共查询到20条相似文献,搜索用时 15 毫秒
1.
Lee SH Kerff F Chereau D Ferron F Klug A Dominguez R 《Structure (London, England : 1993)》2007,15(2):145-155
The adaptor protein missing-in-metastasis (MIM) contains independent F- and G-actin binding domains, consisting, respectively, of an N-terminal 250 aa IRSp53/MIM homology domain (IMD) and a C-terminal WASP-homology domain 2 (WH2). We determined the crystal structures of MIM's IMD and that of its WH2 bound to actin. The IMD forms a dimer, with each subunit folded as an antiparallel three-helix bundle. This fold is related to that of the BAR domain. Like the BAR domain, the IMD has been implicated in membrane binding. Yet, comparison of the structures reveals that the membrane binding surfaces of the two domains have opposite curvatures, which may determine the type of curvature of the interacting membrane. The WH2 of MIM is longer than the prototypical WH2, interacting with all four subdomains of actin. We characterize a similar WH2 at the C terminus of IRSp53 and propose that in these two proteins WH2 performs a scaffolding function. 相似文献
2.
Isolation and properties of two actin-binding domains in gelsolin 总被引:16,自引:0,他引:16
D J Kwiatkowski P A Janmey J E Mole H L Yin 《The Journal of biological chemistry》1985,260(28):15232-15238
Gelsolin is a Ca2+-sensitive 90-kDa protein which regulates actin filament length. A molecular variant of gelsolin is present in plasma as a 93-kDa protein. Functional studies have shown that gelsolin contains two actin-binding sites which are distinct in that after Ca2+-mediated binding, removal of free Ca2+ releases actin from one site but not from the other. We have partially cleaved human plasma gelsolin with alpha-chymotrypsin and identified two distinct actin-binding domains. Peptides CT17 and CT15, which contain one of the actin-binding domains, bind to actin independently of Ca2+; peptides CT54 and CT47, which contain the other domain, bind to actin reversibly in response to changes in Ca2+ concentration. These peptides sequester actin monomers inhibiting polymerization. Unlike intact gelsolin, neither group of peptides nucleates actin assembly or forms stable filament end caps. CT17 and CT15 can however sever actin filaments. Amino acid sequence analyses place CT17 at the NH2 terminus of gelsolin and CT47 at the carboxyl-terminal two-thirds of gelsolin. Circular dichroism measurements show that Ca2+ induces an increase in the alpha-helical content of CT47. These studies provide a structural basis for understanding the interaction of gelsolin with actin and allow comparison with other Ca2+-dependent actin filament severing proteins. 相似文献
3.
4.
Background
Filamin (FLN) and non-muscle α-actinin are members of a family of F-actin cross-linking proteins that utilize Calponin Homology domains (CH-domain) for actin binding. Although these two proteins have been extensively characterized, little is known about what regulates their binding to F-actin filaments in the cell. 相似文献5.
SEGMENT: identifying compositional domains in DNA sequences 总被引:2,自引:0,他引:2
Oliver JL Román-Roldán R Pérez J Bernaola-Galván P 《Bioinformatics (Oxford, England)》1999,15(12):974-979
MOTIVATION: DNA sequences are formed by patches or domains of different nucleotide composition. In a few simple sequences, domains can simply be identified by eye; however, most DNA sequences show a complex compositional heterogeneity (fractal structure), which cannot be properly detected by current methods. Recently, a computationally efficient segmentation method to analyse such nonstationary sequence structures, based on the Jensen-Shannon entropic divergence, has been described. Specific algorithms implementing this method are now needed. RESULTS: Here we describe a heuristic segmentation algorithm for DNA sequences, which was implemented on a Windows program (SEGMENT). The program divides a DNA sequence into compositionally homogeneous domains by iterating a local optimization procedure at a given statistical significance. Once a sequence is partitioned into domains, a global measure of sequence compositional complexity (SCC), accounting for both the sizes and compositional biases of all the domains in the sequence, is derived. SEGMENT computes SCC as a function of the significance level, which provides a multiscale view of sequence complexity. 相似文献
6.
Synthetic peptide array technology was first developed in the early 1990s by Ronald Frank. Since then the technique has become a powerful tool for high throughput approaches in biology and biochemistry. Here, we focus on peptide arrays applied to investigate the binding specificity of protein interaction domains such as WW, SH3, and PDZ domains. We describe array-based methods used to reveal domain networks in yeast, and briefly review rules as well as ideas about the synthesis and application of peptide arrays. We also provide initial results of a study designed to investigate the nature and evolution of SH3 domain interaction networks in eukaryotes. 相似文献
7.
KsgA is an rRNA methyltransferase important to the process of small subunit biogenesis in bacteria. It is ubiquitously found in all life including archaea and eukarya, where the enzyme is referred to as Dim1. Despite the emergence of considerable data addressing KsgA function over the last several years, details pertaining to RNA recognition are limited, in part because the most accessible substrate for in vitro studies of KsgA is the 900000 Da 30S ribosomal subunit. To overcome challenges imposed by size and complexity, we adapted recently reported techniques to construct in vivo assembled mutant 30S subunits suitable for use in in vitro methyltransferase assays. Using this approach, numerous 16S rRNA mutants were constructed and tested. Our observations indicate that the 790 loop of helix 24 plays an important role in overall catalysis by KsgA. Moreover, the length of helix 45 also is important to catalysis. In both cases loss of catalytic function occurred without an increase in the production of N(6)-methyladenosine, a likely indication that there was no critical reduction in binding strength. Both sets of observations support a "proximity" mechanism of KsgA function. We also report that several of the mutants constructed failed to assemble properly into 30S subunits, while some others did so with reduced efficiency. Therefore, the same technique of generating mutant 30S subunits can be used to study ribosome biogenesis on the whole. 相似文献
8.
Digestion of caldesmon with carboxypeptidase Y is accompanied by loss of its ability to inhibit actomyosin ATPase activity and to bind actin and calmodulin. Similarly, carboxypeptidase Y digestion of a terminal 40 kDa chymotryptic fragment of caldesmon abolishes its inhibition of the actomyosin ATPase and binding to actin and calmodulin. This represents the first direct demonstration that these functional domains of caldesmon are located close to the carboxy-terminus of the molecule. 相似文献
9.
10.
Background
Cellular processes occur within dynamic and multi-molecular compartments whose characterization requires analysis at high spatio-temporal resolution. Notable examples for such complexes are cell-matrix adhesion sites, consisting of numerous cytoskeletal and signaling proteins. These adhesions are highly variable in their morphology, dynamics, and apparent function, yet their molecular diversity is poorly defined.Methodology/Principal Findings
We present here a compositional imaging approach for the analysis and display of multi-component compositions. This methodology is based on microscopy-acquired multicolor data, multi-dimensional clustering of pixels according to their composition similarity and display of the cellular distribution of these composition clusters. We apply this approach for resolving the molecular complexes associated with focal-adhesions, and the time-dependent effects of Rho-kinase inhibition. We show here compositional variations between adhesion sites, as well as ordered variations along the axis of individual focal-adhesions. The multicolor clustering approach also reveals distinct sensitivities of different focal-adhesion-associated complexes to Rho-kinase inhibition.Conclusions/Significance
Multicolor compositional imaging resolves “molecular signatures” characteristic to focal-adhesions and related structures, as well as sub-domains within these adhesion sites. This analysis enhances the spatial information with additional “contents-resolved” dimensions. We propose that compositional imaging can serve as a powerful tool for studying complex multi-molecular assemblies in cells and for mapping their distribution at sub-micron resolution. 相似文献11.
Conserved active-site elements in myosins and other P-loop NTPases play critical roles in nucleotide binding and hydrolysis; however, the mechanisms of allosteric communication among these mechanoenzymes remain unresolved. In this work we introduced the E442A mutation, which abrogates a salt-bridge between switch I and switch II, and the G440A mutation, which abolishes a main-chain hydrogen bond associated with the interaction of switch II with the γ phosphate of ATP, into myosin V. We used fluorescence resonance energy transfer between mant-labeled nucleotides or IAEDANS-labeled actin and FlAsH-labeled myosin V to examine the conformation of the nucleotide- and actin-binding regions, respectively. We demonstrate that in the absence of actin, both the G440A and E442A mutants bind ATP with similar affinity and result in only minor alterations in the conformation of the nucleotide-binding pocket (NBP). In the presence of ADP and actin, both switch II mutants disrupt the formation of a closed NBP actomyosin.ADP state. The G440A mutant also prevents ATP-induced opening of the actin-binding cleft. Our results indicate that the switch II region is critical for stabilizing the closed NBP conformation in the presence of actin, and is essential for communication between the active site and actin-binding region. 相似文献
12.
Interactions of tensin with actin and identification of its three distinct actin-binding domains 总被引:8,自引:6,他引:2 下载免费PDF全文
《The Journal of cell biology》1994,125(5):1067-1075
Tensin, a 200-kD phosphoprotein of focal contacts, contains sequence homologies to Src (SH2 domain), and several actin-binding proteins. These features suggest that tensin may link the cell membrane to the cytoskeleton and respond directly to tyrosine kinase signalling pathways. Here we identify three distinct actin-binding domains within tensin. Recombinant tensin purified after overexpression by a baculovirus system binds to actin filaments with Kd = 0.1 microM, cross- links actin filaments at a molar ratio of 1:10 (tensin/actin), and retards actin assembly by barbed end capping with Kd = 20 nM. Tensin fragments were constructed and expressed as fusion proteins to map domains having these activities. Three regions from tensin interact with actin: two regions composed of amino acids 1 to 263 and 263 to 463, cosediment with F-actin but do not alter the kinetics of actin assembly; a region composed of amino acids 888-989, with sequence homology to insertin, retards actin polymerization. A claw-shaped tensin dimer would have six potential actin-binding sites and could embrace the ends of two actin filaments at focal contacts. 相似文献
13.
14.
The function of actin-binding proteins in pollen tube growth 总被引:4,自引:0,他引:4
Pollen tube growth is a key step in sexual reproduction of higher plants. The pollen tube is a typical example of tip-growing cells and shows a polarized cytoplasm. To develop and maintain polarized growth, pollen tubes need a carefully regulated actin cytoskeleton. It is well known that actin-binding proteins are responsible for the direct control of dynamic actin filaments and serve as a link between signal transduction pathways and dynamic actin changes in determining cellular architecture. Several of these classes have been identified in pollen tubes and their detailed characterisation is progressing rapidly. Here, we aim to survey what is known about the major actin-binding proteins that affect actin assembly and dynamics, and their higher-order organisation in pollen tube growth. 相似文献
15.
I Virtanen A L Kariniemi H Holth?fer V P Lehto 《The journal of histochemistry and cytochemistry》1986,34(3):307-315
The distribution of saccharide moieties in human interfollicular epidermis was studied with fluorochrome-coupled lectins. In frozen sections Concanavalin A (Con A), Lens culinaris agglutinin (LCA), Ricinus communis agglutinin I (RCAI), and wheat germ agglutinin (WGA) stained intensively both dermis and viable epidermal cell layers, whereas peanut agglutinin (PNA) bound only to living epidermal cell layers. Ulex europaeus agglutinin I (UEAI) bound to dermal endothelial cells and upper cell layers of the epidermis but left the basal cell layer unstained. Dolichos biflorus agglutinin (DBA) bound only to basal epidermal cells, whereas both soybean agglutinin (SBA) and Helix pomatia agglutinin (HPA) showed strong binding to the spinous and granular cell layers. On routinely processed paraffin sections, a distinctly different staining pattern was seen with many lectins, and to reveal the binding of some lectins a pretreatment with protease was required. All keratin-positive cells in human epidermal cell suspensions, obtained with the suction blister method, bound PNA, whereas only a fraction of the keratinocytes bound either DBA or UEAI. Such a difference in lectin binding pattern was also seen in epidermal cell cultures both immediately after attachment and in organized cell colonies. This suggests that in addition to basal cells, more differentiated epidermal cells from the spinous cell layer are also able to adhere and spread in culture conditions. Gel electrophoretic analysis of the lectin-binding glycoproteins in detergent extracts of metabolically labeled primary keratinocyte cultures revealed that the lectins recognized both distinct and shared glycoproteins. A much different lectin binding pattern was seen in embryonic human skin: fetal epidermis did not show any binding of DBA, whereas UEAI showed diffuse binding to all cell layers but gave a bright staining of dermal endothelial cells. This was in contrast to staining results obtained with a monoclonal cytokeratin antibody, which showed the presence of a distinct basal cell layer in fetal epidermis also. The results indicate that expression of saccharide moieties in human epidermal keratinocytes is related to the stage of cellular differentiation, different cell layers expressing different terminal saccharide moieties. The results also suggest that the emergence of a mature cell surface glycoconjugate pattern in human epidermis is preceded by the acquisition of cell layer-specific, differential keratin expression. 相似文献
16.
Solution structures of UBA domains reveal a conserved hydrophobic surface for protein-protein interactions 总被引:1,自引:0,他引:1
UBA domains are a commonly occurring sequence motif of approximately 45 amino acid residues that are found in diverse proteins involved in the ubiquitin/proteasome pathway, DNA excision-repair, and cell signaling via protein kinases. The human homologue of yeast Rad23A (HHR23A) is one example of a nucleotide excision-repair protein that contains both an internal and a C-terminal UBA domain. The solution structure of HHR23A UBA(2) showed that the domain forms a compact three-helix bundle. We report the structure of the internal UBA(1) domain of HHR23A. Comparison of the structures of UBA(1) and UBA(2) reveals that both form very similar folds and have a conserved large hydrophobic surface patch. The structural similarity between UBA(1) and UBA(2), in spite of their low level of sequence conservation, leads us to conclude that the structural variability of UBA domains in general is likely to be rather small. On the basis of the structural similarities as well as analysis of sequence conservation, we predict that this hydrophobic surface patch is a common protein-interacting surface present in diverse UBA domains. Furthermore, accumulating evidence that ubiquitin binds to UBA domains leads us to the prediction that the hydrophobic surface patch of UBA domains interacts with the hydrophobic surface on the five-stranded beta-sheet of ubiquitin. Detailed comparison of the structures of the two UBA domains, combined with previous mutagenesis studies, indicates that the binding site of HIV-1 Vpr on UBA(2) does not completely overlap the ubiquitin binding site. 相似文献
17.
Crozier LG 《Oecologia》2004,141(1):148-157
The geographic ranges of most species are expected to shift to higher elevations and latitudes in response to global warming. But species react to specific environmental changes in individualistic ways, and we are far from a detailed understanding of range-shifts. Summer temperature often limits the ranges of insects and plants, so many range-shifts are expected to track summer warming. I explore this potential range-limiting factor in a case study of a northwardly expanding American butterfly, Atalopedes campestris (Lepidoptera, Hesperiidae). This species has recently colonized the Pacific Northwest, USA, where the mean annual temperature has risen 0.8–1.8°C over the past 100 years. Using field transplant experiments across the current range edge, I measured development time, survivorship, fecundity and predation rates along a naturally occurring thermal gradient of 3°C. Development time was significantly slower outside the current range in eastern Washington (WA), as expected because of cooler temperatures there. Slower development would reduce the number of generations possible per year outside the current range, dramatically lowering the probability that a population could survive there. Differences in survivorship, fecundity and predation rate across the range edge were not significant. The interaction between summer and winter temperature appears to be crucial in defining the current range limit. The estimated difference in temperature required to affect the number of generations is greater than the extent of summer warming observed over the past century, however, and thus historically winter temperature alone probably limited the range in southeastern WA. Nonetheless, extraordinarily warm summers may have improved colonization success, increasing the probability of a range expansion. These results suggest that extreme climatic events may influence rates of response to long-term climate change. They also demonstrate that range-limiting factors can change over time, and that the asymmetry in seasonal warming trends will have biological consequences. 相似文献
18.
Mitotic domains reveal early commitment of cells in Drosophila embryos 总被引:27,自引:0,他引:27
V E Foe 《Development (Cambridge, England)》1989,107(1):1-22
In embryos of Drosophila melanogaster all the nuclei in the syncytial egg divide with global synchrony during the first 13 mitotic cycles. But with cellularization in the 14th cycle, global mitotic synchrony ceases. Starting about one hour into the 14th interphase, at least 25 'mitotic domains', which are clusters of cells united by locally synchronous mitosis, partition the embryo blastoderm surface into a complex fine-scale pattern. These mitotic domains, which are constant from one embryo to the next, fire in the same temporal sequence in every embryo. Some domains consist of a single cell cluster straddling the ventral or dorsal midline. Most consist of two separate cell clusters that occupy mirror-image positions on the bilaterally symmetric embryo. Others comprise a series of members present not only as bilateral pairs but also as metameric repeats. Thus a domain can consist of either one, two, or many (if metamerically reiterated) clusters of contiguous cells. Within each cluster, mitosis starts in a single cell or in a small number of interior cells then spreads wave-like, in all directions, until it stops at the domain boundary. Each domain occupies a specific position along the anteroposterior axis--as determined by the expression pattern of the engrailed protein, and along the dorsoventral axis--as determined by cell count from the ventral midline. The primordia of certain larval structures appear to consist solely of the cells of one specific mitotic domain. Moreover, cells in at least some mitotic domains share specific morphogenetic traits, distinct from those of cells in adjacent domains. These traits include cell shape, spindle orientation, and participation by all the cells of a domain in an invagination. The specialized behaviors of the various mitotic domains transform the monolayer cell sheet of the blastoderm into the multilayered gastrula. I conclude that the fine-scale partitioning of the newly cellularized embryo into mitotic domains is an early manifestation of the commitment of cells to specific developmental fates. 相似文献
19.
Peptide models have been widely used to investigate conformational aspects of domains of proteins since the early 1950s. A pioneer in this field was Dr. Murray Goodman, who applied a battery of methodologies to study the onset of structure in homooligopeptides. This article reviews some of Dr. Goodman's contributions, and reports recent studies using linear and constrained peptides corresponding to the first extracellular loop and linear peptides corresponding to the sixth transmembrane domain of a G-protein coupled receptor from the yeast Saccharomyces cerevisiae. Peptides containing 30-40 residues were synthesized using solid-phase methods and purified to near homogeneity by reversed phase high performance liquid chromatography. CD and NMR analyses indicated that the first extracellular loop peptides were mostly flexible in water, and assumed some helical structure near the N-terminus in trifluoroethanol and in the presence of micelles. Comparison of oligolysines with native loop residues revealed that three lysines at each terminus of a peptide corresponding to the sixth transmembrane domain of the alpha-factor receptor resulted in better aqueous solubility and greater helicity than the native loop residues. 相似文献
20.
Yu Chen Eunice van PeltKleinJan Berdien van Olst Sieze Douwenga Sjef Boeren Herwig Bachmann Douwe Molenaar Jens Nielsen Bas Teusink 《Molecular systems biology》2021,17(4)
Cells adapt to different conditions via gene expression that tunes metabolism for maximal fitness. Constraints on cellular proteome may limit such expression strategies and introduce trade‐offs. Resource allocation under proteome constraints has explained regulatory strategies in bacteria. It is unclear, however, to what extent these constraints can predict evolutionary changes, especially for microorganisms that evolved under nutrient‐rich conditions, i.e., multiple available nitrogen sources, such as Lactococcus lactis. Here, we present a proteome‐constrained genome‐scale metabolic model of L. lactis (pcLactis) to interpret growth on multiple nutrients. Through integration of proteomics and flux data, in glucose‐limited chemostats, the model predicted glucose and arginine uptake as dominant constraints at low growth rates. Indeed, glucose and arginine catabolism were found upregulated in evolved mutants. At high growth rates, pcLactis correctly predicted the observed shutdown of arginine catabolism because limited proteome availability favored lactate for ATP production. Thus, our model‐based analysis is able to identify and explain the proteome constraints that limit growth rate in nutrient‐rich environments and thus form targets of fitness improvement. 相似文献