首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phlebiopsis gigantea fungus used in biological control of root rot is currently cultivated commercially in disposable, sterilizable plastic bags. A novel packed bed bioreactor was designed for cultivating P. gigantea and compared to the plastic bag method and to a tray bioreactor. The spore viability of 5.4 × 106 c.f.u./g obtained with the packed bed bioreactor was of the same order of magnitude as the viabilities obtained with the other cultivation methods. Furthermore, the packed bed bioreactor was less time and space consuming and easier to operate than the tray bioreactor.  相似文献   

2.
The substitution of natural gas by renewable biomethane is an interesting option to reduce global carbon footprint. Syngas fermentation has potential in this context, as a diverse range of low‐biodegradable materials that can be used. In this study, anaerobic sludge acclimatized to syngas in a multi‐orifice baffled bioreactor (MOBB) was used to start enrichments with CO. The main goals were to identify the key players in CO conversion and evaluate potential interspecies metabolic interactions conferring robustness to the process. Anaerobic sludge incubated with 0.7 × 105 Pa CO produced methane and acetate. When the antibiotics vancomycin and/or erythromycin were added, no methane was produced, indicating that direct methanogenesis from CO did not occur. Acetobacterium and Sporomusa were the predominant bacterial species in CO‐converting enrichments, together with methanogens from the genera Methanobacterium and Methanospirillum. Subsequently, a highly enriched culture mainly composed of a Sporomusa sp. was obtained that could convert up to 1.7 × 105 Pa CO to hydrogen and acetate. These results attest the role of Sporomusa species in the enrichment as primary CO utilizers and show their importance for methane production as conveyers of hydrogen to methanogens present in the culture.  相似文献   

3.
A laboratory-scale study was carried out to produce lignin peroxidase (ligninase) by white rot fungus (Phanerochaete chrysosporium) using sewage-treatment-plant (STP) sludge as the major substrate. The optimization was done using full-factorial design (FFD) with agitation and aeration as the two parameters. Nine experiments indicated by the FFD were fermented in a stirred-tank bioreactor for 3 days. A second-order quadratic model was developed using the regression analysis of the experimental results with the linear, quadratic, and interaction effects of the parameters. Analysis of variance (ANOVA) showed a high coefficient of determination (R 2) value of 0.972, thus indicating a satisfactory fit of the quadratic model with the experimental data. Using statistical analysis, the optimum aeration and agitation rates were determined to be 2.0 vvm and 200 rpm, respectively, with a maximum activity of 225 U l−1 in the first 3 days of fermentation. The validation experiment showed the maximum activity of lignin peroxidase was 744 U l−1 after 5 days of fermentation. The results for the tests of the stability of lignin peroxidase showed that the activity was more than 80% of the maximum for the first 12 h of incubation at an optimum pH of 5 and temperature of 55°C.  相似文献   

4.
Large-scale production has been the major obstacle to the success of many biopesticides. The spreading of microbial biocontrol agents against postharvest disease, as a safe and environmentally friendly alternative to synthetic fungicides, is quite dependent on their industrial mass production from low-cost raw materials. Considerable interest has been shown in using agricultural waste products and by-products from food industry as nitrogen and carbon sources. In this work, carob pulp aqueous extracts were used as carbon source in the production of the biocontrol agent Pantoea agglomerans PBC-1. Optimal sugar extraction was achieved at a solid/liquid ratio of 1:10 (w/v), at 25°C, for 1 h. Batch experiments were performed in shake flasks, at different concentrations and in stirred reactors at two initial inoculums concentrations, 106 and 107 cfu ml−1. The initial sugar concentration of 5 g l−1 allowed rapid growth (0.16 h−1) and high biomass productivity (0.28 g l−1 h−1) and was chosen as the value for use in stirred reactor experiments. After 22 and 32 h of fermentation the viable population reached was 3.2 × 109 and 6.2 × 109 cfu ml−1 in the fermenter inoculated at 106 cfu ml−1 and 2.7 × 109 and 6.7 × 109 cfu ml−1 in the bioreactor inoculated at 107 cfu ml−1. A 78% reduction of the pathogen incidence was achieved with PBC-1 at 1 × 108 cfu ml−1, grown in medium with carob extracts, on artificially wounded apples stored after 7 days at 25°C against P. expansum.  相似文献   

5.
Bacillus thuringiensis HD-73 was transformed with the endochitinase gene chiA74 under the control of a strong promoter (pcytA) and a 5′ mRNA stabilizing (STAB-SD) sequence (HD-73-pEBchiA74). Expression levels were compared with those observed from the wild type strain (HD-73) and the recombinant HD-73 strain expressing chiA74 under the control of its native promoter (HD-73-pEHchiA74). The chitinolytic activity of HD-73-pEBchiA74 was markedly elevated, being ~58- and 362-fold higher than, respectively, HD-73-pEHchiA74 and parental HD-73, representing the highest levels of chitinase expression in recombinant B. thuringiensis reported to date. Parasporal crystals measured under transmission electron microscopy showed that HD-73 produced crystals of 1.235 (±0.214) and 1.356 (±0.247) μm in length when the bacterium was grown in respectively, NBS and NBS with glucose. Otherwise, HD-73-pEBchiA74 synthesized crystals of 1.250 (±0.222) and 1.139 (±0.202) μm in length when cultivated in NBS and NBS with glucose, respectively, values that showed a diminution of ~10 and 20% compared with crystals produced by HD-73-pEHchiA74 grown under the same conditions. Comparison of viable spore counts per ml showed that HD-73-pEBchiA74 produced fewest viable spores (1.5 × 109, 1.3 × 109), compared to HD-73-pEHchiA74 (4.9 × 109, 5.3 × 109) and HD-73 (6.8 × 109, 8.8 × 109) when grown in NBS and NBS supplemented with glucose, respectively. No change in cellular protease activity was observed despite the overproduction of the chitinase.  相似文献   

6.
The production of recombinant glycoproteins in Dictyostelium discoideum by conventional cell culture methods was limited by low cell density as well as low growth rate. In this work, cotton towel with a good adsorption capability for D. discoideum cells was used as the immobilization matrix in an external fibrous bed bioreactor (FBB) system. With batch cultures in the FBB, the concentration of immobilized cells in the cotton fiber carrier increased to 1.37 × 108 cells per milliliter after 110-h cultivation, which was about tenfold higher than the maximal cell density in the conventional free-cell culture. Correspondingly, a high concentration of soluble human Fas ligand (hFasL; 173.7 μg l−1) was achieved with a high productivity (23 μg l−1 h−1). The FBB system also maintained a high density of viable cells for hFasL production during repeated-batch cultures, achieving a productivity of 9∼10 μg l−1 h−1 in all three batches studied during 15 days. The repeated-batch culture using immobilized cells of D. discoideum in the FBB system thus provides a good method for long-term and high-level production of hFasL.  相似文献   

7.
The purpose of the present research is to study the production of thermophilic alkaline protease by a local isolate, Streptomyces sp. CN902, under solid state fermentation (SSF). Optimum SSF parameters for enzyme production have been determined. Various locally available agro-industrial residues have been screened individually or as mixtures for alkaline protease production in SSF. The combination of wheat bran (WB) with chopped date stones (CDS) (5:5) proved to be an efficient mixture for protease production as it gave the highest enzyme activity (90.50 U g−1) when compared to individual WB (74.50 U g−1) or CDS (69.50 U g−1) substrates. This mixed solid substrate was used for the production of protease from Streptomyces sp. CN902 under SSF. Maximal protease production (220.50 U g−1) was obtained with an initial moisture content of 60%, an inoculum level of 1 × 108 (spore g−1 substrate) when incubated at 45°C for 5 days. Supplementation of WB and CDS mixtures with yeast extract as a nitrogen source further increased protease production to 245.50 U g−1 under SSF. Our data demonstrated the usefulness of solid-state fermentation in the production of alkaline protease using WB and CDS mixtures as substrate. Moreover, this approach offered significant benefits due to abundant agro-industrial substrate availability and cheaper cost.  相似文献   

8.
Although several reports have been published on recombinant protein expression using Drosophila cells, information on their metabolism and growth in vitro is relatively scarce. In the present study, we have analyzed the growth and metabolism of transfected S2 cells (S2AcRVGP) in bioreactor cultures with serum-free medium Sf900 II, to evaluate its potential for mass production of a rabies virus glycoprotein (RVGP). Cells were cultured in a 3 l-stirred-tank bioreactor at 28 °C with pH controlled at 6.2 and dissolved oxygen at 50% air saturation. The cells attained a specific growth rate and maximum cell density as high as 0.084 h−1 and 2.3 × 10cell ml−1, respectively. The main substrates consumed during this rapid growth phase were glucose, glutamine and proline. An atypical accumulation of ammonia and alanine was observed in the culture medium, up to 62 mM and 47 mM, respectively, but lactate was produced in low levels. After exhaustion of glutamine and proline as energy sources, alanine was consumed and production of ammonia increased. The production of recombinant RVGP reached concentrations as high as 178 μg l−1. Premature exhaustion of glutamine, serine and cysteine could be related to degradation of the recombinant glycoprotein. In general, the results demonstrated that S2AcRVGP can be considered an effective vehicle for large-scale recombinant glycoprotein expression and that several critical factors of the bioprocess could be optimized to increase the quality and productivity of the RVGP.  相似文献   

9.
Monascus purpureus is a biopigment-producing fungi whose pigments can be used in many biotechnological and food industries. The growth kinetics of biopigment production were investigated in a liquid fermentation medium in a 5-l stirred tank bioreactor at 30°C, pH 7, for 8 days with 100 rpm agitation and 1.38 × 105 N/m2 aeration. Thai Monascus purpureus strains TISTR 3002, 3180, 3090 and 3385 were studied for color production, growth kinetics and productivity. Citrinin as a toxic metabolite was measured from the Monascus fermentation broth. The biopigment productions were detected from fermentation broth by scanning spectra of each strain produced. Results showed a mixture of yellow, orange and red pigments with absorption peaks of pigments occurring at different wavelengths for the four strains. It was found that for each pigment color, the color production from the strains increased in the order TISTR 3002, 3180, 3090, 3385 with 3385 production being approximately 10 times that of 3002. Similar results were found for growth kinetics and productivity. HPLC results showed that citrinin was not produced under the culture conditions of this study. The L*, a* and b* values of the CIELAB color system were also obtained for the yellow, orange and red pigments produced from the TISTR 3002, 3180, 3090 and 3385 strains. The colors of the pigments ranged from burnt umber to deep red.  相似文献   

10.
Bacillus thuringiensis var. kurstaki biopesticide was produced in batch and fed-batch fermentation modes using starch industry wastewater as sole substrate. Fed-batch fermentation with two intermittent feeds (at 10 and 20 h) during the fermentation of 72 h gave the maximum delta-endotoxin concentration (1,672.6 mg/L) and entomotoxicity (Tx) (18.5 × 106 SBU/mL) in fermented broth which were significantly higher than maximum delta-endotoxin concentration (511.0 mg/L) and Tx (15.8 × 106 SBU/mL) obtained in batch process. However, fed-batch fermentation with three intermittent feeds (at 10, 20 and 34 h) of the fermentation resulted in the formation of asporogenous variant (Spo−) from 36 h to the end of fermentation (72 h) which resulted in a significant decrease in spore and delta-endotoxin concentration and finally the Tx value. Tx of suspended pellets (27.4 × 106 SBU/mL) obtained in fed-batch fermentation with two feeds was the highest value as compared to other cases.  相似文献   

11.
In this paper, in order to obtain some industrial strains with high yield of l-(+)-lactic acid, the wild type strain Lactobacillus casei CICC6028 was mutated by nitrogen ions implantation. By study, it was found that the high positive mutation rate was obtained when the output power was 10 keV and the dose of N+ implantation was 50 × 2.6 × 1013 ions/cm2. In addition, the initial screening methods were also studied, and it was found that the transparent halos method was unavailable, for some high yield strains of l-(+)-lactic acid were missed. Then a mutant strain which was named as N-2 was isolated, its optimum fermentation temperature was 40°C and the l-(+)-lactic acid yield was 136 g/l compared to the original strain whose optimum fermentation temperature was 34°C and l-(+)-lactic acid production was 98 g/l. Finally, High Performance Liquid Chromatography method was used to analyze the purity of l-(+)-lactic acid that was produced by the mutant N-2, and the result showed the main production of N-2 was l-(+)-lactic acid.  相似文献   

12.
Verticillium lecanii is an entomopathogen with high potential in biological control of pests. We developed a solid-state fermentation with sugarcane bagasse as carrier absorbing liquid medium to propagate V. lecanii spores. Using statistical experimental design, we optimized the medium composition for spore production. We first used one-factor-at-a-time design to identify corn flour and yeast extract as the best carbon and nitrogen sources for the spore production of V. lecanii. Then, we used two-level fractional factorial design to confirm corn flour, yeast extract, and KH2PO4 as important factors significantly affecting V. lecanii spore production. Finally, we optimized these selected variables using a central composite design and response surface method. The optimal medium composition was (grams per liter): corn flour 35.79, yeast 8.69, KH2PO4 1.63, K2HPO4 0.325, and MgSO4 0.325. Under optimal conditions, spore production reached 1.1 × 1010 spores/g dried carrier, much higher than that on wheat bran (1.7 × 109 spores/g initial dry matter).  相似文献   

13.
The modified rotating simplex method has been successfully used to determine the best combination of agitation rate and aeration rate for maximum production of extracellular proteases by Staphylococcus aureus mutant RC128, in a stirred tank bioreactor operated in a discontinuous way. This mutant has shown altered exoprotein production, specially enhanced protease production. Maximum production of proteases (15.28 UP/ml), measured using azocasein as a substrate, was obtained at exponential growth phase when the bioreactor was operated at 300 rpm and at 2 vvm with a volumetric oxygen transfer coefficient (K L a) of 175.75 h−1. These conditions were found to be more suitable for protease production.  相似文献   

14.
The objective of the present study is to develop a mathematical model to predict the effect of indole-3-butyric acid (IBA) on mean rooting (%) and mean root growth of northern highbush blueberry cultivars (Vaccinium corymbosum L.). The best estimating equations for the rooting (%) and root growth are formulized as: RG = (5.672183) + [0.002851 × (IBA)] − [2.0E−6 × (IBA)2] + (−0.27211 × Cv.) and R = (82.00649) + [0.030801 × (IBA)] − [2,4E−5 × (IBA)2] − [2.36218 × (Cv.)] where RG is root growth, R is rooting, IBA is indole-3-butyric acid (ppm) and Cv. is cultivar. Cultivars are Ivanhoe [1], Jersey [2], Rekord [3], Northland [4], Berkeley [5] and Bluejay [6]. The numbers given in square brackets represent the blueberry cultivars for the equations. Multiple regression analysis was carried out until the least sum of squares (R2) was obtained. R 2 value 0.90 for rooting and 0.95 for root growth. Standard errors were found to be significant at the p < 0.001 level. The actual rooting differed to the blueberry cultivars and it was between 57.76 and 83.23% while estimated rooting percentage calculated by the produced mathematical model was between 59.04 and 83.80%.  相似文献   

15.
Different types of stem cells have been investigated for applications in drug screening and toxicity testing. In order to provide sufficient numbers of cells for such in vitro applications a scale‐up of stem cell culture is necessary. Bioreactors for dynamic three‐dimensional (3D) culture of growing cells offer the option for culturing large amounts of stem cells at high densities in a closed system. We describe a method for periodic harvesting of pluripotent stem cells (PSC) during expansion in a perfused 3D hollow‐fiber membrane bioreactor, using mouse embryonic stem cells (mESC) as a model cell line. A number of 100 × 106 mESC were seeded in bioreactors in the presence of mouse embryonic fibroblasts (MEF) as feeder cells. Over a cultivation interval of nine days cells were harvested by trypsin perfusion and mechanical agitation every second to third culture day. A mean of 380 × 106 mESC could be removed with every harvest. Subsequent to harvesting, cells continued growing in the bioreactor, as determined by increasing glucose consumption and lactate production. Immunocytochemical staining and mRNA expression analysis of markers for pluripotency and the three germ layers showed a similar expression of most markers in the harvested cells and in mESC control cultures. In conclusion, successful expansion and harvesting of viable mESC from bioreactor cultures with preservation of sterility was shown. The present study is the first one showing the feasibility of periodic harvesting of adherent cells from a continuously perfused four‐compartment bioreactor including further cultivation of remaining cells. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:141–151, 2016  相似文献   

16.
A flow injection (FI) method is reported for the determination of l‐ cysteine, based on its enhancement on chemiluminescence (CL) emission of luminol oxidized by sodium persulphate in alkaline solution. The calibration graph was linear over the range 1.0 × 10–9–5.0 × 10–7 mol/L (r2 = 0.9992), with relative standard deviations (RSDs) in the range 1.1–2.3% (n = 4). The limit of detection (3σ blank) was 5.0 × 10–10 mol/L with a sample throughput of 120/h. The method was applied to pharmaceuticals and the results obtained were in reasonable agreement with the amount labelled. The proposed method was also applied to cysteine in synthetic amino acid mixtures. Calibration graphs of N‐acetylcysteine and glutathione over the range 1.0–50 × 10–8 and 0.5–7.5 × 10–7 mol/L were also established (r2 = 0.998 and 0.9986) with RSDs in the range 1.0–2.0% (n = 4), and the limits of detection (3σ blank) were 5.0 × 10–9 and 1.0 × 10–8 mol/L, respectively. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Field trials were conducted to evaluate the efficacy of wheat bran bait formulations of Paranosema locustae and Metarhizium anisopliae for controlling grasshoppers in southeast Niger. Treatments consisted of wheat bran baits mixed with M. anisopliae, P. locustae + M. anisopliae or with P. locustae spores and P. locustae + sugar. Oedaleus senegalensis, Pyrgomorpha cognata and Acrotylus blondeli were the predominant species at the time of application representing ca. 94% of the total population. Bran application was done when O. senegalensis (ca. 75% of the population) was at its early developmental stages, with first, second and third instars accounting for 64–85%. Grasshopper population reduction, P. locustae prevalence and level of infections in the predominant species were monitored. Manual application of P. locustae and M. anisopliae formulated in wheat bran has proven to induce consistent pathogen infection in grasshopper populations. Population density over the three weeks monitoring, typically decreased by 44.7 ± 6.9%, 52.8 ± 8.4%, 73.7 ± 5.5% and 89.1 ± 1.8% in P. locustae, P. locustae + sugar, M. anisopliae and P. locustae + M. anisopliae treated plots respectively. Paranosema locustae prevalence in surviving adult grasshoppers at 28 after application was 48.1 ± 2.3%, 28.9 ± 4.8% and 27.4 ± 3.7%, with infection level of 6.2 ± 0.8 × 106, 2.3 ± 0.3 × 104 and 2.1 ± 0.3 × 103 spores mg−1 host weight in O. senegalensis, A blondeli and P. cognate respectively. Other species that each accounted for <2% of the community, namely Aiolopus thalassinus, A. simulatrix, Acorypha glaucopsis, Acrotylus patruelis, Anacridium melanorhodon, Diabolocatantops axillaris, Kraussaria angulifera and Schistocerca gregaria were found to show sign of infection. The results from this study suggest that wheat bran application of M. anisopliae and P. locustae alone or in combination, targeting early instars grasshopper could be a valuable option in grasshopper control programs.  相似文献   

18.
In an attempt to develop a cost-effective process for bioinsecticide production by B. thuringiensis, the feeding regime during aerobic cultivation of the bacterium was investigated and optimized. The process was designed as a two-stage process; a first stage of active growth, where glucose and other nutrients were adequately supplied to the growing cells over 12 h, followed by a second stage of 2 h for spore formation and toxin release. In order to maximize spore and toxin yield and productivity, different quantities of glucose and nutrients were fed separately to the growing cells in four different fermentation runs. In all runs, glucose was converted to bacterial biomass during the first stage and subsequently to spores and crystal protein during the second phase. The best results were obtained with a fermentation run supplied with 190 g glucose in 1500 ml. Up to 20.1 g of bacterial insecticides/l were recovered from fermentation broth with a glucose to toxin conversion yield of 0.159 g/g. Also, a markedly high spore concentration of 2.31 × 1012 c.f.u./ml was obtained. The spore–crystal protein mixture obtained was tested for its insecticidal activity against three of the most agronomically important pests. Among the bioinsecticide-treated insect pests, Egyptian cotton leafworm, Spodoptera littoralis was the most susceptible pest with the lowest LC50 of the bioinsecticides against its larval instar and the highest virulence against adults emerged later on from the surviving larvae.  相似文献   

19.
Feng S  Xue L  Liu H  Lu P 《Molecular biology reports》2009,36(6):1433-1439
Dunaliella salina has been exploited as a new type of bioreactor due to its unique advantages. However, this bioreactor application was restricted for absence of a high-efficiency and stable transformation method at present. In the present study, the cells of D. salina were transformed by glass beads. The results of histochemical staining revealed that the GUS gene was successfully expressed in the positive transformants, and PCR and PCR-Southern blot analysis further demonstrated that the bar gene was integrated into the D. salina genome. Moreover, the three transformation methods, including glass beads, bombardment particle and electroporation, were compared for screening a high-efficiency transformation method for gene engineering of D. salina. The results showed that transformation efficiency of the glass beads was the highest, approximately 102 transformants/μg DNA. It is concluded that the established glass beads method has been demonstrated to be an optimal transformation way for D. salina.  相似文献   

20.
In this study, a modified version of the gas production technique was used to determine protein fermentation characteristics in rumen fluid of 19 feedstuffs. Performing the incubations in a N-free environment, and with an excess of rapidly fermentable carbohydrates, made N the limiting factor to microbial growth, and so gas production profiles reflected the availability of N from the feed samples. Results showed that fermentation of protein in rumen fluid can be determined with this modified gas production technique, and that there were distinct differences in protein fermentation between the feed samples. Availability of protein for fermentation was highest in wheat, potato pieces and lupin, and lowest in Rumiraap, a formaldehyde treated rapeseed meal, palm kernel expeller and brewery grains. The protein degradation characteristics of the 19 feed ingredients were also determined with the in situ nylon bag technique. With the obtained results, the amount of rumen escape protein (REP) was calculated for each feedstuff. The results showed that the rate of degradation ranged from 0.010/h for Rumiraap to 0.151/h for wheat. The amount of REP ranged from 197 g/kg CP for lupin to 840 g/kg CP for Rumiraap. Comparing the gas production results with the results obtained with the nylon bag technique showed that there was a good relationship between the gas production after 12–25 h of incubation and the calculated amount of REP (r2 = 0.83–0.85). The results show that the adapted gas production technique, being depleted of N and using an excess of rapidly fermentable carbohydrates, is suitable to recognize differences in N availability between feed samples and can be used as an alternative to the nylon bag technique and other in vitro techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号