首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
(Na++K+)-ATPase proved to be present in the vegetative thalli ofBoergesenia forbesii (Harvey) Feldmann. The ATPase was extracted with Triton X-100 and partially purified by Sephadex G-150 gel filtration. The enzyme was activated with Mg2+ and further stimulated by the addition of K+ and Na+. It was observed thatp-chloromercuribenzoate (PCMB),N-ethylmaleimide (NEM), iodoacetoamide, copper sulfate, zinc sulfate, lead nitrate and cadmium chloride inhibited the enzyme activity, but ouabain was ineffective, andN,N′-dicyclohexylcarbodiimide (DCCD) did not apparently inhibit the activity, but rather promoted it slightly. The ATPase activity was also shown in the isolated cell wall ofBoergesenia thalli, and the enzyme activity was detected in the wall itself by using electron microscopic methods.  相似文献   

3.
4.
Aminoacyl-tRNA synthetases (aaRSs) drive protein translation in cells and hence these are essential enzymes across life. Inhibition of these enzymes can halt growth of an organism by stalling protein translation. Therefore, small molecule targeting of aaRS active sites is an attractive avenue from the perspective of developing anti-infectives. Febrifugine and its derivatives like halofuginone (HF) are known to inhibit prolyl-tRNA synthetase of malaria parasite Plasmodium falciparum. Here, we present functional and crystallographic data on P. falciparum prolyl-tRNA synthetase (PfPRS). Using immunofluorescence data, we show that PfPRS is exclusively resident in the parasite cytoplasm within asexual blood stage parasites. The inhibitor HF interacts strongly with PfPRS in a non-competitive binding mode in presence or absence of ATP analog. Intriguingly, the two monomers that constitute dimeric PfPRS display significantly different conformations in their active site regions. The structural analyses presented here provide a framework for development of febrifugine derivatives that can seed development of new anti-malarials.  相似文献   

5.
6.
The thermophilic autotrophMethanobacterium thermoautotrophicum assimilates CO2 via a novel pathway rather than via the Calvin cycle. The central intermediate of this pathway is acetyl CoA which is reductively carboxylated to pyruvate. Cell extracts of the organism contained phosphoenolpyruvate synthetase with a specific activity of 100 nmol min-1 mg-1 protein (65°C). Pyruvate kinase and pyruvate, phosphate dikinase were not detected. Phosphoenolpyruvate synthetase was partially purified (50-fold) and the following reaction stoichiometry was established: $${\text{Pyruvate + ATP + H}}_{\text{2}} {\text{O }} \to {\text{ Phosphoenolpyruvate + AMP + P}}_{\text{i}} $$ The enzyme activity was depedent on free Mg2+ ions, NH 4 + or K+ ions, and SH-groups. Mn2+, but not Ca2+, could partially substitute for Mg2+; Na+ could not substitute for K+ or NH 4 + . The pH-optima,V max-values and the apparentK M-values for the substrates of the enzyme in both directions were determined. Thermodynamic, kinetic and regulatory features indicate that, in vivo, the enzyme functions in the direction of phosphoenolpyruvate synthesis from pyruvate. Not only is the synthesis of phosphoenolpyruvate via the PEP synthetase reaction energetically favorable; the enzyme also catalyzed this synthesis 100 times faster than the reverse reaction, the apparentK M value for pyruvate (40 μM) being low and the apparentK M value for phosphate (100 mM) being high. Furthermore, AMP, ADP, PP and α-ketoglutarate were inhibitors of PEP synthesis, indicating that the enzyme activity may be controlled in vivo. The role of phosphoenolpyruvate synthetase in autotrophic CO2 assimilation pathway ofMethanobacterium, as expected from previous labelling studies, is confirmed.  相似文献   

7.
8.
The cuticular membrane (CM) of sweet cherry (Prunus avium L.) fruit is severely strained during development. Strain results from a cessation of CM deposition during early development and is possibly caused by a downregulation of genes involved in CM synthesis. The objectives of our study were to investigate the effects of ectopic expression of two sweet cherry genes, PaLACS2 (a putative long-chain acyl-CoA synthetase) and PaATT1 (a putative cytochrome P450 monooxygenase), in Arabidopsis thaliana (L.). Effects on the expression of endogenous LACS2, ATT1 and LACS1 genes, wax and cutin composition, and cuticle permeability were investigated in 13 transgenic lines. Of these, six lines are selected for presentation based on the magnitude of the response. The amount of cutin increased in the PaLACS2 overexpression line C-L-29 and in the complemented lacs2-1 knockout mutant line l-L-14, but overexpression had no effect on cutin composition or wax. Wax deposition decreased in the complemented knockout lines l-L-14 and l-L-21. Overexpressing PaATT1 in A. thaliana line C-A-6 had no significant effect on cutin and wax deposition. In the complemented knockout lines a-A-7 and a-A-12, cutin deposition increased, whereas wax deposition was unaffected. The permeability of the cuticle for water and toluidine blue decreased in the PaLACS2 and PaATT1 complemented knockout lines. The results suggest that (1) PaLACS2 and PaATT1 expressed in A. thaliana are involved in cutin biosynthesis, and (2) their functions are consistent with those of a typical long-chain acyl-CoA synthetase (PaLACS2) and of a cytochrome P450 monooxygenase (PaATT1).  相似文献   

9.
10.
Malonyl-CoA synthetase fromPseudomonas fluorescens was inactivated by diethylpyrocarbonate (DEP) with the second-order rate constant of 775 M?1 min?1 atpH 7.0, 25°C, showing a concomitant increase in absorbance at 242 nm due to the formation of N-carbethoxyhistidyl derivatives. The inactivated enzyme at low concentration of DEP (<0.2 mM) could be completely reactivated by hydroxylamine but not completely reactivated at high concentration (>0.5 mM), indicating that there may be another functional group modified by DEP. Complete inactivation of malonyl-CoA synthetase required the modification of seven residues per molecule of enzyme; however, only one is calculated to be essential for enzyme activity by a statistical analysis of the residual enzyme activity.pH dependence of inactivation indicated the involvement of a residue with apK a of 6.7, which is closely related to that of histidyl residue of proteins. Whena subunit treated with DEP was mixed with β subunits complex, the enzyme activity completely disappeared, whereas when β subunit complex treated with the reagent was mixed witha subunit, the activity remained. Inactivation of the enzyme by the reagent was protected by the presence of malonate and ATP. These results indicate that a catalytically essential histidyl residue is located at or near the malonate and ATP binding region ona subunit of the enzyme.  相似文献   

11.
Tyrosyl-tRNA synthetase from Mycobacterium tuberculosis (MtTyrRS) is an enzyme that belongs to class I of aminoacyl-tRNA synthetases, which catalyze the attachment of l-tyrosine to its cognate tRNATyr in the preribosomal step of protein synthesis. MtTyrRS is incapable of cross-recognition and aminoacylation of human cytoplasmic tRNATyr, so this enzyme may be a promising target for development of novel selective inhibitors as putative antituberculosis drugs. As a class I aminoacyl-tRNA synthetase, MtTyrRS contains the HIGH-like and KFGKS catalytic motifs that catalyze amino acid activation with ATP. In this study, the conformational mobility of MtTyrRS catalytic KFGKS loop was analyzed by 100-ns all-atoms molecular dynamics simulations of the free enzyme and its complexes with different substrates: tyrosine, ATP, and the tyrosyl–adenylate intermediate. It was shown that in the closed state of the active site, the KFGKS loop, readily adopts different stable conformations depending on the type of bound substrate. Molecular dynamics simulations revealed that the closed state of the loop is stabilized by dynamic formation of two antiparallel β-sheets at flanking ends which hold the KFGKS fragment inside the active center. Prevention of β-sheet formation by introducing point mutations in the loop sequence results in a rapid (<20 ns) transition of the loop from its functional “closed” M-like structure to an inactive “open” O-like structure, i.e. rapid diffusion of the catalytic loop outside the active site. The flexibility and rapid dynamics of the wild-type aaRS catalytic loop structure are crucial for formation of protein–substrate interactions and subsequently for overall enzyme functional activity.  相似文献   

12.
The growth yields of three strains of Rhizobium japonicum (CB 1809, CC 723, CC 705) in culture solutions containing L-glutamate were about twice those grown with ammonium. The activities of glutamine synthetase (GS; EC 6.3.1.2) and glutamate dehydrogenase (GDH; EC 1.4.1.4) were dependent on the nitrogen source in the medium and also varied with growth. Both NADPH-and NADH-dependent glutamate synthase (GOGAT; EC 1.4.1.13) and NADPH-dependent GDH were found in strains grown with either glutamate or ammonium but NADH-linked GDH was only detected in glutamate-grown cells. Glutamine synthetase was adenylylated in cells grown with NH 4 + (90%) and to lesser extent in those grown with L-glutamate (50%). In root nodules produced by the three strains in Glycine max (L.) Merr., the bulk of GS was located in the nodule cytosol (60–85%). The enzyme was adenylylated in bacteroids (43–75%) and in the nodule tissues (52–68%). The enzyme in cell-free extracts of Rh. japonicum (CC 705) grown in culture solutions containing glutamate and in bacteroids (CC 705) was deadenylylated by snake-venom phosphodiesterase. L-methionine-DL-sulfoximine restricted the incoporation of 15N-labelled (NH4)2SO4 into cells of strains CB 1809 and CC 705, as well as in bacteroids of strain CC 705. It is noteworthy that appreciable activities for GDH were found in the free-living rhizobia grown on glutamate. Thus the presence of an enzyme does not necessarily imply that a particular pathway is operative in assimilating ammonium into cell nitrogen. Based on 15N studies, the GS-GOGAT pathway of rhizobia (strains CB 1809 and CC 705) is important when grown in culture solutions as well as in bacteroids from root nodules of G. max.  相似文献   

13.
Phytophthora plurivora and other Phytophthora species are known to be serious pathogens of forest trees. Little is known, however, about the presence of P. plurivora in Polish oak forests and their role in oak decline. The aims of this study were to identify P. plurivora in healthy and declining Quercus robur stands in southern Poland and to demonstrate the relationship between different site factors and the occurrence of P. plurivora. In addition, the virulence of P. plurivora and other Phytophthora species was evaluated through inoculations using 2-year-old oak seedlings. Rhizosphere soil was investigated from 39 oak stands representing different healthy tree statuses. The morphology and DNA sequences of the internal transcribed spacer regions (ITS) of the ribosomal DNA and the mitochondrial cox1 gene were used for identifications. P. plurivora, an oak fine root pathogen, was isolated from rhizosphere soil samples in 6 out of 39 stands. Additionally, Phytophthora cambivora, Phytophthora polonica and Phytophthora rosacearum-like were also obtained from several stands. The results showed a significant association between the presence of P. plurivora and the health status of oak trees. Similar relationships were also observed for all identified Phytophthora species. In addition, there was evidence for a connection between the presence of all identified Phytophthora species and some site conditions. Phytophthora spp. occurred more frequently in declining stands and in silt loam and sandy loam soils with pH?≥?3.66. P. plurivora and P. cambivora were the only species capable of killing whole plants, producing extensive necrosis on seedling stems.  相似文献   

14.
Occurrence of feruloyl-CoA synthetase (fcs) and enoyl-CoA hydratase (ech) genes responsible for the bioconversion of ferulic acid to vanillin have been reported and characterized from Amycolatopsis sp., Streptomyces sp., and Pseudomonas sp. Attempts have been made to express these genes in Escherichia coli DH5α, E. coli JM109, and Pseudomonas fluorescens. However, none of the lactic acid bacteria strain having GRAS status was previously proposed for heterologous expression of fcs and ech genes for production of vanillin through biotechnological process. Present study reports heterologous expression of vanillin synthetic gene cassette bearing fcs and ech genes in a dairy isolate Pediococcus acidilactici BD16. After metabolic engineering, statistical optimization of process parameters that influence ferulic acid to vanillin biotransformation in the recombinant strain was carried out using central composite design of response surface methodology. After scale-up of the process, 3.14 mM vanillin was recovered from 1.08 mM ferulic acid per milligram of recombinant cell biomass within 20 min of biotransformation. From LCMS-ESI spectral analysis, a metabolic pathway of phenolic biotransformations was predicted in the recombinant P. acidilactici BD16 (fcs +/ech +).  相似文献   

15.
Tannerella forsythia is considered a pathogen of periodontitis and forms a biofilm with multi-species bacteria in oral cavity. Lipopolysaccharide is a powerful immunostimulator and induces inflammation and shock. The purpose of this study was to investigate the characteristics of T. forsythia LPS in its co-cultivation with Fusobacterium nucleatum or Porphyromonas gingivalis. T. forsythia was co-cultured in the presence and absence of F. nucleatum and P. gingivalis and then T. forsythia LPS was extracted. The extracts were analyzed by SDS-PAGE and NF-κB reporter CHO cell lines. THP-1 cells were treated with the LPS and evaluated induction of cytokine expression by real-time RT-PCR and ELISA. For analysis of the bioactivity of T. forsythia LPS, the binding assay on LPS-binding protein (LBP) and CD14 was processed. The extracts did not contaminate other molecules except LPS and showed TLR4 agonists. Co-cultured T. forsythia LPS with P. gingivalis exhibited a lower level of induction of TNF-α, IL-1β, and IL-6 expression than singleor co-cultured T. forsythia LPS with F. nucleatum in the conditions of human serum. However, the three T. forsythia LPS did not show difference of cytokine induction in the serum free conditions. Co-cultured T. forsythia LPS with P. gingivalis exhibited a lower affinity to LBP and CD14 as binding site of O-antigen and attached at a lower level to THP-1 cells compared to single- or co-cultured T. forsythia LPS with F. nucleatum. The virulence of T. forsythia LPS was decreased by co-culturing with P. gingivalis and their affinity to LBP and CD14 was reduced, which may due to modification of O-antigen chain by P. gingivalis.  相似文献   

16.
The diversity of coral associated fungi is not enough understood, especially for scleractinian corals. Members of Porites are common and dominant species of scleractinian corals. To date, the fungal communities associated with coral Porites pukoensis have been not reported. In this paper, the diversity and activity of coral associated fungi in P. pukoensis were explored, 23 fungal strains were isolated, belonging to 10 genera and Aspergillus sp. (30.4 %) was predominant fungal genera. The sequence of isolate C1-23 in GenBank was only 90 % similarity to the most closely related sequences. It is concluded that rich fungal symbionts are attached to P. pukoensis, the rate of isolates with antibacterial activity was up to 30 %, particularly some isolates showed stronger bioactivities to gram-negative bacteria. It is included that the diversity of coral associated fungi in P. pukoensis is abundant and its activity is obviously. So the activities of fungi in P. pukoensis were deserved for further study.  相似文献   

17.
A gene encoding a protein classified as alanyl-tRNA synthetase (AlaRS) was found in the genome of the psychrophilic bacteria Bizionia argentinensis. The enzyme is constituted by three domains with an evolutionarily conserved modular arrangement: the N-terminal aminoacylation domain, the editing domain and the C-terminal domain (C-Ala). Herein we report the near complete NMR resonance assignment of the 122 amino acid C-Ala domain from B. argentinensis. The chemical shift data, reported for the first time for a C-Ala domain, constitute the basis for NMR structural studies aimed at elucidating the cold-adaptation mechanism of AlaRS.  相似文献   

18.
Candida infections are frequently reported in both HIV and cancer patients. Recent reports have shown that Candida participates in malignant transformation of oral fibrosis. The aim of the present study was to isolate and to identify anticandidal compound from soil Streptomyces sp. VITPK9. It was isolated from a brine spring of Manipur located in Thoubal district, Manipur, India. The ethyl acetate extract from culture supernatant of Streptomyces sp. VITPK9 was prepared and purified by silica gel column chromatography and HPLC. The purified compound was identified by using 1H and 13C NMR spectral data and based on the similarity index with reference compounds available in the mass spectra library of National Institute for Standards and Technology as pyrrolo[1,2-a]pyrazine-1,4-dione,hexahydro-3-(phenylmethyl)-. The antifungal activity of the purified compound was tested against the Candida strains according to the National Committee for Clinical Laboratory Standards guidelines and it was revealed that its MIC50 value ranged from 0.78 to 2.00 μg/mL. The results of the study suggest that Streptomyces sp. VITPK9 is the potential source for diketopiperazine type of anticandidal compounds.  相似文献   

19.
20.
It has been found, that ammonium sulfate is effective not only in stabilizing, but also in stimulating the activity of formyltetrahydrofolate synthetase (E. C. 6, 3. 4. 3) purified approximately 500-fold from pea seedlings. Kinetic studies have indicated that the stimulation by ammonium sulfate is due to the enhancement of the binding of the substrate, formate, with the enzyme. The binding of the another substrate, FAH4, with the enzyme was not affected by the addition of ammonium sulfate. The enzyme activity was inhibited by various sulfhydryl reagents, and the inhibition by PCMB was overcome by the addition of l-cysteine. The inhibition by PCMB was competitive with FAH4, and the Ki value for PCMB was 0.8 × 10?6m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号