首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An enzyme extract from apple(Pyrus malus Borb.) seeds which causes the disappearance of free indol-3-ylacetic acid (IAA) requires the presence of oxygen, but is not inhibited by cyanide. Using 1-14C-IAA it has been demonstrated that the IAA transformation is not accompanied by its decarboxylation. Decarboxylating IAA oxidase is absent during the whole period of apple seed cold stratification. Free IAA has not been detected in dormant apple seeds and in seeds stratified at low temperature. It appears during stratification at 25 °C. Ethyl ester of IAA and indol-3-ylacetyl aspartate have been identified in dormant and after-ripened seeds. Exogenous 1-14C IAA taken up by apple embryos is converted into conjugates with aspartate and short peptides containing an aspartate moiety.  相似文献   

2.
The connection between classical phytohormone-ethylene and two signaling molecules, nitric oxide (NO) and hydrogen cyanide (HCN), was investigated in dormancy removal and germination “sensu stricto” of apple (Malus domestica Borkh.) embryos. Deep dormancy of apple embryos was removed by short-term (3–6 h) pre-treatment with NO or HCN. NO- or HCN-mediated stimulation of germination was associated with enhanced emission of ethylene by the embryos, coupled with transient increase in ROS concentration in embryos. Ethylene vapors stimulated germination of dormant apple embryos and eliminated morphological anomalies characteristic for young seedlings developed from dormant embryos. Inhibitors of ethylene receptors completely impeded beneficial effect of NO and HCN on embryo germination. NO- and HCN-induced ethylene emission by apple embryo was only slightly reduced by inhibitor of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase activity during first 4 days of germination. Short-term pre-treatment of the embryos with NO and HCN modified activity of both key enzymes of ethylene biosynthetic pathway: ACC synthase and ACC oxidase. Activity of ACC synthase declined during first 4 days of germination, while activity of ACC oxidase increased markedly at that time. Additional experiments point to non-enzymatic conversion of ACC to ethylene in the presence of ROS (H2O2). The results indicate that NO and HCN may alleviate dormancy of apple embryos “via” transient accumulation of ROS, leading to enhanced ethylene emission which is required to terminate germination “sensu stricto”. Therefore, ethylene seems to be a trigger factor in control of apple embryo dormancy removal and germination.  相似文献   

3.
An attempt is made to characterize the functional activity of the protein moleculo possessing both peroxidase and IAA oxidase activity by comparing the kinetic parameters for the two types of enzyme activity with regard to the following substrates: H2O2, benzidine, guaiacol and IAA. The curves expressing the dependence of the enzyme reaction velocity on the concentration of the enzyme or the substrate are different depending on the enzyme extract origin and the type of the substrate. It is established that the Km of peroxidase for IAA decreases while its Km for H2O2 increases during cell development. Both types of enzyme activity show similar pH and temperature dependence. The presented data show that IAA oxidase activity of the peroxidase develops as extension and differentiation of the root cells proceed. This is one of the possible mechanisms through which peroxidase may participate in the regulation of growth and differentiation of the primary root cells of maize (Zea mays L.)  相似文献   

4.
Previously we showed that dormancy break of spindle tree embryos after gibberellic acid (GA3) treatment was followed by an increase in arginine decarboxylase (ADC) activity (Béranger-Novat N. et al., Plant Sc. 102: 139–145, 1994). These results indicated that arginine decarboxylase pathway mediate hormone-induced growth responses in spindle tree embryos. In the present investigation we show that in GA3-treated embryos diamine oxidase (DAO) increases immediately after putrescine content and the increase in DAO activity paralleles the accumulation of putrescine at the beginning of the culture (before the visible appearance of the radicle). In this system polyamine oxidase (PAO) increases immediately after DAO activity and follows closely the increase in spermidine content. These results demonstrate a direct correlation between the biosynthesis and oxidation of putrescine and spermidine. At every stage of development DAO and putrescine levels are lower than spermidine and PAO levels. Dormant embryos can be distinguished from GA3-treated embryos by a complete lack of putrescine accumulation. In dormant embryos compared to GA3-treated embryos DAO changed more or less in parallel and on the whole seemed to follow the same content and distribution, but the kinetics of the activation of DAOs were different in dormant embryos with a delay of 1.5 day for the first and 1 day for the second peak. During the first days of culture at least up to 4 days the distribution of spermidine and PAO in GA3-treated embryos followed the same pattern observed in dormant embryos, but the levels of spermidine and PAO were greatly reduced in dormant embryos. On the other hand the kinetics of the activation of PAOs were different in dormant embryos with a delay of 1 day. The results suggest that dormant embryos are deficient in their ability to synthesize polyamines efficiently and support the view that spermidine catabolism (via PAO pool) is limiting in untreated embryos during the first days of culture.  相似文献   

5.
Peroxidase was extracted from the apple (Delicious) fruit and the apple stalk during the various stages of ripening. Activities of peroxidase and IAA oxidase of fruits are different.The activities of peroxidase and IAA oxidase in the apple stalk are much higher than that in the apple fruits. Gel electrophoresis revealed that the number of isozymic bands of peroxidase in the stalk (7–9 bands) were more than that in the fruit (6 bands). It is inferred that peroxidase in apple stalk might play a more important role in IAA and some other inhibitors oxidized before then went into the fruits.  相似文献   

6.
Summary It was found that the temperature optimum for apple (Malus domestica Borb.) seed acid lipase is the same as that for seed after-ripening process. The activity of the enzyme occurs between the 40th and 70th days of stratification, whereas the activity of alkaline lipase very low at that time appears about 20 days later. The changes of both enzyme activities were also studied during dark and light culture of embryos isolated from seeds after different times of stratification. Only the alkaline enzyme activity is under the control of light. It was concluded that essentially the same process, i.e. the hydrolysis of reserve fats is catalysed by two different enzymes: acid lipase acting during the cold-mediated breaking of embryo dormancy and alkaline lipase acting during the germination of dormant embryos, thus being under light control.  相似文献   

7.
研究了低温和PEG预处理对小麦成熟胚愈伤组织形成及IAA氧化的影响。结果表明,低温和PEG预处理促进两种小麦成熟胚愈伤组织形成,但对其IAA氧化的影响不同;其中低温引起‘郑引1号’IAA氧化酶活性降低,但对‘保7059’的影响不大;而PEG使‘保7059’的IAA氧化酶活性增加,但对‘郑引1号’无明显影响;两种处理均使两种小麦IAA过氧化物酶活性降低。  相似文献   

8.
Cytoplasmic and salt-extracted peroxidase and IAA oxidase activities were studied in Phaseolus vulgaris hypocotyls treated with gibberellic acid (GA, 200 μM), naphthyl acetic acid (NAA, 100 μM) and distilled water control (DW). Peroxidase activity was assayed with four hydrogen donors during the initial phase of hypocotyl elongation. Though peroxidase activity showed a decreasing trend with time in all the hydrogen donors studied; considerable variation with different hydrogen donors was observed. NAA had maximum peroxidase activity as compared to DW or GA treatment. The activity showed a clear inverse correlation with hypocotyl growth. IAA oxidase activity showed a similar trend with growth as peroxidase activity. A highly significant correlation was observed between peroxidase and IAA oxidase activities and high molecular weight xyloglucan content (P<0.001). Finally, the possible role of peroxidase and IAA oxidase activities in hypocotyl elongation growth is discussed.  相似文献   

9.
Changes in the activities of IAA oxidase, peroxidase, ascorbicacid utilization (AAU), and in the level of paramagnetic manganese(Mn2+) have been studied during kinetin-induced growth of theisolated cucumber cotyledons in light or in dark. In kinetin-treatedcotyledons exposed to light, inhibition in the level of paramagneticmanganese corresponds with an enhancement in IAA oxidase activity.The level of paramagnetic manganese shows an inverse correlationwith IAA oxidase activity. In darkness the level of Mn2+ doesnot show the same correlation with IAA oxidase activity as inthe light. Kinetin stimulates peroxidase activity both in thelight and in darkness. Enhancement of IAA oxidase activity andno corresponding change in the level of paramagnetic manganeseindicates that the oxidation of IAA in dark-grown, kinetin-treatedcotyledons is brought about by peroxidase. It appears that thephenolic cofactors required for the oxidation of manganese andIAA may be limiting in kinetin-treated cotyledons in darkness.Thus in the light, IAA oxidation seems to be brought about byperoxidase as well as manganese, whereas in darkness it is mediatedby peroxidase alone. Increase in IAA oxidase activity duringkinetin-induced growth of the isolated cotyledons is incompatiblewith the idea that increased IAA oxidase activity would limitthe availability of auxin for growth. Kinetin does not mimicthe action of light on IAA oxidase activity; on the contrary,it removes the inhibitory effect of light on IAA oxidase activityprobably through the synthesis of IAA oxidase activators.  相似文献   

10.
Changes of soluble and ionically bound peroxidase and indoleacetic acid (IAA) oxidase activities were followed during peach seed development. Soluble peroxidase activity was located mainly in the embryo plus endosperm tissue, whereas wall ionically bound activities were found predominantly in the integument tissue. The different peroxidase isoenzymes present in the extracts were characterized by polyacrylamide gel electrophoresis and isoelectric focusing; the main soluble isoenzyme of embryo plus endosperm tissue was an anionic isoperoxidase of R F 0.07. Basic ionically bound isoenzymes were located only in the integument tissue, but two soluble anionic isoenzymes of R F 0.23 and 0.51 were also present in this tissue. In parallel, peroxidase protein content was estimated specifically using polyclonal antibodies. The kinetic data and the changes of seed IAA oxidase activity during fruit development suggested that basic peroxidase isoenzymes from ionically bound extracts of integument might be involved in IAA degradation. Received September 11, 1997; accepted October 21, 1997  相似文献   

11.
Omran RG 《Plant physiology》1980,65(2):407-408
The activities of catalase, peroxidase, indoleacetic acid (IAA) oxidase and peroxide levels in cucumber plants during and after chilling were determined. During 96 hours at 5 C and 85% relative humidity, catalase activity declined, IAA oxidase activity increased, and peroxide concentrations increased. Peroxidase activity was not affected by chilling. When chilled plants were returned to 25 C to recover, enzyme activities and peroxide concentration were restored to their prechilling levels. The increase in peroxide and IAA oxidase activity may inactivate or destroy IAA and thus retard growth.  相似文献   

12.
Sequeira L  Mineo L 《Plant physiology》1966,41(7):1200-1208
Extracts from roots of Nicotiana tabacum L var. Bottom Special contain oxidative enzymes capable of rapid degradation of indoleacetic acid (IAA) in the presence of Mn2+ and 2, 4-dichlorophenol. Purification of IAA oxidase was attempted by means of ammonium sulfate fractionation and elution through a column of SE-Sephadex. Two distinct fractions, both causing rapid oxidation of IAA in the absence of H2O2, were obtained. One fraction exhibited high peroxidase activity when guaiacol was used as the electron donor; the other did not oxidase guaiacol. Both enzyme fractions caused similar changes in the UV spectrum of IAA; absorption at 280 mμ was reduced, while major absorption peaks appeared at 254 and 247 mμ. The kinetics of IAA oxidation by both fractions were followed by measuring the increase in absorption at 247 mμ. The peroxidase-containing fraction showed no lag or a slight lag which could be eliminated by addition of H2O2 (3 μmoles/ml). The peroxidase-free fraction showed a longer lag, but addition of similar amounts of H2O2 inhibited the rate of IAA oxidation and did not remove the lag. With purified preparations, IAA oxidation was stimulated only at low concentrations of H2O2 (0.03 μmole/ml). A comparison of Km values for IAA oxidation by the peroxidase-containing and peroxidase-free fractions suggests that tobacco roots contain an IAA oxidase which may have higher affinity for IAA and may be more specific than the general peroxidase system previously described from other plant sources. A similar oxidase is present in commercial preparations of horseradish peroxidase. It is suggested that oxidation of IAA by horseradish peroxidase may be due to a more specific component.  相似文献   

13.
The effects of (−)jasmonic acid (JA) on germination of embryos isolated from dormant seeds of apple ( Malus domestica Borb. cv. Antonówka) cultured in darkness or at 12‐h photoperiod were studied, as well as its effects on the activity of alkaline lipase (AlkL, EC 3.1.1.3) in these embryos. The maximum sensitivity of germination to JA occurred on days 3 and 4 of embryo culture. Both germination and enzyme activity were stimulated by JA, its effect being additive to that of light. Inhibitors of lipoxygenase inhibited embryo germination and AlkL activity, both effects being partially reversed by JA treatment. We suggest that (1) JA is implicated in an endogenous complex controlling apple seed germination, and that (2) it acts independently of the mechanism triggered by light.  相似文献   

14.
Tomato fruit (Lycopersicon esculentum Mill cv. Walters) peroxidase was purified to apparent homogeneity by a three step procedure: hydrophobic chromatography, DEAE Sephacel chromatography and semi-preparative electrophoresis. A purification of 71 fold and a yield of 52% relative to crude extract were obtained. The pure enzyme was brown in color and showed a molecular weight of 45,000 as estimated from SDS disc gel electrophoresis and gel filtration on Ultrogel AcA 34. The pH optimum of tomato peroxidase varied with substrate dyes used and the enzyme may have some hydrophobic properties near its active site. The optimum temperature was 35 C for this enzyme, and IAA oxidase activity was evident in the presence of 2,4-dichloro-phenol and manganese. The apparent KM for IAA was measured to be 0.24 mM.  相似文献   

15.
The enzyme-catalysed oxidation of indole-3-acetic acid (IAA) was sytematically investigated with respect to enzyme source and cofactor influence using differential spectrophotometry and oxygen uptake measurement. Commercially-available horseradish peroxidase (HRP) and a peroxidase preparation from Prunus phloem showed identical catalytic properties in degrading IAA. There was no lag phase of IAA oxidation with any of the reaction mixtures tested. Monophenols exhibited a much stronger stimulatory effect than inorganic cofactors, but during the incubation of IAA the phenols were also gradually oxidised. Hydrogen peroxide (H2O2) in combination with monophenols accelerated peroxidation of the monophenol and IAA oxidation simutaneously. Since photometric determination of IAA was affected by oxidation products of dichlorophenol or phenol contamination of the enzyme preparation used, the standard IAA absorption measurements appear to be susceptible to methodological errors. Under certain incubation conditions a catalase-like activity of HRP during the course of IAA oxidation was noted and substrate inhibition was observed above 1.5 × 10\s-4 M IAA. Some concepts concerning the mode of activation of the enzyme-catalysed IAA oxidation are deduced from the experimental results.  相似文献   

16.
IAA oxidase preparations from fresh sweet potato tuber discs oxidized IAA only in the presence of added phenolic cofactors, and the pH optimum for enzyme activity depended on the cofactor used. Ageing of tuber discs, either by aeration in distilled water or by incubation on moist filter paper, resulted in increased peroxidase and phenol-stimulated IAA oxidase activities, as well as the development of IAA oxidase activity in the absence of added cofactors. High phenolase activity of fresh tuber discs decreased considerably with ageing. Phenol-stimulated IAA oxidase activity reached maximal levels before IAA oxidase activity in the absence of added cofactors. Enzyme preparations from aged tuber discs had double pH optima, similar to those previously described for sweet potato root IAA oxidase preparations. IAA in the concentration range 10?4 to 10?2 M inhibited the increase in peroxidase and IAA oxidase activities with ageing. DCP-stimulated IAA oxidase activities in preparations from both fresh and aged sweet potato tuber discs were inhibited by manganous ion.  相似文献   

17.
Changes in IAA oxidase, and in cytoplasmic and ionically wall-bound peroxidase activities were studied in the developing fibres of three cotton cultivars ( Gossypium hirsutum L. cv. Gujarat-67, cv. Khandwa-2 and G. herbaceum L. cv. Digvijay), designated as long, medium and short staple cultivars, respectively. In all the three cultivars IAA oxidase activity was low during the fibre elongation phase, while the activity increased significantly during the secondary thickening phase. The increase in IAA oxidase activity in the three cultivars showed close correspondence with their respective total period of elongation. No relationship between cytoplasmic peroxidase activity and fibre development was discernible. The ionically bound wall peroxidase activity, however, recorded low levels during the elongation phase and higher levels during the secondary thickening phase. The role of wall peroxidase in cessation of elongation growth is discussed.  相似文献   

18.
Iaa oxidase and polyphenol oxidase activities of peanut peroxidase isozymes   总被引:1,自引:0,他引:1  
Four anionic isozymes (A1, A2, A4 and A5) from peanut cells in suspension medium possessed IAA oxidase and polyphenol oxidase activities. The specific activities of each of the enzymes differed among the 4 isozymes. The pH optima established in these assays for peroxidase was acidic, for IAA oxidase neutral and for polyphenol oxidase alkaline. All 4 isozymes had different Km and Vmax for the enzyme activities of peroxidase and polyphenol oxidase. The sigmoid kinetics from the IAA oxidase assays for the isozymes probably indicates an allosteric nature.  相似文献   

19.
Changes in levels of IAA, phenolic compounds, peroxidase, polyphenol oxidase, and IAA oxidase activities in the corm and the apical bud of Crocus sativusL. during bud growth and development, with special emphasis on the flowering stage, were studied. In the bud, flower formation was accompanied by enhanced activities of peroxidase, polyphenol oxidase, IAA oxidase, and higher contents of phenolic compounds as well as lower levels of IAA. In the corm, during the flower formation, these enzymes showed an opposite behavior. Moreover, the contents of phenolics and IAA in the corm tissues during flower formation and growth were higher than at the other developmental stages. It may be concluded that the transition of saffron plants to flowering is correlated with peroxidase, polyphenol oxidase, and IAA oxidase. Furthermore, these enzymes might exert their roles in the regulation of flowering through their participation in IAA catabolism. The hypothesis of regulation of bud development by an interaction between phenolics and the enzymes involved in IAA catabolism is discussed.  相似文献   

20.
Lipetz , Jacques , and Arthur W. Galston . (Yale U., New Haven.) Indole acetic acid oxidase and peroxidase activities in normal and crown gall tissue cultures of Parthenocissus tricuspidata. Amer. Jour. Bot. 46(3) : 193-196. Illus. 1959.—Normal and crown gall cells of P. tricuspidata grown in pure culture were examined for IAA oxidase and peroxidase activities. No IAA oxidase activity could be demonstrated in dialyzed or undialyzed homogenates of either tissue; however, crown gall tissue, but not normal tissue, was found to produce an extracellular IAA oxidase which required Mn++ and DCP as co-factors. Normal tissue, but not crown gall tissue was found to contain high levels of substances which spared IAA from destruction by a pea IAA oxidase preparation. Peroxidase activity was found to be higher in normal than in crown gall homogenates, but crown gall tissue released considerably more peroxidase into the external medium. The differences in the auxin requirements and growth rate between normal and crown gall cells appear not to be easily explicable in terms of differential auxin destruction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号