首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the human fetus, epiphyses appear as a solid avascular cartilaginous mass until the eleventh week of development. Around the third fetal month of development, vascular canals coming from the perichondrium are recognized in the mineralized epiphyseal cartilage. Whether cartilage canals develop by passive inclusion or active chondrolysis is still a matter of controversy. We studied the relationships between the intracanalar cells and the surrounding matrix on human fetal epiphyses embedded in glycol methacrylate. At the blind end of canals both stellate fibroblast-like cells and vacuolated macrophages are observed. These cellular foci show all characteristics of active chondrolysis (loss of metachromasia, lacunae containing cells intimately associated with matrix, and presence of granular debris). Similar resorptive foci have been observed in the pannus of rheumatoid joints and in the embryonic chick growth plate composed of uncalcified cartilage. A cellular cooperation (fibroblast/macrophage) is necessary for uncalcified cartilage breakdown. In the human fetus, monocytes/macrophages have been recognized in the peripheral blood as early as the twelfth week of gestation. Our observations support the view that chondrolysis due to both fibroblasts (of mesenchymal origin) and macrophages is the basic mechanism for cartilage canal development.  相似文献   

2.
The extracellular framework and two-thirds of the dry mass of adult articular cartilage are polymeric collagen. Type II collagen is the principal molecular component in mammals, but collagens III, VI, IX, X, XI, XII and XIV all contribute to the mature matrix. In developing cartilage, the core fibrillar network is a cross-linked copolymer of collagens II, IX and XI. The functions of collagens IX and XI in this heteropolymer are not yet fully defined but, evidently, they are critically important since mutations in COLIX and COLXI genes result in chondrodysplasia phenotypes that feature precocious osteoarthritis. Collagens XII and XIV are thought also to be bound to fibril surfaces but not covalently attached. Collagen VI polymerizes into its own type of filamentous network that has multiple adhesion domains for cells and other matrix components. Collagen X is normally restricted to the thin layer of calcified cartilage that interfaces articular cartilage with bone.  相似文献   

3.
The extracellular framework and two-thirds of the dry mass of adult articular cartilage are polymeric collagen. Type II collagen is the principal molecular component in mammals, but collagens III, VI, IX, X, XI, XII and XIV all contribute to the mature matrix. In developing cartilage, the core fibrillar network is a cross-linked copolymer of collagens II, IX and XI. The functions of collagens IX and XI in this heteropolymer are not yet fully defined but, evidently, they are critically important since mutations in COLIX and COLXI genes result in chondrodysplasia phenotypes that feature precocious osteoarthritis. Collagens XII and XIV are thought also to be bound to fibril surfaces but not covalently attached. Collagen VI polymerizes into its own type of filamentous network that has multiple adhesion domains for cells and other matrix components. Collagen X is normally restricted to the thin layer of calcified cartilage that interfaces articular cartilage with bone.  相似文献   

4.
Anti-tumor factors in cartilage   总被引:1,自引:0,他引:1  
  相似文献   

5.
6.
Characterization of cathepsins in cartilage   总被引:12,自引:6,他引:6  
The presence of a cathepsin B-like enzyme in rabbit ear cartilage was established by the use of the synthetic substrates benzoyl-l-arginine amide and benzoyl-dl-arginine 2-naphthylamide. This was facilitated by using a technique that permits the incubation of a fixed weight of thin (18mu) cartilage sections with an appropriate exogenous substrate. The enzymic properties of cathepsin B in cartilage have been compared with an endogenous enzyme that liberates chondromucopeptide by degrading the cartilage matrix autocatalytically at pH5. Besides being maximally active at pH4.7, these cartilage enzymes are enhanced in activity by cysteine and inhibited by arginine analogues, iodoacetamide, chloroquine and mercuric chloride. They are not inhibited by EDTA, di-isopropyl phosphorofluoridate and diethyl p-nitrophenyl phosphate. When inhibiting the release of chondromucopeptide from cartilage at pH5, the arginine-containing synthetic substrates are hydrolysed simultaneously. These enzymes also share the same heat-inactivation characteristics at various pH values, being stable at acid pH and unstable at neutral and alkaline pH. The experimental evidence indicates that a cathepsin B-like enzyme may be partly responsible for the autolytic degradation of cartilage matrix at pH5.  相似文献   

7.
8.
9.
10.
11.
12.
Electrokinetic phenomena contribute to biomechanical functions of articular cartilage and underlie promising methods for early detection of osteoarthritic lesions. Although some transport properties, such as hydraulic permeability, are known to become anisotropic with compression, the direction-dependence of cartilage electrokinetic properties remains unknown. Electroosmosis experiments were therefore performed on adult bovine articular cartilage samples, whereby fluid flows were driven by electric currents in directions parallel and perpendicular to the articular surface of statically compressed explants. Magnitudes of electrokinetic coefficients decreased slightly with compression (from approximately -7.5 microL/As in the range of 0-20% compression to -6.0 microL/As in the 35-50% range) consistent with predictions of microstructure-based models of cartilage material properties. However, no significant dependence on direction of the electrokinetic coupling coefficient was detected, even for conditions where the hydraulic permeability tensor is known to be anisotropic. This contrast may also be interpreted using microstructure-based models, and provides insights into structure-function relationships in cartilage extracellular matrix and physical mediators of cell responses to tissue compression. Findings support the use of relatively simple isotropic modeling approaches for electrokinetic phenomena in cartilage and related materials, and indicate that measurement of electrokinetic properties may provide particularly robust means for clinical evaluation of cartilage matrix integrity.  相似文献   

13.
14.
15.
In clinical arthrographic examination, strong hypertonic contrast agents are injected directly into the joint space. This may reduce the stiffness of articular cartilage, which is further hypothesized to lead to overload-induced cell death. We investigated the cell death in articular cartilage while the tissue was compressed in situ in physiological saline solution and in full strength hypertonic X-ray contrast agent HexabrixTM. Samples were prepared from bovine patellae and stored in Dulbecco’s Modified Eagle’s Medium overnight. Further, impact tests with or without creep were conducted for the samples with contact stresses and creep times changing from 1 MPa to 10 MPa and from 0 min to 15 min, respectively. Finally, depth-dependent cell viability was assessed with a confocal microscope. In order to characterize changes in the biomechanical properties of cartilage as a result of the use of Hexabrix?, stress-relaxation tests were conducted for the samples immersed in Hexabrix? and phosphate buffered saline (PBS). Both dynamic and equilibrium modulus of the samples immersed in Hexabrix? were significantly (p<0.05) lower than those of the samples immersed in PBS. Cartilage samples immersed in physiological saline solution showed load-induced cell death primarily in the superficial and middle zones. However, under high 8–10 MPa contact stresses, the samples immersed in full strength Hexabrix? showed significantly (p<0.05) higher number of dead cells than the samples compressed in physiological saline, especially in the deep zone of cartilage. In conclusion, excessive loading stresses followed by tissue creep might increase the risk for chondrocyte death in articular cartilage when immersed in hypertonic X-ray contrast agent, especially in the deep zone of cartilage.  相似文献   

16.
In the repair of cartilage defects, autologous tissue offers the advantage of lasting biocompatibility. The ability of bovine chondrocytes isolated from hyaline cartilage to generate tissue-engineered cartilage in a predetermined shape, such as a human ear, has been demonstrated; however, the potential of chondrocytes isolated from human elastic cartilage remains unknown. In this study, the authors examined the multiplication characteristics of human auricular chondrocytes and the ability of these cells to generate new elastic cartilage as a function of the length of time they are maintained in vitro. Human auricular cartilage, harvested from patients 5 to 17 years of age, was digested in collagenase, and the chondrocytes were isolated and cultured in vitro for up to 12 weeks. Cells were trypsinized, counted, and passaged every 2 weeks. Chondrocyte-polymer (polyglycolic acid) constructs were created at each passage and then implanted into athymic mice for 8 weeks. The ability of the cells to multiply in vitro and their ability to generate new cartilage as a function of the time they had been maintained in vitro were studied. A total of 31 experimental constructs from 12 patients were implanted and compared with a control group of constructs without chondrocytes. In parallel, a representative sample of cells was evaluated to determine the presence of collagen. The doubling rate of human auricular chondrocytes in vitro remained constant within the population studied. New tissue developed in 22 of 31 experimental implants. This tissue demonstrated the physical characteristics of auricular cartilage on gross inspection. Histologically, specimens exhibited dense cellularity and lacunae-containing cells embedded in a basophilic matrix. The specimens resembled immature cartilage and were partially devoid of the synthetic material of which the construct had been composed. Analyses for collagen, proteoglycans, and elastin were consistent with elastic cartilage. No cartilage was detected in the control implants. Human auricular chondrocytes multiply well in vitro and possess the ability to form new cartilage when seeded onto a three-dimensional scaffold. These growth characteristics might some day enable chondrocytes isolated from a small auricular biopsy to be expanded in vitro to generate a large, custom-shaped, autologous graft for clinical reconstruction of a cartilage defect, such as for congenital microtia.  相似文献   

17.
Summary Cartilage cubes, prepared from the proximal epiphyses of neonatal rat humeri and consisting of cartilage tissue only, were cultured in the presence of retinoic acid. The retinoid induced the loss of metachromatic staining with toluidine blue, which correlates with the loss of proteoglycan, followed by tissue degradation processes resulting in a distinct reduction of the cartilage mass. Histologically, fibroblast-like cells appeared within chondrones, indicating a transformation of chondroblasts. Focal tissue degradation was observed after only 2 days. Electron microscopically, the clustered cells within the zone of tissue degradation were rich in various lysosomal structures indicating their lytic activity. Cycloheximide and EDTA completely blocked the retinoic acid effects suggesting that protein synthesis was required and that metalloproteinases may be involved in the degradation processes. In conclusion, with the new test system described here we demonstrated that cartilage cells themselves performed the tissue degradation induced by retinoic acid.  相似文献   

18.
19.
Lee SJ  Broda C  Atala A  Yoo JJ 《Biomacromolecules》2011,12(2):306-313
Cartilage tissues are often required for auricular tissue reconstruction. Currently, alloplastic ear-shaped medical implants composed of silicon and polyethylene are being used clinically. However, the use of these implants is often associated with complications, including inflammation, infection, erosion, and dislodgement. To overcome these limitations, we propose a system in which tissue-engineered cartilage serves as a shell that entirely covers the alloplastic implants. This study investigated whether cartilage tissue, engineered with chondrocytes and a fibrin hydrogel, would provide adequate coverage of a commercially used medical implant. To demonstrate the in vivo stability of cell-fibrin constructs, we tested variations of fibrinogen and thrombin concentration as well as cell density. After implantation, the retrieved engineered cartilage tissue was evaluated by histo- and immunohistochemical, biochemical, and mechanical analyses. Histomorphological evaluations consistently showed cartilage formation over the medical implants with the maintenance of dimensional stability. An initial cell density was determined that is critical for the production of matrix components such as glycosaminoglycans (GAG), elastin, type II collagen, and for mechanical strength. This study shows that engineered cartilage tissues are able to serve as a shell that entirely covers the medical implant, which may minimize the morbidity associated with implant dislodgement.  相似文献   

20.
Results of both clinical and animal studies show that meniscectomy often leads to osteoarthritic degenerative changes in articular cartilage. It is generally assumed that this process of cartilage degeneration is due to changes in mechanical loading after meniscectomy. It is, however, not known why and where this cartilage degeneration starts. Load induced cartilage damage is characterized as either type (1)--damage without disruption of the underlying bone or calcified cartilage layer--or type (2), subchondral fracture with or without damage to the overlying cartilage. We asked the question whether cartilage degeneration after meniscectomy is likely to be initiated by type (1) and/or type (2) cartilage damage. To investigate that we applied an axisymmetric biphasic finite element analysis model of the knee joint. In this model the articular cartilage layers of the tibial and the femoral condyles, the meniscus and the bone underlying the articular cartilage of the tibia plateau were included. The model was validated with data from clinical studies, in which the effects of meniscectomy on contact areas and pressures were measured. It was found that both the maximal values and the distributions of the shear stress in the articular cartilage changed after meniscectomy, and that these changes could lead to both type (1) and type (2) cartilage damage. Hence it likely that the cartilage degeneration seen after meniscectomy is initiated by both type (1) and type (2) cartilage damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号