gas chromatographic analysis showed that n-propanol was the major compound recovered from the metabolism of propane by resting cells, although trace amounts of isopropanol and acetone were detected. When a mixture of propane and isobutane was used, drastic inhibition (72 to 88%) of hydrocarbon utilization by resting cells occurred. The ratio of hydrocarbon to oxygen consumed was found to be approximately 2:1 during the metabolism of propane or isobutane by resting cells when these substrates were provided individually to the organism. Gas chromatographic-mass spectrometric analysis of products formed from 18O2 confirmed that the initial oxidative step in the metabolism of these substrates involved molecular oxygen. The proportion of the alcohol containing 18O was the same as that of 18O2 in the gas mixture. Only a negligible amount of 18O was detected in the alcohol when H218O was incorporated into the system. The observed 2:1 ratio of hydrocarbon to oxygen consumption suggests that the oxygenase in N. paraffinicum, unlike the conventional mono- or dioxygenases, requires two hydrocarbon-binding sites for each of the oxygen-binding sites and is therefore an intermolecular dioxygenase. The newly described oxygenase, which catalyzes the reaction of two molecules of propane with one molecule of oxygen to yield two molecules of a C3 alcohol, is proposed as the initial oxidation step of the hydrocarbon substrate.  相似文献   

15.
The conformations of liquid n-alkanes have been studied using neutron scattering techniques to better understand the conformational forces present in membrane lipid interiors. We have studied hydrocarbon chains having lengths comparable to those found for esterified membrane lipid fatty acids, and find that the steric constraints of packing in the liquid state do not change the conformational distributions of hydrocarbon chains from those imposed by the intrachain forces present in the gas phase. It follows that the central region of membranes containing lipids in the disordered state should contain hydrocarbon chain conformations determined primarily by intrachain forces.  相似文献   

16.
Metabolism of glyphosate in Pseudomonas sp. strain LBr.   总被引:2,自引:2,他引:0       下载免费PDF全文
Metabolism of glyphosate (N-phosphonomethylglycine) by Pseudomonas sp. strain LBr, a bacterium isolated from a glyphosate process waste stream, was examined by a combination of solid-state 13C nuclear magnetic resonance experiments and analysis of the phosphonate composition of the growth medium. Pseudomonas sp. strain LBr was capable of eliminating 20 mM glyphosate from the growth medium, an amount approximately 20-fold greater than that reported for any other microorganism to date. The bacterium degraded high levels of glyphosate, primarily by converting it to aminomethylphosphonate, followed by release into the growth medium. Only a small amount of aminomethylphosphonate (about 0.5 to 0.7 mM), which is needed to supply phosphorus for growth, could be metabolized by the microorganism. Solid-state 13C nuclear magnetic resonance analysis of strain LBr grown on 1 mM [2-13C,15N]glyphosate showed that about 5% of the glyphosate was degraded by a separate pathway involving breakdown of glyphosate to glycine, a pathway first observed in Pseudomonas sp. strain PG2982. Thus, Pseudomonas sp. strain LBr appears to possess two distinct routes for glyphosate detoxification.  相似文献   

17.
Summary A new microorganism, isolated in our laboratories and identified as Streptomyces michiganensis var. amylolyticus var. nova is described.Thaimycins can be obtained by submerged fermentation of this microorganism on a suitable culture medium.Three new related compounds, thaimycins A, B and C have been obtained and characterized by their physical and chemical properties.Data on the antiprotozoal and anthelmintic activities in vitro as well as in vivo are reported.  相似文献   

18.
MATH法表征环境微生物细胞表面疏水性的研究进展   总被引:1,自引:0,他引:1  
环境微生物的细胞表面疏水性对其生长代谢过程以及在环境领域的应用效率具有重要影响。目前用于测试细胞表面疏水性最常用的方法是碳氢吸附能力(Microbial adhesion to hydrocarbons,MATH),该方法因具有操作简便、有一定的准确度等优点在环境、生物工程、医学、食品等领域应用广泛。本文综述了MATH法在环境微生物领域中的污泥絮体性能表征、有机物降解、膜污染和破乳方面的应用,同时介绍了MATH法在实验操作、计数方法和数据分析方面的优化。最后展望了该方法今后的研究方向。  相似文献   

19.
Abstract The distribution of oil-degrading microorganism in samples of surface water and sediment from North Eastern Japanese coastal waters was studied. Modified natural sea water (NSW) agar supplemented with emulsified crude oil (Arabian light, 5 g 1−1) was used to enumerate oil-degrading bacteria. In addition, filtered samples were inoculated into NSW broth containing weathered crude oil. Incubation was carried out at 20°C for 7–10 days. Populations of oil-degrading microorganisms ranged from 3–230 CFU 100 ml−1 in surface waters and 2.9 × 103 to 1.2 × 105 CFU g in sediment samples. Analysis of variance showed that oil-degraders were heterogenously distributed. Six mixed populations selected from 20 samples were studied to determine which of the constituent microflora were capable of crude oil biodegradation. Among 51 strains selected for identification, only 61% could be identified which formed 17 different bacterial species. Acinetobacter species (14 strains), Psychrobacter immobilis (9 strains) and Gram-positive cocci (10 strains) were the predominant types. Oil-degrading activity by various mixed populations (three each from water and sediment samples) was determined by using a conventional total weight reduction technique. Reduction in amount of various aliphatic and aromatic hydrocarbon substrates was verified using gas chromatography and high pressure liquid chromatography. Biodegradation of crude oil ranged from 35–58%. One mixed population of the sediment samples degraded more hydrocarbon (both aliphatic and aromatic) and the biodegradation of the aromatic hydrocarbon reached as high as 48%.  相似文献   

20.
A microorganism resembling an Actinomyces species was found to be a numerically predominant inhabitant of various organically rich soils. This organism forms a hyphal-like structure with true branching that fragments into gram-positive diphtheroid and coccoid elements. Its cells ferment carbohydrates and contain both lysine and ornithine as the major basic amino acids of the cell wall. It is catalase-negative, microaerophilic to aerobic, and sensitive to lysozyme, and it is dependent on an organic nitrogen source and incubation at 30 C for optimum growth. Based on these characteristics, a new species, Actinomyces humiferus, is proposed. The ecological and medical implications of a large soil population of this microorganism are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号