首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work examined the effects of elevated CO2 and temperature and water regimes, alone and in interaction, on the leaf characteristics [leaf area (LA), specific leaf weight (SLW), leaf nitrogen content (NL) based on LA], photosynthesis (light‐saturated net carbon fixation rate, Psat) and carbon storage in aboveground biomass of leaves (Cl) and stem (Cs) for a perennial reed canary grass (Phalaris arundinacea L., Finnish local cultivar). For this purpose, plants were grown under different water regimes (ranging from high to low soil moisture) in climate‐controlled growth chambers under the elevated CO2 and/or temperature (following a factorial design) over a whole growing season (May–September in 2009). The results showed that the elevated temperature increased the leaf growth, photosynthesis and carbon storage of aboveground biomass the most in the early growing periods, compared with ambient temperature. However, the plant growth declined rapidly thereafter with a lower carbon storage at the end of growing season. This was related to the accelerated phenology regulation and consequent earlier growth senescence. Consequently, the elevation of CO2 increased the Psat, LA and SLW during the growing season, with a significant concurrent increase in the carbon storage in aboveground biomass. Low soil moisture decreased the Psat, leaf stomatal conductance, LA and carbon storage in above ground biomass compared with high and normal soil moisture. This water stress effect was the largest under the elevated temperature. The elevated CO2 partially mitigated the adverse effects of high temperature and low soil moisture. However, the combination of elevated temperature and CO2 did not significantly increase the carbon storage in aboveground biomass of the plants.  相似文献   

2.
The leaf non-structural carbohydrate (NSC) content and total non-structural carbohydrate content (TNC) were measured on a dry weight basis and on a leaf area basis in three altitudinal (3100, 3550 and 4200 m a.s.l.) populations ofE. schultzii. The values of leaf dry weight per area (LWA) increase with altitude. The leaf non-structural carbohydrate content (expressed as g/kg dry weight) does not show statistically significant difference among populations, but the values expressed on an area basis (g/m2) show a statistically significant increase with altitude. Significant correlations were observed between LWA and TNC (r 2=0.65); insoluble carbohydrate (r 2=0.78); total soluble carbohydrate (r 2=0.53); reducing sugars (r 2=0.47) expressed on area basis. Correlations between LWA and NSC for any fraction and TNC on a dry weight basis were not significant. It appears that along this altitudinal gradient the leaf area is more affected than the leaf dry weight. Since the NSC is known to play a role in the freezing tolerance of plants, the results indicate that the freezing tolerance does not change among the populations along the gradient.  相似文献   

3.
Isogenic lines of pea (Pisum sativum L.) with the genetically determined changes in leaf morphology, afila (af) and tendril-less (tl), were used to study the relationship between shoot and root growth rates. The time-course of shoot and root growth was followed during the pre-floral period in the intact plants grown under similar conditions. The af mutation produced afila leaves without leaflets, whereas in the case of the tl mutations, tendrils were substituted with leaflets, and acacia-like leaves were developed. Due to the changes in leaf morphology caused by these mutations, pea genotypes differed in leaf area: starting from day 7, the leaf area was lower in the af plants and larger in the tl plants as compared to the wild-type plants. Such divergence was amplified in the course of plant development and reached its maximum immediately before the transition to flowering. Plants of isogenic lines did not notably differ in stem surface areas. In spite of significant difference in total leaf area, the wild type and tl plants did not differ in leaf dry weight. Starting from leaf 9, the af plants lagged behind two leaflet-bearing genotypes (wild type and tl) in leaf dry weight, whereas stem dry weight was similar in the wild type and tl forms and slightly lower in the af plants. Root dry weights were practically similar in the wild type and tl plants until flowering. The reduction of leaf area in the af plants drastically reduced root dry weight. In other words, the latter index was related to the total weight and total area of leaves and stems. The correlation analysis demonstrated an extremely low relationship between leaf and stem area and dry weight and those of roots early in plant development (when plants develop five to seven leaves). Later, immediately before flowering (nine to eleven leaves), root weight was positively related to leaf weight and area; however, stem area and root weight did not correlate. Thus, in three genotypes (wild type, af, and tl), at the end of their vegetative growth phase, leaf and root biomass accumulated in proportion, independently of leaf area expansion.  相似文献   

4.
A method is described for estimating the rate of accumulation of epiphyte biomass on leaves of the seagrass, Heterozostera tasmanica (Martens ex Aschers.) den Hartog and for estimating the effect of epiphyte biomass on photosynthesis of the seagrass. Epiphyte biomass was determined by comparison of the weight per unit area of epiphyte-covered and epiphyte-free leaf blades. Epiphyte weight increased as age of the seagrass leaves increased. Linear regression on epiphyte biomass vs. leaf age estimated the rate of biomass accumulation. Rates varied from 5.7 to 104 μg epiphyte dry weight per cm2 of leaf surface per day at three sites in Western Port and Port Phillip Bay, Victoria. Rates of accumulation of epiphyte biomass were generally higher during December through March (summer) than in May (autumn), August (winter) or October (Spring). Light attenuation by epiphytes increase linearly with biomass. The rate of biomass accumulation of epiphytes was compared with leaf growth rate, ambient photon flux density in H. tasmanica beds and the photosynthesis—photon flux density curve of H. tasmanica. This comparison demonstrated that epiphyte biomass can accumulate fast enough to shade H. tasmanica leaves and significantly reduce the time (to less than one half of the leaf life span) in which positive net photosynthesis of the leaf blade is possible.  相似文献   

5.
A comparison was made of epicuticular lipid accumulation on leaves of Lycopersicon pennellii and Lycopersicon esculentum Mill. cv VF36 from 5 to 16 weeks of age. Epicuticular lipids were a small fraction of the leaf dry weight (0.16%) of 5-week-old `VF36', and increased to only 0.96% of the leaf dry weight after an additional 12 weeks of growth. In contrast, leaves from 5-week-old and 17-week-old L. pennellii plants had, respectively, 0.94% and 19.9% of their total dry weight in epicuticular lipid. Lipid accumulation was not affected by drought stress. Leaf position appears to influence the amount of lipid on the leaf surface. A glycolipid appears to be exuded from the terminal cell of glandular trichomes found on the leaves, stems, peduncles, calyxes, and fruits of L. pennellii.  相似文献   

6.
Guiamét, J. J., Balatti, P. A. and Montaldi, E. R. 1986.Nitrogen assimilation and leaf development in indeterminatesoybeans as influenced by post-flowering photoperiod.—J.exp. Bot. 37: 1611–1618. The effects of photoperiod on nitrogen fixation and leaf developmentin indeterminate soybeans were studied during early reproductivegrowth. Soybean plants cv. Williams were grown under short days(SD: 8 h-natural daylight (N.D.)+16 h-darkness) or long days(LD: 8 h-N.D. + 8 h-low intensity artificial light+ 8 h-darkness)from full bloom until mid pod filling. Long days greatly increased plant growth, both on the basisof leaf area or weight, mainly due to higher net assimilationrate. Average daily rates of N2-fixation increased under LD;however, average N2-fixation rates on a nodule weight or N basisdid not vary, suggesting that changes were not in nodule efficiencybut in nodule biomass. As compared to SD, LD reduced N contentin vegetative parts (pooled roots, stems and leaves), individualleaf blades and fruits. This seemed to be due to greater drymatter accumulation relative to N2-fixation. The 2nd and 5th trifoliolate leaves showed larger specific leafweight (SLW) under LD. Soluble protein content on a dry weightbasis was higher in the 5th (younger) leaf than in the 2nd,but did not vary due to photoperiod. On the other hand, chlorophylland Fraction I protein content decreased in terms of dry weightunder LD. A larger proportion of leaf N was allocated to solubleproteins under LD, thus compensating for the lower N content.On the whole, growth enhancement by LD seemed unrelated to increasedavailability of N or to greater leaf soluble protein or FractionI content. Key words: Photoperiod, leaf development, soybean, nitrogen fixation  相似文献   

7.
The effect of maturation on the morphological and photosynthetic characteristics, as well as the expression of two genes involved in photosynthesis in the developing, current year foliage of Eastern larch (Larix laricina [Du Roi]) is described. These effects were observed on foliage during the third growing season after grafting of scions from trees of different ages onto 2 year old rootstock. Specific leaf weight (gram dry weight per square meter), leaf cross-sectional area (per square millimeter), and chlorophyll content (milligram per gram dry weight) all increase with increasing age in long shoot foliage from both indoor- and outdoor-grown trees. Net photosynthesis (NPS) (mole of CO2 per square millimeter per second) increases with age on indoor- but not outdoor-grown trees. NPS also increases with increased chlorophyll content, but outdoor-grown scions of all ages had higher chlorophyll content, and chlorophyll does not appear to be limiting for NPS outdoors. To extend these studies of maturation-related differences in foliar morphology and physiology to the molecular genetic level, sequences were cloned from the cab and rbsS gene families of larch. Both cab and rbcS gene families are expressed in foliage but not in roots, and they are expressed in light-grown seedlings of larch but only at very low levels in dark-grown seedlings (~2% of light-grown seedlings). Steady-state cab mRNA levels are relatively higher (~40%) in newly expanding short shoot foliage from juvenile plants compared to mature plants. Unlike cab, the expression of the rbcS gene family did not seem to vary with age. These data show that the maturation-related changes in morphological and physiological phenotypes are associated with changes in gene expression. No causal relationship has been established, however. Indeed, we conclude that the faster growth of juvenile scions reported previously (MS Greenwood, CA Hopper, KW Hutchison [1989] Plant Physiol 90: 406-412) is not due to increased NPS or cab expression. Long shoot foliage is the dominant foliar type on young trees and its lower specific leaf weight will permit production of more photosynthetic surface area per unit of leaf biomass.  相似文献   

8.
The interactive effects of a Neotyphodium endophyte and hydropriming on Festuca sinensis seeds were determined within a germination cabinet and under greenhouse conditions. Seed germination was optimized by an imbibition period of 15–30 min. Endophyte combined with hydropriming significantly (P < 0.05) promoted interim germination (at osmotic potentials of ?0.3 to ?0.6 MPa), germination rate (?1.2 MPa), vigor index of seeds (0 to ?1.2 MPa), length of coleoptile and radicle (?0.3 to ?1.2 MPa) and seedling dry weight (0 to ?1.2 MPa). Based on a long-term growth experiment, their interactive effects resulted in significant (P < 0.05) increases of above-ground dry weight, seedling heights during week 7–13 and tiller and leaf number during week 11–13 (P < 0.05), and greatly (P < 0.05) increased leaf elongation during week 7–11. Presence of the Neotyphodium endophyte combined with a seed hydropriming treatment is an effective strategy to improve seed germination and plant growth of F. sinensis.  相似文献   

9.
Alternanthera philoxeroides, alligator weed, was grown at five different NaCl concentrations to determine the effect of salinity on factors related to the net rate of CO2 uptake (Pn). Over the range of 0 to 400 millimolar NaCl, Pn declined 51%. Stomatal conductance declined in parallel with Pn and as a result there was no reduction in intercellular CO2 concentration and therefore no reduction in the amount of CO2 available for photosynthesis. The CO2 compensation point did not change with salt stress. Increases in leaf thickness tended to compensate slightly for the negative effects of salinity on leaf cell metabolism, at least in relation to Pn. On a mesophyll cell area basis, soluble protein was relatively constant in leaves developed at 100 to 400 millimolar NaCl while total chlorophyll decreased at all salinities. Dry weight production and Pn were closely correlated in alligator weed grown at different salinities. Plants produced less leaf area per unit dry weight as salinity increased, which may aid in water conservation.  相似文献   

10.
植物功能性状种间性状变异反映不同物种的生活史对策,种内性状变异反映了同一物种不同个体应对不同环境的性状应答.人工林均一的环境有利于深入分析不同树种种内和种间变异.该研究以南宁良凤江林场的四种乡土珍贵阔叶树种[观光木(Tsoongiodendron odorum)、红锥(Castanopsis hystrix)、灰木莲(...  相似文献   

11.
Four consecutive trifoliate leaves of 56-day-old symbiotic or nonsymbiotic soybean plants were evaluated individually for CO2 exchange rates (CER), leaf area and dry weight, and leaf N, P, and starch concentrations. Plants had been inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae and Rhizobium japonicum, with either of the endophytes alone, or with neither at time of planting. Plants lacking one or both endophytes received N and/or P fertilizers to produce plants of equal total leaf dry weight in all four treatments. Photosynthetic P-use efficiency (CER per unit leaf P) was higher in the leaves of VAM plants than in P-fertilized plants regardless of the N source (N2 fixation or combined N). Photosynthetic N-use efficiency was also higher in VAM than in non-VAM plants, but it was affected by the N source, with higher CER in the nodulated plants. The greatest differences in CER, starch accumulation and leaf area were found between the nonsymbiotic plants and those with both endophytes. Statistical evaluations of leaf parameters for treatment or nutrient concentration (N and P) effects between the tri-partite and the nonsymbiotic treatments showed significant changes in concentration of P, but not N, with decreasing leaf age. Both endophytes apparently enhance CO2 fixation at N and/or P concentrations lower than those of the nonsymbiotic plants. The effects of the endophytes on CO2 fixation were additive.  相似文献   

12.
The physiological bases for genetic differences in leaf growth rates were examined in two genotypes of tall fescue (Festuca arundinacea Schreb.) selected for a 50% difference in leaf elongation rate. Genotypes had similar dark respiration rates and concentrations of carbohydrate fractions in the leaf meristem and in each daily growth segment above the meristem. Dark respiration rates and concentrations of nonreducing sugars, fructans, and takadiastase-soluble carbohydrates were highest in leaf intercalary meristems and declined acropetally with tissue age. Concentrations of reducing sugars were 1.0% of dry weight in leaf meristems, 3.7% of dry weight in tissue adjacent to the meristem, then decreased progressively with distance from the meristem. Glucose, fructose, and myo-inositol comprised over 90% of the monosaccharides present in leaf meristems. Soluble protein concentration was 9.7 milligrams per gram fresh weight in leaf meristems, 5.5 milligrams per gram in tissues immediately above the meristem and, thereafter, increased linearly with distance from the meristem.

Leaf meristems of the genotype exhibiting rapid leaf elongation contained 30% more soluble protein than those of the genotype selected for slow leaf elongation. The 4-fold difference in size of the leaf meristem appeared to be more important in influencing leaf elongation than were other characteristics examined.

  相似文献   

13.
The study described patterns of leaf dry mass change, leaf mass per area (LMA), relative growth rate and leaf life span (LL) for 14 evergreen and 7 deciduous species of a tropical forest of Southern Assam, India. Leaf expansion in both the groups was, in general, completed before June (i.e. well before the onset of monsoon rains). Although leaf dry mass during leaf initiation phase was significantly higher (P < 0.01) in evergreen species than in deciduous species, at the time of full leaf expansion, average leaf dry mass relative to the peak leaf dry mass, realised by the evergreen species was lower (66 %) than for deciduous species (76 %). Leaf dry mass increase in both groups continued after leaf full expansion. Evergreen species had a longer leaf dry mass steady phase than deciduous species (2–6 vs 2–3 months). Average LMA of mature leaves for evergreen species (77.43 g m?2) was significantly greater than that of deciduous species (48.43 g m?2). LL ranged from 165 days in Gmelina arborea (deciduous) to 509 days in Dipterocarpus turbinatus (evergreen). LMA was correlated positively with LL, indicating that evergreen species with higher leaf construction cost retain leaves for longer period to pay back. The average leaf dry mass loss before leaf shedding was greater (P < 0.01) for deciduous species (30.29 %) than for evergreen species (18.31 %). Although the cost of leaf construction in deciduous species was lower than for evergreen species, they replace leaves at a faster rate. Deciduous species perhaps compensate the cost involved in faster leaf replacement through higher reabsorption of dry mass during senescence, which they remobilise to initiate growth in the following spring when soil resources remain limiting.  相似文献   

14.
Greenhouse tests were conducted to evaluate (i) the effect of Meloidogyne incognita infection in cotton on plant growth and physiology including the height-to-node ratio, chlorophyll content, dark-adapted quantum yield of photosystem II, and leaf area; and (ii) the extent to which moderate or high levels of resistance to M. incognita influenced these effects. Cultivars FiberMax 960 BR (susceptible to M. incognita) and Stoneville 5599 BR (moderately resistant) were tested together in three trials, and PD94042 (germplasm, susceptible) and 120R1B1 (breeding line genetically similar to PD94042, but highly resistant) were paired in two additional trials. Inoculation with M. incognita generally resulted in increases in root gall ratings and egg counts per gram of root compared with the noninoculated control, as well as reductions in plant dry weight, root weight, leaf area, boll number, and boll dry weight, thereby confirming that growth of our greenhouse-grown plants was reduced in the same ways that would be expected in field-grown plants. In all trials, M. incognita caused reductions in height-to-node ratios. Nematode infection consistently reduced the area under the height-to-node ratio curves for all genotypes, and these reductions were similar for resistant and susceptible genotypes (no significant genotype × inoculation interaction). Our study is the first to show that infection by M. incognita is associated with reduced chlorophyll content in cotton leaves, and the reduction in the resistant genotypes was similar to that in the susceptible genotypes (no interaction). The susceptible PD94042 tended to have increased leaf temperature compared with the genetically similar but highly resistant 120R1B1 (P < 0.08), likely attributable to increased water stress associated with M. incognita infection.  相似文献   

15.
Young plants of brussels sprout, cv. Cambridge Special, growing in pots in a glasshouse, were sprayed on ten occasions with gibberellic acid (GA) at 0, 25, 100 and 400 p.p.m. and ammonium nitrate (NH4NO3) at 0, 0·0125, 0·025 and 0·05 M concentrations in all combinations. In 24 days both GA and NH4NO3 increased leaf area, leaf number, dry weights of leaf, stem and root, and fresh weights of leaf and stem. GA increased stem height and decreased fresh weight/unit leaf area (leaf thickness), whereas NH4NO3 did not affect stem height and increased leaf thickness. Of the GA treatments, 100 p.p.m. gave the largest plants as judged by fresh weight of the whole plant and leaf area, and of the N treatments 0·05 M NH4NO3 increased growth most. The best treatment combination was 0·05 M NH4NO3 with 100 p.p.m. GA, which gave the greatest fresh and dry weights of the whole plant, leaf area and leaf dry weight as well as increasing leaf thickness. Significant interactions were found between GA and N for dry weight of leaf, fresh and dry weight of root, and leaf thickness but not for leaf area or stem growth (fresh weight, dry weight, height). The combination of levels of GA and N that can be expected to increase leaf area, leaf dry weight and leaf thickness simultaneously, may lie within narrow limits for a particular crop. In a second experiment plants were sprayed with all combinations of GA (0 and 100 p.p.m.) seven times under glass in pots and ten times in the field, and three levels of KH2PO4 on twelve occasions in the field. Sprouts (axillary buds) were harvested in October and February. At the first harvest GA did not affect fresh weight or number, but increased both the total number of sprouts picked (with GA = 80·7; without GA = 69·8 per plant) and the total fresh weight of saleable sprouts (with GA = 2·59; without GA = 2·33 lb/plant). KH2PO4 also increased the weight and number of sprouts at the final harvest and the number of small sprouts at the first. There were interactions between GA and KH2PO4 (P= < 0·001) for both tota weight and number of saleable sprouts.  相似文献   

16.
叶功能性状不仅反应植物对资源的利用能力,还涉及植物对自身结构和环境的生存适应策略。以不同生长阶段的木棉为研究对象,于2019年12月实地测量树高、冠幅等5个主要树形因子和采样测定叶面积、比叶面积、叶干物质含量、叶片含水量等14个叶功能性状,分析其在不同生长阶段的变化规律和相互关系,探讨叶功能性状对树形结构的响应。结果表明:不同生长阶段的木棉叶功能性状之间存在差异(P<0.05),且表现出一定的相关性(P<0.05,P<0.01);木棉叶片的面积、长度、宽度、周长、鲜重、饱和重、干重、比叶质量和干物质含量等功能性状是随生长阶段变化的主要指标。影响木棉叶片各性状的树形因子也不相同,其中叶面积主要受到冠幅的影响,叶片鲜重和饱和重主要受到枝下高的影响,叶片干重和相对含水量主要受到树高的影响,比叶面积、叶片含水量和干物质含量主要受到树高、尖削度的影响,比叶质量主要受到胸径、尖削度、树高的影响。随着木棉的生长,叶功能性状表现出受树形结构的影响而具有较强的表型可塑性,有利于其适应内外环境的变化。因此,叶功能性状之间的变化差异和相关组合,反映了不同生长阶段的木棉对树形结构的适应性调整和对资源的利用策略,在一定程度上为探索西双版纳热带雨林区的生态保护和可持续发展提供相关科学依据。  相似文献   

17.
Plant functional traits have been widely used to study the linkage between environmental drivers, trade-offs among different functions within a plant, and ecosystem structure and functioning. Here, the whole-plant traits, leaf morphological and physiological traits of two dominant species, Leymus chinensis (C3 perennial rhizome grass) and Cleistogenes squarrosa (C4 perennial bunchgrass), were studied in the Inner Mongolia grassland of China, with a grazing experiment including five stocking rates (0, 3.0, 4.5, 7.5, and 9.0 sheep/ha) in 2008 (wet year) and 2009 (dry year). Our results demonstrated that, for both species, the effects of stocking rate, year, and stocking rate?×?year on whole-plant traits and leaf morphological and physiological traits were highly significant in most cases. The differential responses of plant trait to variation in precipitation were caused by trait trade-offs between the wet and dry years. L. chinensis adopted the high N content and net photosynthetic rate (Pn) in the wet year but both the low N content and Pn in the dry year under grazed conditions. The trait trade-offs of C. squarrosa were characterized by high specific leaf area (SLA) and Pn in the dry year vs. low SLA and Pn in the wet year. Our findings also indicate that C. squarrosa is more resistant to grazing than L. chinensis in terms of avoidance and tolerance traits, particularly under heavy grazing pressure and in the dry year.  相似文献   

18.
Tao Sun  Zijun Mao  Yingying Han 《Plant and Soil》2013,368(1-2):445-458

Background and aims

Nitrate leaching from intensively cropped soils represents a huge environmental problem. In order to diversify the range of nitrogen management strategies, this investigation is focused on the effects of ribwort plantain, Plantago lanceolata L., and its allelochemicals on soil N mineralization.

Methods

High-performance liquid chromatography was used in this study for phytochemical analysis of the major allelochemicals aucubin, catalpol, and verbascoside. Soil incubation experiments demonstrated a significant suppression of soil N mineralization caused by the incorporation of the iridoid glycoside (IG) aucubin, leaf material of two varieties (P. lanceolata cv. Libor and cv. Arterner), and an aqueous extract of P. lanceolata leaves.

Results

Throughout the growing season, the two varieties conspicuously differed in aucubin and verbascoside contents as well as in leaf dry weight. In soil incubation experiments, incorporated leaf material of both varieties affected long-term low soil nitrate concentrations. Experimental aucubin application resulted in an inhibitory effect on soil N mineralization. This was not true for the IG catalpol. Furthermore, we observed a negative relationship between IG concentrations and inorganic soil nitrogen concentrations when the soil was incubated with aqueous P. lanceolata leaf extract of different concentrations.

Conclusion

This study enforced the hypothesis that allelochemicals of P. lanceolata have an active role in a suppression effect on soil N mineralization. Further research may be necessary to investigate the specific effects of P. lanceolata allelochemicals on the nitrogen cycle.  相似文献   

19.
We investigated functional coordination between branch hydraulic properties and leaf functional traits among nine miombo woodlands canopy tree species differing in habitat preference and phenology. Specifically, we were seeking to answer the question: are branch hydraulic properties coordinated with leaf functional traits linked to plant drought tolerance in seasonally dry tropical forests and what are the implications for species habitat preference? The hydraulic properties investigated in this study were stem area specific hydraulic conductivity (K S), Huber value (H v), and xylem cavitation vulnerability (??50). The leaf functional traits measured were specific leaf area (SLA), leaf dry matter content (LDMC), and mean leaf area (MLA). Generalists displayed significantly (P?<?0.05) higher cavitation resistance (??50) and SLA, but lower sapwood specific hydraulic conductivity (K S), leaf specific conductivity (K L), MLA, and LDMC than mesic specialists. Although MLA was uncorrelated with ??50, we found significant (P?<?0.05) positive and negative correlations between plant hydraulic properties and leaf functional traits linked to plant drought tolerance ability, indicating that the interactions between branch hydraulics and leaf functional traits related to plant drought tolerance ability may influence tree species habitat preference in water-limited ecosystems.  相似文献   

20.
不同品系福建山樱花叶功能性状研究   总被引:5,自引:0,他引:5  
为了解福建山樱花(Prunus campanulata)的叶片功能性状,对4个品系的叶形指数、比叶面积、叶绿素含量以及叶干物质含量进行了研究。结果表明,福建山樱花不同品系间的叶功能性状都存在显著差异。叶功能性状间存在一定的相关性,叶形指数与叶干物质含量存在显著负相关(P<0.05);比叶面积与叶绿素含量存在极显著正相关(P<0.01),其与叶干物质含量呈极显著负相关(P<0.01)。经过综合评价,池边3号品系的叶绿素含量、叶干物质含量较大,花期长,花量稠密,可推荐作为园林观赏和行道树种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号